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The comprehension of protein and DNA binding in vivo is essential to understand gene regulation. Chromatin immu-
noprecipitation followed by sequencing (ChIP-seq) provides a global map of the regulatory binding network. Most ChIP-
seq analysis tools focus on identifying binding regions from coverage enrichment. However, less work has been performed
to infer the physical and regulatory details inside the enriched regions. This research extends a previous blind-decon-
volution approach to develop a post-peak–calling algorithm that improves binding site resolution and predicts cooperative
interactions. At the core of our new method is a physically motivated model that characterizes the binding signal as an
extreme value distribution. This model suggests a mathematical framework to study physical properties of DNA shearing
from the ChIP-seq coverage. Themodel explains the ChIP-seq coverage with two signals: The first considers DNA fragments
with only a single binding event, whereas the second considers fragments with two binding events (a double-binding
signal). The model incorporates motif discovery and is able to detect multiple sites in an enriched region with single-
nucleotide resolution, high sensitivity, and high specificity. Our method improves peak caller sensitivity, from less than
45% up to 94%, at a false positive rate <11% for a set of 47 experimentally validated prokaryotic sites. It also improves
resolution of highly enriched regions of large-scale eukaryotic data sets. The double-binding signal provides a novel ap-
plication in ChIP-seq analysis: the identification of cooperative interaction. Predictions of known cooperative binding sites
show a 0.85 area under an ROC curve.

[Supplemental material is available for this article.]

The success of an organism depends on expressing the right set of

genes in response to different environmental challenges. Regulatory

proteins, namely, transcription factors (TF), mediate this response.

The TFs are able to recognize and bind specific DNA sequences,

promoting or blocking the recruitment of RNApolymerase and the

initialization of transcription (Browning and Busby 2004). In order

to understand the molecular basis of gene regulation, it is impor-

tant to characterize and identify the mechanisms that drive TF

binding in vivo.

Gene regulation can be studied from a thermodynamics point

of view. In this context, a DNA sequence containsmultiple binding

sites and a probability is associated with each possible binding

configuration, which describes the sites that are bound and the

ones that are not. This approach provides a quantitative un-

derstanding of gene regulation and has been used for predicting

cell phenotypes, such as gene expression and embryo devel-

opment (Zinzen et al. 2006; Segal et al. 2008; Segal and Widom

2009; He et al. 2010). The accuracy of such models depends on

understanding the underlying factors that contribute to the con-

figuration probabilities and associating the correct probability to

each binding configuration.

The probability of each configuration depends on the affinity

between a TF and its corresponding binding sites (Maerkl and

Quake 2007; Segal andWidom 2009; Zhao et al. 2009; Stormo and

Zhao 2010). Motif discovery has been used to study this phe-

nomenon (Segal et al. 2008; He et al. 2010), but motif presence

alone is not sufficient to characterize TF binding under physio-

logical conditions (Barski et al. 2007; Robertson et al. 2007; Kaplan

et al. 2008; Kim and O’Shea 2008; Visel et al. 2009; Gordon et al.

2010; MacQuarrie et al. 2011). Binding observed in vivo (Valouev

et al. 2008) does not correlate well with affinity observed in vitro

(Berger and Bulyk 2009). Also, only a fraction of sites are bound

under physiological conditions (Robertson et al. 2007; Visel et al.

2009; MacQuarrie et al. 2011). One potential reason for these dif-

ferences is changes in site accessibility under different physiolog-

ical conditions (Barski et al. 2007; Kaplan et al. 2008; Kim and

O’Shea 2008; Gordon et al. 2010; Pique-Regi et al. 2011).

In addition, binding is affected by the presence and location

of multiple sites inside the same regulatory region (Johnson et al.

2007; Chauhan and Tyagi 2008; Valouev et al. 2008; Vasudeva-Rao

and McDonough 2008; Chauhan et al. 2011). The presence of

multiple sites can lead to cooperative interactions that impact the

dynamics of gene regulation (Gertz et al. 2009). Also, the position of

a site influences whether binding activates or represses expression
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(Oppenheim et al. 2005; Larochelle et al. 2006). Thus, an accurate

understanding of the gene regulatory network depends on the

number and precise location of sites that are bound in vivo as well

as possible interactions among them within each regulatory

region.

Advances in sequencing technology have provided new op-

portunities to map gene regulatory networks on a genome scale.

Chromatin immunoprecipitation followed by sequencing (ChIP-

seq) (Barski et al. 2007; Johnson et al. 2007; Robertson et al. 2007),

and more recently, ChIP-exo (Rhee and Pugh 2011) are currently

the most advanced technologies for this purpose. The principle of

chromatin immunoprecipitation consists of using antibody se-

lection to purify DNA fragments that are bound by the TF of in-

terest, and the sequencing technology provides reads that identify

the purified DNA. These reads are then aligned to a reference ge-

nome and yield a region of enriched coverage around the TF

binding sites.

The initial studies of ChIP-seq (Barski et al. 2007; Johnson

et al. 2007; Robertson et al. 2007) focused on identifying and

validating the enriched regions for well-characterized DNA bind-

ing factors (Hartman et al. 2005; Gaszner and Felsenfeld 2006;

Mortazavi et al. 2006; Heintzman et al. 2007). Subsequent papers

described the underlying signals of ChIP-seq and developed algo-

rithms to identify enriched regions (also known as peak callers)

(Kharchenko et al. 2008; Valouev et al. 2008; Zhang et al. 2008;

Lun et al. 2009). One of themost successful signatures identified to

date is a peak shift between the coverage of reads mapped to the

forward and reverse strand. This signature improves the sensitivity

of binding site detection (Kharchenko et al. 2008; Valouev et al.

2008) and was used to develop a benchmark for ChIP-seq analysis

(Rye et al. 2011). The integration of sequence motifs and ChIP-seq

coverage has also been proposed to improve sensitivity of binding

site detection (Boeva et al. 2010; Guo et al. 2012).

Multiple peak callers have been proposed (Pepke et al. 2009;

Wilbanks and Facciotti 2010; Rye et al. 2011), but little attention

has been given to the physical and regulatory interactions inside

each enriched region (Lun et al. 2009; Salmon-Divon et al. 2010).

One of the earliest attempts in this direction was csdeconv (Lun

et al. 2009). Csdeconv considered ChIP-seq coverage in the context

of signal processing and used a blind-deconvolution algorithm to

identifymultiple binding sites inside an enriched region.However,

the application of csdeconv in data sets with a large number of

enriched regions has not been practical due to its high computa-

tional cost (Wilbanks and Facciotti 2010). Other methods have

also been proposed to identify multiple binding sites inside the

same region (Guo et al. 2010, 2012; Zhang et al. 2011; Chung et al.

2013).

In this research, we have built on the concepts introduced by

csdeconv to develop Binding Resolution Amplifier and Cooperative

Interaction Locator (BRACIL), a new method that improves com-

putational performance, refines the spatial resolution of binding

site detection, and predicts cooperative interactions. BRACIL is

a post-peak–calling method that refines the regulatory infor-

mation derived from enriched regions and is a complementary

step to the current state of ChIP-seq analysis (Furey 2012). Our

investigation starts bymodeling the physical process that describes

how in vivo binding translates into the ChIP-seq coverage. This

approach allows a mathematical solution for the binding site im-

pulse response with a physical interpretation for its parameters.

Specifically, the parameters are related to physical properties of

DNA shearing. The advantages of this model are illustrated in two

biological applications: (1) the detection of binding sites with

single-nucleotide resolution; and (2) the detection of cooperative

interactions. BRACIL is inspired by the blind-deconvolution ap-

proach of csdeconv (Lun et al. 2009) and explicitly integrates ChIP-

seq coverage with motif discovery. BRACIL takes advantage of the

high-resolution information provided by motif conservation and

uses the ChIP-seq coverage to identify motifs that contribute to the

binding signal. We also modeled a second-order signal that repre-

sents DNA fragments with two sites bound simultaneously, the

double-binding signal. The double-binding signal improves binding

site detection and allows a novel application in the ChIP-seq anal-

ysis: detection of cooperative interaction. We validated our method

on a reference set of 47 binding sites including well-characterized

instances of cooperative interaction (Chauhan et al. 2011).

Results

Decoding model

As in csdeconv (Lun et al. 2009), our method approaches the ChIP-

seq process from a signal processing perspective (Fig. 1). In this

context, an impulse signal represents a binding site and the process

of ChIP-seq emits a corresponding impulse response. The sum of

impulse responses from all TF binding sites generates the observed

ChIP-seq coverage (see Fig. 1A). We have developed a blind-

deconvolution algorithm that identifies the binding site locations

and corresponding magnitudes from ChIP-seq coverage (Fig. 1B).

In this algorithm, the term ‘‘blind’’ indicates that the parameters

for the impulse response have to be learned from the data. Also, our

method exploits the information contained in the genome se-

quence, bymeans of motif discovery, to constrain the search space

and improve the resolution of binding site detection.

The blind-deconvolution algorithm consists of two iterative

steps (Fig. 1B): one that updates themagnitude and location of the

binding sites (ML step); and one that updates the shape of the

impulse response (P step). These steps are alternated until con-

vergence. This iterative process is computationally expensive and

explains why the use of csdeconv (Lun et al. 2009) has been re-

stricted to data sets that contain only a few enriched regions

(Wilbanks and Facciotti 2010). Our method improves computa-

tional efficiency by training the parameters of the impulse re-

sponse in only a subset of the enriched regions (seeMethods). This

simplification reduces the number of regions evaluated in the

iterative part of the algorithm and reduces the computational cost

fromO(2 � i � n) toO(2 � i), where n is the number of enriched regions

and i is the number of iterative steps taken until convergence.

Moreover, after the parameters of the impulse response are learned,

the problem becomes a simple deconvolution process (represented

by the ML step) that can be handled in parallel. A summary of the

improvements brought by BRACIL and its comparison with

csdeconv is shown in Supplemental Table S3.

BRACIL improves the accuracy of binding site detection using

the enriched regions predicted by peak callers to constrain the

locations where a binding event may occur (see Methods). This

analysis defines binding sites and enriched regions as distinct

terms. We denote a binding site as a single nucleotide location for

a binding event and an enriched region as an interval that is

identified by peak callers to likely contain one or more binding

sites. We assume that an enriched region contains at least one

binding site. The post-peak–calling approach proposed by our

method suggests a modular organization of ChIP-seq analysis in

which peak identification and peak refinement are represented as

two distinct fundamental problems for ChIP-seq studies.
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BRACIL identifies binding sites with high spatial resolution

by integrating genome sequence and ChIP-seq coverage. Our

method utilizes the information contained in the genome sequence

by means of de novomotif discovery (Fig. 1C). The principle of our

method is that a motif instance carries prior information important

in identifying genome location of binding events. Specifically, the

motif discovery step scans the enriched regions for potential

binding motifs and uses them to constrain the search space for

deconvolution. Binding motifs are classified as weak or strong

according to motif conservation, and the deconvolution process

takes advantage of ChIP-seq coverage to identify which of these

correspond to a true binding event (see Methods). A computa-

tionally predicted motif is considered a binding site if it helps to

maximize the likelihood of the observed ChIP-seq coverage (see

Methods). In order to avoid spurious prediction, weak motifs are

penalized in accordance with a penalty parameter. This feature

provides BRACIL the ability to identify binding events caused by

weakly conserved motifs and improves sensitivity and specificity

of binding site detection. Finally, for enriched regions that do not

contain evidence of motif presence, BRACIL is able to refine

binding sites based only on ChIP-seq coverage.

Modeling the impulse response

The quality of the blind-deconvolution process, described in the

previous section, depends on the model used to represent the im-

pulse response. The impulse response represents the physical process

that transmits the information of in vivo binding into the ChIP-seq

coverage (Fig. 2A). A qualitative explanation for this process has al-

ready been reported (Kharchenko et al. 2008; Valouev et al. 2008).

Accordingly, the impulse response consists of a symmetric shape and

a peak shift on the coverage of the positive and the negative strand

(Figs. 1A, 2B,C). The sequencing process occurs from the 59 to 39 di-

rection and provides strand-specific reads resulting in strand-specific

coverage. The peak shift occurs because the coverage on one side of

a binding site is associated with reads for the positive strand and the

coverage on the other sidewith reads for thenegative strand (Fig. 2B).

A physical interpretation of the ChIP-seq experiments sug-

gests that the impulse response can be modeled as an extreme

value distribution. This interpretation results from studying the

position of the DNA edges that are sequenced after the immuno-

precipitation step. Starting at the shearing step, multiple break

points split the genome into many fragments. Each fragment

contains two edges and the position of each edge is associatedwith

a break point. The sequencing step identifies the sequence of DNA

edges, and consequently, the genome location of break points.

Immunoprecipitation purifies the DNA fragments that are bound

by the TF under investigation and thus the break points that are

closest to the binding sites. From amathematical point of view, the

position of a break point is a random process, and the immuno-

precipitation selects the ones with the minimum distance from

a binding event. Thus, the impulse response can be modeled as an

extreme value distribution (Fig. 2A, dark highlighted box; Fig. 2B).

The precise solution for the extreme value distribution de-

pends on the probability that a break point occurs at some genome

position. LetV(x) be the probability that a break point occurs up to

a distance x from a given binding site, and assuming that the

number of break points follows a Poisson distribution (with

Figure 1. Illustration of the integrated model used to detect binding sites at high resolution. (A) The binding sites are a signal source. Each binding site
(purple box) may emit an impulse response (blue upward arrow) that can be observed in the coverage of the ChIP-seq data (right). If two sites are close to
each other, the observed data shows an overlap of the impulse responses from each site. (B) Illustration of the algorithm for binding site detection. The
blind-deconvolution algorithm is broken into two parts to optimize the computational efficiency (see inset legend for detailed meaning of each line and
color). First, both theML and P steps are applied in a subset of enriched regions to estimate the parameters for the impulse response (top). Following, the
ML step predicts the binding site locations for all regions in parallel (bottom right). From the output of the deconvolution process, we are able to predict
a binding motif. This motif predicts potential binding sites that constrain the search space for a second round of the blind-deconvolution algorithm. This
representation also illustrates the fit of a Gumbel distribution (green/red solid lines) in the ChIP-seq coverage (green/red shaded area). (C ) Our method
filters out false positives detected by themotif scan.Motif scan predicts binding sites that do not correspond to a true physiological binding. Our algorithm
is inclusive with respect to low-affinity sites and uses the ChIP-seq coverage to filter out false positives.
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breaking rate l), the cumulative distribution function (cdf) for the

impulse response can be described by the following equation (see

Supplemental Material for full derivation):

F(x)=
1� e�l�VðxÞ

1� e�l
: ð1Þ

A simple mathematical manipulation of Equation 1 allows

V(x) to be predicted from the ChIP-seq data (Supplemental Equation

S6). This provides a physical interpretation for the properties of

DNA shearing. It supports the idea that the TF creates a protective

region around the DNA it binds (Supplemental Fig. S1). Moreover,

if V(x) follows an exponential shape, the impulse response follows

a Gumbel distribution (Supplemental Equation S5). A Gumbel

distribution describes the impulse response with two parameters:

one representing the peak shift (m) and one representing the peak

shape (b). Both parameters have a clear physical interpretation.

The parameter b is associated with the breaking resistance around

the binding site and m represents a combination of TF protection

zone, breaking rate, and breaking resistance (see Supplemental

Material). The physical interpretation of the impulse response is

a complementary consequence of our model and does not have

a direct effect on the blind-deconvolution process of BRACIL.

We also introduce the double-binding signal (Fig. 2A, purple

highlighted box; Fig. 2C). After the shearing step, some of the DNA

fragments might contain two sites that are simultaneously bound.

These double-bound fragments provide a second-order impulse

response that is centered between the two sites. If the break points

occur independently from one another, the impulse response for

the double-binding signal follows the same shape as the one for the

single-binding signal but with an extra peak shift equal to the dis-

tance between the binding sites (Fig. 2C). This implies that the

coverage at the positive strand refers to the binding site closest to

the 59 prime edge and the coverage at the negative strand to the site

closest to the 39 edge (Fig. 2C). The representation of a region

containing two binding sites and its coverage decomposition is

shown in Figure 2D.

Figure 2. The framework of our method is derived from a physical comprehension of the ChIP-seq process. (A) Illustration of chromatin immuno-
precipitation steps. A DNA representation (blue string) contains multiple binding sites (light purple) thatmay ormay not be bound by their corresponding
transcription factor (purple hexagon). The pink dashed boxes highlight a DNA fragment that is simultaneously bound by two TFs. This fact motivates the
double-binding signal. The black dashed box highlights the break point selection caused by immunoprecipitation. Many break points (solid dark circles)
occur, but only the one at each edge that is closest to the binding site is selected for sequencing. This indicates that the impulse response follows an
extreme value distribution (see main text). (B) Detailed representation of the impulse response. At each strand ([green] positive stand, [pink] negative
strand), the impulse response follows a distribution f(x) that represents the distance from the DNA fragment edges to the center of the binding sites. The
coverage at each strand is separated by a peak shift that is equal to twice the distance of the binding site center and the maximum of f(x). The strand-
specific coverage and peak shift is a consequence of the directionality of sequencing. (C ) Representation of the double-binding signal. At each strand, the
impulse response follows the same distribution f(x) observed for the single-binding signal. On the positive strand, it refers to the binding site closer to the 59
end; on the negative strand, it refers to the binding site closer to the 39 end. This causes an additional peak shift equal to the distance between the binding
sites. (D) The effect of the double-binding signal in the signaling process. A region with two binding sites contains three sources of signal: a single-binding
signal (solid blue upward arrow) for each binding site and also a double-binding signal (dashed blue upward arrow, left). The decomposition of the
coverage into individual impulse responses and the corresponding impulse representation are also shown (right).
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High-resolution binding site refinement

We first applied our model to show its ability to detect a binding

site at high resolution. In order to validate ourmodel, we compared

it to a reference set in which binding at single-nucleotide resolu-

tion has been confirmed by DNA footprint experiments (Chauhan

et al. 2011). This set contains 47 binding sites within 19 intergenic

regions for theM. tuberculosis TF DosR. The ChIP-seq data for DosR

is taken from a recent study from our laboratory on the regulatory

network of M. tuberculosis (Galagan et al. 2013).

We compared the resolution of our method to predictions of

current state-of-the-art peak callers (Valouev et al. 2008; Zhang

et al. 2008; Wilbanks and Facciotti 2010; Feng et al. 2011). In

general, peak callers have not been designed to exploit sequence

conservation to identify multiple binding sites within enriched

regions and show a higher variance around the precise location

when compared to our method (Fig. 3A,B). Our method was also

compared to GEM (Guo et al. 2012), a recent algorithm proposed

to identify binding sites with high-spatial resolution. Figure 3A

and B suggests that BRACIL also improves on the performance of

GEM. We also checked the possibility that the performance of

other peak callers could be improved by relaxing their cutoff

threshold (i.e., P-value < 0.031 for QuEST, PeakRanger, MACS, and

Q-value < 0.01 for GEM). GEM showed the best performance by

predicting 21 binding sites. We thus further checked GEM’s per-

formance by running analyses with a range of parameters (e.g.,

–k_min 8 –k_max 14,–k 14,–seed GGG-C-TT-G-CCC, k_win 40,

k_win 50, k_win 60, and combinations) and by following the au-

thors’ recommendations to improve motif prediction. The best

result fromGEMpredicted only 21 of the 47 binding sites. Both our

method and GEM use sequence integration to improve spatial

resolution. However, the signal processing perspective of our

model is different from the binding event prediction used by GEM

and might explain the difference in performance. BRACIL takes

advantage of motif information using a PSSM representation,

whereas GEM considers a k-mer count. In addition, BRACIL uses

a physically motivated model of the impulse response, explores

motifs with weak evidence of conservation, and explicitly models

a double-binding signal.

BRACIL is not specific to a particular peak caller, but com-

plementary. In this sense, our approach is versatile as it can be used

in conjunction with the most appropriate peak caller for a specific

experimental condition. In Figure 3A, we illustrate the potential of

our method to refine the output of peak callers. BRACIL increases

the sensitivity of binding site detection from <45% up to 94%. In

addition, the high sensitivity of our method is also accompanied

by high specificity (Fig. 3C,D).

A comparative analysis of the performance of BRACIL with

other methods is summarized in Table 1. In short, our method is

able to exploit the prior information contained in weak and strong

motif conservation to accurately predict the location of bind-

ing events. Our method takes advantage of ChIP-seq coverage to

filter out the numerous false binding sites that would arise from

motif discovery alone (see Methods, ‘‘Motif Integration’’ section)

and increases the sensitivity and specificity of binding site de-

tection (Fig. 3C,D). This effect is particularly important in pre-

dicting binding events with weak evidence of motif presence

without high specificity cost. Moreover, the binding motif can be

observed in the sequence that surrounds the final set of binding

sites (Fig. 4). Our method considers a penalty parameter to avoid

overfitting and is robust for a large range of parameter values

(Supplemental Table S1).

Cooperative interaction

Another application of our model is in identifying cooperative

interaction between two closely spaced binding sites. Cooperative

interaction occurs when binding at one site influences the prob-

ability of binding at another site. Mathematically, we assess the

presence of cooperative interaction by comparing the probability

that both sites are bound simultaneously to the probability that

each site is bound independently (see Supplemental Equation S7

and Methods). Cooperative interaction can be estimated based on

the relationship of impulse response magnitudes and binding

configuration probabilities (Fig. 2C,D; Supplemental Equation S8).

We use a likelihood ratio test to detect cooperative in-

teraction. In this test, the null hypothesis assumes that the binding

sites are independent and the alternative hypothesis indicates

cooperative interaction (see Methods). Under the assumption of

independent binding, the magnitude of a double-binding impulse

response is a function of the magnitude of the neighboring single-

binding impulse responses (see Methods; Supplemental Equation

S10a,b). This constraint does not occur in the case of cooperative

interaction. Our method is consistent if the probability of

accepting the null hypothesis is low for regions with cooperative

interaction and relatively higher for cases without cooperative

Figure 3. BRACIL increases the resolution of binding-site detection as
well as sensitivity and specificity. The performance achieved by using only
ChIP-seq coverage (BRACIL-co) is improved by including motif in-
tegration with the single-binding signal (BRACIL-sb), and the best per-
formance occurs when we also consider the double-binding signal
(BRACIL-db). A summary of the differences between the three versions
can be found in Table 1. In the best scenario, BRACIL detects 44/47 of the
reference sites (Chauhan et al. 2011). The potential of our method to
refine the output of peak callers can be seen both in terms of the fraction of
sites detected (A) as well as the resolution with which they are detected
(B). The green bars (A) represent the fraction of sites detected by the
corresponding peak caller labeled at the x-axis. The purple bars on the top
show the additional refinement provided by our method. The different
shades in purple represent performance improvement by specific varia-
tions of BRACIL. Enriched regions are defined as the overlapping window
of 6150 bp around the single nucleotide prediction obtained by the
corresponding peak caller. For BRACIL-co, BRACIL-sb, and BRACIL-db, the
enriched regions consist in the 6150-bp overlapping window that sur-
rounds the reference sites. The precision and recall (C ) and the ROC (D)
plots illustrate that our method is especially important for filtering out low
conservation motifs that do not represent real binding.
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interaction. Our method was tested on a set of experimentally

validated cooperatively interacting sites for the M. tuberculosis TF

DosR (Chauhan et al. 2011) and compared to a negative control

that simulates enriched regions with two noninteracting binding

sites. This set was created from the experimentally observed cov-

erage of enriched regions that contain only a single binding site

(see Methods; Supplemental Fig. S4). The ability of our method in

distinguishing cooperatively interacting sites from independent

binding sites was measured by the area under a ROC curve, with

value » 0.85 (Fig. 5; see also Supplemental Figs. S5, S6). Cooperative

interaction predictions for the human TFs CTCF, REST, andGABPA

are shown in Supplemental Figures S12 and S14.

High-throughput application and orphan regions

Our method was designed with a level of computational efficiency

that makes it applicable to large data sets, such as ChIP-seq data

from large genomes or multiple experiments. Analysis of these data

sets was not practical with csdeconv (Wilbanks and Facciotti 2010).

We used our method in a high-through-

put study to map the regulatory network

of M. tuberculosis from ChIP-seq data

(Galagan et al. 2013). This study showed

that our method estimates binding site

locations and magnitudes with high re-

producibility. High reproducibility in

both the magnitude and location of

binding sites has also been observed

when our method is applied to eukary-

otes, as exemplified in Supplemental

Figures S7 and S8 for three human TFs

that have recently been defined as

benchmarks for peak caller evaluation:

MAX, REST, and SRF (Rye et al. 2011). We

also validated the performance of our

method in the mammalian TFs GABPA

and CTCF based on the approach pro-

posed by Guo et al. (2012). The results

corroborate the high-resolution perfor-

mance of our method as shown in Sup-

plemental Figures S15–S19.

Our method improves the consis-

tency between motif discovery and

enriched regions found in ChIP-seq

data. A common finding in the analysis

of ChIP-seq data is that not all enriched

regions contain at least one instance of

a binding motif (Johnson et al. 2007;

Valouev et al. 2008; MacQuarrie et al.

2011). In this study, we use the term

‘‘orphan regions’’ to describe such re-

gions. Different reasons might explain

the presence of orphan regions. For ex-

ample, some might not correspond to

a true binding region (Rye et al. 2011) or

might not be directly bound by the

target factor (Valouev et al. 2008). In

addition, the motif cutoff threshold

may be too stringent to capture a low-

affinity binding site. BRACIL is able to

use a weaker threshold for motif de-

tection to identify the consistency of

binding motif and ChIP-seq coverage in regions that otherwise

would be classified as orphan regions. BRACIL compensates for

this weaker threshold by filtering spurious sites using coverage

deconvolution and a penalty function (see Methods). The

ability of BRACIL to filter out false positives is shown in Table 1.

Moreover, owing to the more sensitive motif detection, the

orphan regions predicted by our method are more rigorous

candidates for indirect binding or artifacts in the ChIP-seq

technique.

In the context of orphan regions, we analyzed the ChIP-seq

data from the global study of theM. tuberculosis regulatory network

(Galagan et al. 2013). For this analysis, we considered only the

single-binding signal. Our method is able to use a more inclusive

motif P-value threshold (10�2.5 instead of the commonly used

10�3) that, on a global scale, reduces the number of orphan regions

by 45% (from 3994 to 2161), while still filtering out false positives.

Over 22% of the orphan regions obtained by our method had an

instance of a weakmotif that was filtered out by the deconvolution

step. The average number of binding sites per region is 1.586 1.64

Table 1. Summary of the performance obtained by different variations of BRACIL compared
to the performance obtained by motif discovery and peak callers alone

Method
True

positives
False

positvesa
Missing
sites

False positives
filtered out AUCROC

BRACIL-db 44 5 3 37 0.9420
BRACIL-sb 40 4 7 38 0.8941
P-value # 10�2.5 45 42 2 0 0.8457
P-value # 10�3 40 13 7 29 0.8465
BRACIL-co 24 0 23 42 0.5106
Peak callers (best) 20 0 27 42 0.5377
Peak callers (combined) 36 29 11 13 0.6548

Our method improves point estimation of binding-site detection. The number of binding sites pre-
dicted by motif scan depends on a threshold, represented here in terms of the motif P-value. For peak
callers, we considered the value of the peak caller with best performance (highest AUC) and also their
combined result. BRACIL-co, BRACIL-sb, and BRACIL-db vary in terms of features used for deconvolution.
BRACIL-co uses only ChIP-seq coverage. Both BRACIL-sb and BRACIL-db integrate ChIP-seq coverage
with motif discovery. BRACIL-sb considers only the single-binding signal and BRACIL-db also considers
the double-binding signal. All predictions were constrained to be in a 301-bp window around reference
binding sites. Similar results were obtained when considering a 251-bp or 201-bp window. (AUCROC)
Area under a ROC curve. The rows in boldface highlight the results for BRACIL.
aWe assume the total number of negatives to be 42, which is the number of motifs detected with P-value
# 10�2.5 that does not match a reference binding site. Notice that, although not directly related, this
value is also used to estimate the false positives for the peak callers.

Figure 4. The binding motif can be observed in the sequence that surrounds the predicted binding
site. This figure depicts the high resolution of our method. Each row indicates the sequence sur-
rounding a predicted motif center. Different colors represent a different DNA letter. Results are shown
for two distinct ChIP-seq experiments performed for the M. tuberculosis transcription factor DosR (A)
and Kstr (B). A small shift at the motif center was allowed to improve visualization. Average shift was < 2
bp and is visualized by gray colors.
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considering amotif P-value < 10�3 and 1.326 0.91 for ourmethod

(see Supplemental Fig. S2 for individual experiments). For com-

parison, an average of 2.95 6 2.65 potential binding sites per re-

gion was found using a motif P-value threshold < 10�2.5.

The ability to identify weak motifs is particularly important

because weak sites are not typically identified by standard motif

discovery methods (Gertz et al. 2009), although they have been

shown to play a key role in gene regulation (Benson and Pirrotta

1988; Schindler and Baichwal 1994; Berman et al. 2002; Tanay

2006; Gertz et al. 2009; Sharon et al. 2012). Reconciling orphan

regions with a potential motif may also provide a more accurate

assessment of the degree of direct versus indirect binding for a TF.

Discussion
Wehaveutilized a blind deconvolution approach (Lunet al. 2009) to

develop a novel method that improves computational efficiency,

identifies binding sites at high spatial resolution, and detects co-

operative interactions using ChIP-seq data. Both the high-resolution

detection of binding sites and the detection of cooperative in-

teractions play key roles in a mechanistic understanding of a gene

regulatory network (Oppenheim et al. 2005; Kim andO’Shea 2008;

Segal and Widom 2009; Giorgetti et al. 2010). Our method is

complementary to peak callers and provides a new step that im-

proves the current pipelines of ChIP-seq analysis (Furey 2012). The

gains of our model are consequences of a theoretically refined

model of ChIP-seq that is based on a signal processing perspective

integratedwith physical and thermodynamic concepts. To the best

of our knowledge, this is the first method that integrates genome

information (viamotif discovery) andChIP-seq coverage to extract

regulatory details of an enriched region as a modular complement

of peak callers. In addition, our method predicts cooperative in-

teractions, proposing a novel outcome from ChIP-seq analysis.

Cooperative interaction prediction is possible due to explicit

modeling of the double-binding signal (Fig. 1A, pink dashed box;

Fig. 2C). Our results also highlight the contribution of the double-

binding signal for improving the sensitivity and specificity of

binding site detection. The simplification of the blind-deconvo-

lution algorithm enables its application to large data sets, a feature

that was not possible for csdeconv (Lun et al. 2009; Wilbanks and

Facciotti 2010).

The proof of principle of our model, both in terms of single-

nucleotide resolution binding site detection as well as co-

operative interaction prediction, was validated on a data set of 47

binding sites that lie in 19 regulatory regions for the M. tubercu-

losis TF DosR (Chauhan et al. 2011). The fact that this data set is

based on high-resolution experiments motivates our choice and

avoids the subjective bias that is introduced by manually curated

benchmarks. Our choice is also motivated by the high quality of

ChIP-seq coverage available for the testing TF, with signal to

noise ratio up to a few hundred times the median coverage

(Galagan et al. 2013). BRACIL’s performance was also evaluated

in a eukaryotic data set (Supplemental Figs. S15–S18). Notice

that, although the sequence refinement step can improve bind-

ing site prediction, it is limited in identifying binding sites with

at least weak evidence of a motif conservation. For the co-

operative interaction test, it was not possible to obtain a reference

data set of closely spaced sites that ensures that sites are bound

independently. Thus, for a negative control, we used a simulated

set of enriched regions with multiple binding sites in which sites

are bound independently by design.

Further studies are necessary to evaluate the performance of

our method for TFs in whichmotif alone is not as good a predictor

of binding locations as the DosR motif. This evaluation should be

particularly important for TFs from eukaryotic organisms in which

binding motifs are known to be less predictive (Pique-Regi et al.

2011). This evaluation would also help to improve methods that

predict binding site locations based onChIP-seq coverage integrated

with genome sequence. An appropriate evaluation requires a ge-

nome-scale benchmark set of binding sites with single-nucleotide

resolution, which is currently not available. Although BRACIL is

able to predict more than two binding sites in the same region,

such a benchmark would permit the investigation of more gener-

alized models, for example, a model that explicitly includes the

signal from three or more simultaneously bound sites.

Genome-scale analysis of a gene regulatory network can ex-

ploit the advantages of our post-peak–calling algorithm to study

nuances of gene regulation. We illustrate a genome-scale applica-

tion of BRACIL in the study of theM. tuberculosis regulatory network

(Galagan et al. 2013). However, other genome-scale investigations

such as the ENCODE andmodENCODE Projects (Landt et al. 2012;

Van Nostrand and Kim 2013) could also benefit from our method.

The high occupancy target (HOT) regions (The modENCODE

Consortium et al. 2010) are particularly interesting cases for study.

Multiple distinct TFs bind these regions simultaneously and

Figure 5. The double-binding signal allows the detection of co-
operative interaction from the ChIP-seq data. Our method (Equation 8) is
able to distinguish regions containing cooperative interacting sites from
regions containing independent binding sites. A set of regions with ex-
perimentally validated cooperative interaction is used as a positive control
(Chauhan et al. 2011). The negative control is obtained from simulation
(Supplemental Figs. S3, S4; Supplemental Table S2; also seeMethods). (A,B)
The P-value output of our method is able to discriminate regions with
cooperative interaction (solid lines) from regions with independent
binding (dashed lines). Each dashed line represents a different simulated
set. Each solid line assumes a different value for the probability of non-
binding configuration (see Methods). The probability of nonbinding
configuration is a necessary input to compute the statistical P-value. In-
dependent of the value for nonbinding configuration, our method dis-
criminates the data well. A good discriminative power occurs even for the
most conservative case (highlighted by the dashed red and solid blue
lines). (C,D) The overall performance of our method is measured in terms
of true versus false positive rate. The solid blue line represents the results
from A or B. The dashed red line shows what is expected by chance. The
area under the curve (AUC) measures the discriminative power of the
method. All results support our method. In addition, the method is robust
when performance evaluation is specific to each probability of nonbinding
configuration (Supplemental Figs. S5, S6). The results at the left (A,C) and
right (B,D) panels are obtained assuming low or high immunoprecipitation
rate, respectively.
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BRACIL could be used to unveil the complexity of the resulting

regulatory circuits. A modified version of our method could also, in

principle, predict cooperative interaction between different TFs. In

order to predict interaction between different TFs, however, studies

that immunoprecipitatemultiple TFs in the same experimentwould

need to be performed and the predictive model would need to be

updated accordingly.

Our analysis proposes a relationship between the impulse

response and physical properties of DNA shearing (see Supple-

mental Material). This relationship is potentially useful in identi-

fying conditions that improve the resolution of ChIP-seq data

experimentally. The resolution of ChIP-seq is constrained by the

size of DNA fragments (Rhee and Pugh 2011), and a more detailed

understanding of physical properties of DNA shearing could guide

experiments to obtain smaller fragments.

The next step of our analysis is to explore the biological

insights provided by a high-resolution map of gene regulatory

networks. The functional impact of TFs on gene regulation de-

pends on the affinity andprecise locationof the binding sites aswell

as the interactions between such sites (Oppenheim et al. 2005;

Zinzen et al. 2006; Kim and O’Shea 2008; Segal et al. 2008; Lu et al.

2009; He et al. 2010). The importance of a high-resolution map-

ping of binding sites and cooperative interactions to control cell

phenotypes is illustrated by systems in which such a detailed

analysis has been performed, such as the well-studied lac operon

and the lambda switch (Oppenheim et al. 2005; Yaniv 2011). In the

lambda switch, the precise affinity, location, and cooperative in-

teraction of two TFs (Cro and Cl) and three binding sites (OR1,

OR2, OR3) decide whether a bacterial infection caused by the

lambda phage will be at the lytic or lysogenic state (Oppenheim

et al. 2005). We expect that our method may help to obtain simi-

larly biologically meaningful regulatory insights from the ChIP-

seq data.

The biological insights that can be extracted from high-

throughput biological data depend on the methods and tools

available for data analysis. In a time in which a variety of methods

to improve the identification of enriched regions have been pro-

posed, our work expands the boundaries of ChIP-seq analysis by

focusing on each enriched region individually. Our work in-

corporates a multidisciplinary approach that links concepts from

signal processing, thermodynamics, and statistics to construct

methods of data analysis that provide original biological insights.

We expect that the thermodynamic understanding of regulatory

regions, as provided by our work, will be insightful in guiding

hypothesis-driven experiments that elucidate mechanisms of in-

dividual regulatory circuits as well as their role in the regulatory

network. Finally, we believe our model will be useful in decipher-

ing biological meaning out of the growing number of available

ChIP-seq data sets.

Methods

Signaling model
Wemodel the expected ChIP-seq coverage at position x as a sum of
weighted contributions from a number of impulse responses.More
specifically, each binding site location li emits an impulse response
of magnitude mi. The impulse response is represented by a func-
tion f(x � li;u) of parameters u. In our model, f follows a Gumbel
distribution, and u represents the corresponding parameters (m and
b) (Supplemental Equation S5). Formally, the expected coverage at
a genome position x is computed by the following equation:

E[Cf w(x;M;L; u)]= b(x)+ +
jLj

i

mi � ff w(x� li; u)

E[Crv(x;M;L; u)]= b(x) + +
jLj

i

mi � frv
�
x� li; u

� : ð2Þ

The coverage is strand specific and the indices fw and rv rep-
resent the forward and reverse strands, respectively. The total
number of binding sites is represented by |L| and we use b(x) to
represent the background coverage. We assume b(x) to be a con-
stant specific to each enriched region. The symmetry in the strand-
specific coverage implies that ffw(x;u) = frv(�x;u) = f(x;u).

We also describe a second-order term, represented by the
double-binding signal. The magnitude and location of the double-
binding signal are represented by mi,i+1 and li,i+1, respectively. The
index indicates that the signal occurs between sites i and i + 1. The
double-binding signal depends on thedistance between thebinding
sites (di,i+1) and is limited to amaximum distance (d*). The expected
coverage at position x is then computed as

E[Cfw(x;M;L; u)]= b(x)+

+
jLj

i

mi � f ðx� li; uÞ+ +
jLj�1

i

mi;i+1 � ff w
�
x�

�
li;i+1 � di;i+1

2

�
; u

�

�I(di;i+1 < d�)

E[Crv(x;M;L; u)]= b(x)+

+
jLj

i

mi � f ð � ðx� liÞ; uÞ + +
jLj�1

i

mi;i+1 � frv
�
x�

�
li;i+1 +

di;i+1
2

�
; u

�

�I(di;i+1 < d�)

ð3Þ

Notice that this representation assumes that L is an ordered
set, i.e., li < li+1. The term I(S) is an indicator function that takes the
value 1 when the condition S is true and 0 otherwise. Also, the
extra peak shift caused by the double-binding signal (section
‘‘Modeling the Impulse Response’’) (Fig. 2C) is readily observable
by noticing that li,i+1 � di,i+1/2 = li and li,i+1 + di,i+1/2 = li+1. All other
terms follow the same definition as in Equation 2.

Deconvolution model

The location andmagnitude of the binding sites are extracted from
the ChIP-seq data using a blind deconvolution model (Fig. 1B,
top). The parameters are estimated by likelihood maximization of
the observed coverage, C, according to the following equation:

argmaxL;M;u P(L;M; ujC)= argmaxL;M;u P(CjL;M; u) � P(L;M; u): ð4Þ

We assume that the observed coverage follows a normal dis-
tribution around the expected value (Equations 2 and 3), and the
maximization of P(C|L, M, u) becomes a simple minimization of
a sum of squared residues. The prior P(L,M,u) can be converted into
a penalty function. For simplicity, we represent this penalty
function as ar(L, u) to indicate that it is specific to each enriched
region r and depends on the location of predicted binding sites and
motif conservation. A precise definition of ar(L, u) depends on
whether it considers motif refinement or not and is described
further in this Methods section. From these simplifications, the
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likelihood maximization for an enriched region r is equivalent to
minimize the following objective function:

objr(L;M; u) =ar(L; u)+ +
x2r

�
Cf w

�
x
�� E

�
Cf w

�
x;M;L; u

���2
+ ðCrvðxÞ � E½Crvðx;M;L; uÞ�Þ2 ð5Þ

and a global objective function is given by

obj(L;M; u)= +
r2R

objrðL;M; uÞ; ð6Þ

where R represents the set of enriched regions identified by a peak
caller. In our analysis, Cfw(x) and Crv(x) indicate the number of reads
at the forward and reverse strand, respectively, that align at position
x. For example, a 36-bp-long read increases C(x) in a 36-bp interval.

The objective function isminimized in two steps. TheML step
is as follows:

�
Lði+1Þ;Mði+1Þ�= argminL;M obj

�
L;M; uðiÞ

� ð7aÞ

and the P step is

�
uði+1Þ

�
= argminu obj

�
Lði+1Þ;Mði+1Þ; u

�
: ð7bÞ

The ML step updates the location and magnitude of the
binding sites, whereas the P step updates the impulse response
parameters. Both steps are repeated iteratively until convergence.
The solution for Equations 7a and 7b was achieved by using
a constrained interior point algorithm (MATLAB function fmincon).
Equation 7a can be solved with improved computational per-
formance by assuming a discrete position for potential binding
site locations. This simplification permits a linear least-squared
minimization (MATLAB function lsqlin). For cooperative in-
teraction testing, the assumption of independent binding creates
a nonlinear constraint in the objective function, and fast mini-
mization is achieved by using nonlinear least-squared minimiza-
tion (MATLAB function lsqnonlin) (see Supplemental Material).

The iterative process of Equations 7a and 7b is computa-
tionally expensive when the number of enriched regions is large.
However, the algorithm reduces to just the ML step if the param-
eters for the impulse response are known. In order to increase the
computational efficiency, the full algorithm is used only on
a subset of the enriched regions. Unless otherwise stated, our
analysis uses the 16 most enriched regions. This subset is in-
formative in estimating the impulse response parameters (Sup-
plemental Fig. S10). The training regions can also be defined as
input. For this purpose, we defined a metric that ranks the quality
of the enriched regions and eliminates bad quality regions from
the training set. In order to evaluate quality of the regions, this
metric considers the cross correlation of the coverage between the
forward and the reverse strand, the total coverage, and the relative
ratio of strand-specific coverage (Supplemental Fig. S11). Follow-
ing, theML step is used to performdeconvolution in each enriched
region independently.

The penalty parameter, ar(L,u) (Equation 5), is defined to
avoid overfitting, and consequently, false positives. It has a slightly
different definition when deconvolution uses only ChIP-seq cov-
erage or when it also considers motif discovery. Using only ChIP-
seq coverage, there is no penalty to predict a single binding site and
a linearly increasing penalty to predict extra sites. We say a binding
site is detected if it contributes with a positive magnitude to mini-
mize the objective function (Equation 7a) and use this definition to
count the number of sites detected in an enriched region. The case
of sequence-integrated deconvolution is described in detail in the
‘‘Motif Integration’’ section.

Motif discovery

Motif position-specific score matrix (PSSM) was obtained using
MEME (Bailey et al. 2009). The input FASTA file was built using the
101-bp sequence that spans 50 bp around each side of the binding
site locations predicted by the blind-deconvolution algorithm us-
ing only the coverage information.

Motif integration

We used FIMO (Bailey et al. 2009) and the motif PSSM to detect
potential binding sites in the sequence of enriched regions. The
potential binding sites are used to constrain the space for binding
site locations (L in Equation 5). In this context, the location of an
impulse response is restricted to occur at the center of a binding
motif plus or minus a small window. This window permits
deconvolution to capture some variance around the precise loca-
tion of a potential binding site. The computational performance is
optimized when the window size is equal to zero. This assumption
simplifies the solution of the objective function to a constrained
linear least-squares problem.

In the context of motif integration, the shape of the impulse
responsewas updated by running theML and P steps (Equations 7a
and 7b), with locations constrained to a 5-bp window around sites
with motif P-value < 10�3. This step was only performed on
a subset of the enriched regions (default is the 16 most enriched
regions) (see Supplemental Fig. S10) to obtain the parameters for
the impulse response. After that, deconvolution (ML step) was
performed in all regions. In this part, the potential binding sites
were defined with a more inclusive threshold (motif P-value <

10�2.5) and a penalty function was defined to filter out potential
false positives.

The penalty function [ar(L,u), Equation 5] attributes a higher
penalty to weak binding sites and a lower penalty to strong ones. If
the ideal penalty function has a logistic growth proportional to the
motif conservation (see Supplemental Material), a binary approx-
imation can be used to improve computational performance. In
this perspective, we classify the potential binding sites as strong or
weak sites. The deconvolution was performed free of penalty for
strong sites and with a linear increasing cost for weak sites. We
defined ar(L,u) = a0 � |Lr,w| � K(r), where Lr,w is the number of weak
sites predicted in region r, and K(r) normalizes the penalty per
enriched region. We decided on a normalized penalty function
instead of a constant one because it makes themotif discovery step
informative for both high and low coverage regions. A constant
penalty functionwould bring one of the two following limitations:
A relatively strong penalty would eliminate motif prior in-
formation from regions with poorly enriched regions; or a rela-
tively weak penalty would have no effect in highly enriched
regions. The parameter K(r) is defined as the sum of squares of the
observed coverage at region r,

K(r) = +
x in r

1

2
(C2

f w(x) +C
2
rv(x)):

The parameter a0 is a constant with value ranging from 0 to 1. Our
analysis considered a0 = 0.01 for an analysis that prioritizes sen-
sitivity, and it is used for most of the work presented here.We used
the term a0 = 0.1 for a more conservative analysis that prioritizes
specificity.

Any sitewithmotif P-value (P) in the range of 10�4 < P < 10�2.5

was defined to be a weak site, and any one with P # 10�4 was de-
fined to be a strong site. This is an inclusive threshold when
compared to other papers (e.g., motif P-value < 10�3) (Jothi et al.
2008; Valouev et al. 2008). A site is classified as true only if it
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contributes to deconvolution, i.e., if it has a nonzero magnitude
after the minimization of the objective function. Our algorithm
guarantees the most likely solution by exploring all combinations
of potential binding sites per region and selecting the one that
minimizes the objective function (Equation 7a). For enriched re-
gions without evidence of a binding motif or enriched regions in
which binding motifs cannot explain the ChIP-seq coverage be-
yond a penalty parameter, the location of binding events is pre-
dicted based only on ChIP-seq coverage.

Finally, binding sites are allowed to emit a double-binding signal
if they are located within a given distance of each other (50 bp by
default). The double-binding signal provides no cost (i.e., no penalty)
if it is associated with a strong site. This is supported by the strong
effect that weak sites have on expression when they act in combi-
nation with strong sites (Kim and O’Shea 2008; Gertz et al. 2009).

Detecting cooperative interaction

A likelihood ratio test is used to detect cooperative interaction. The
likelihood ratio is defined by

D =n � �log�objnull�� log
�
objalternative

�� ð8Þ

and can be approximated by a x2 distribution with the number of
degrees of freedomequal to the number of double-binding impulse
responses. The test is performed at each enriched region. The terms
objnull and objalternative represent the objective function for the null
hypothesis (assuming independent binding) and the alternative
hypothesis (allowing cooperative interaction). The parameter n
indicates the number of points used for the fit. Since coverage
occurs in both the forward and reverse strands, n is equal to twice
the region length. A full derivation is shown in the Supplemental
Material.

Simulated enriched regions with two noninteracting binding
sites

A simulated set of enriched regions was created to contain two
noninteracting binding sites. Each region in this set contained two
binding sites, separated from each other by 20 bp. The coverage of
each simulated enriched region results from two single-binding
signals, one for each site with a double-binding signal between
them. Each signal is proportional to the corresponding binding
configuration. Thus, the magnitude of the single-binding signal at
one site is proportional to the probability that only this site is
bound, and the magnitude of the double-binding signal is pro-
portional to the probability that both sites are bound (Supple-
mental Fig. S4).

Tomake the simulated set more realistic, it was obtained from
the coverage empirically observed in the ChIP-seq data. The cov-
erage of a simulated enriched region corresponds to the sum of
empirical impulse responses that represent two single-binding
signals and one double-binding signal. This sum is rescaled
according to the corresponding binding probabilities (Supple-
mental Fig. S4). The empirical impulse response for each single-
binding signal is defined as the observed coverage surrounding
a binding site in a region with strong evidence of containing only
one binding site. A region is considered to have only one binding
site with strong evidence if it shows low enrichment, passes the
filter of a peak caller, and does not show multiple instances of
a binding motif. The empirical coverage is normalized so that it
would represent an impulse response of area equal to one. This
normalization is important because the sum of the impulse re-
sponses is rescaled according to the corresponding binding
probabilities (Supplemental Fig. S4). The empirical impulse re-

sponse for the double-binding signal is taken as a mixture of the
empirical impulse response for each single-binding signal. Par-
ticularly, the coverage of the forward strand follows the corre-
sponding coverage for the impulse response at the binding site
closest to the 59 edge. Similarly, the coverage of the reverse strand
follows the corresponding coverage for the impulse response at
the binding site closest to the 39 edge (Supplemental Fig. S4A,B).
This is consistent with the double-binding signal theoretically
modeled in ‘‘Modeling the Impulse Response’’ section (see also
Equation 3).

We created different collections of simulated enriched
regions, each one assuming different probabilities of binding
configurations (see Supplemental Fig. S3). The magnitude of the
empirical impulse responses is associated with the corresponding
binding configuration probabilities (Supplemental Fig. S4C). The
binding configuration probabilities were chosen to represent
a large range of the space of independent binding probabilities (see
Supplemental Fig. S3) and are listed in Supplemental Table S2. Each
collection of simulated enriched regions contains a total of 15 re-
gions that were created with all possible combinations of five
enriched regions.

Peak caller refinement

Our method was used to refine the resolution of enriched regions
predicted by different peak callers. In order to create a standardized
comparison, the set of enriched regions is defined as the region
that spans a 301-bp window around the peak caller single nucle-
otide prediction, 150 bp at each side. Overlapping regions were
clustered into one. Similar results were obtained using a window
span of 201 or 251 bp.

For eukaryote data sets, the enriched regions for CTCF and
GABPA were obtained from GEM output. The enriched regions for
MAX, REST, and SRF were obtained from the benchmark defined
by Rye et al. (2011).

Evaluation of binding-site detection

Predictions are evaluated by comparing the binding events pre-
dicted by BRACIL with a reference set of single nucleotide resolu-
tion binding sites. Details of the evaluation are described in the
Supplemental Material: ‘‘Evaluating Binding Site Prediction.’’

Supplemental Material ‘‘Computing Significance of Binding
Event Predictions’’ describes how significance is computed for
each binding event and enriched region.

ChIP-seq data

M. tuberculosis data was obtained from our study of the regulatory
network of M. tuberculosis (Galagan et al. 2013) and is available at
http://tbsysbio.org. The ChIP-seq data for the M. tuberculosis TF
DosR, used to validate our method, corresponds to flow cell
number 27, lane 8 (data prefixed by 27_8). We used flow cell
number 23, lane 1 (data prefixed by 23_1) as input for peak callers
that require a negative control. The M. tuberculosis Kstr data used
for Figure 4 corresponds to flow cell number 11, lane 1 (data pre-
fixed by 11_1). Human ChIP-seq data set from the benchmark
defined by Rye et al. (2011) was obtained at http://tare.medisin.
ntnu.no/chipseqbenchmark/. GABPA and CTCF data set was
obtained from Chen et al. (2008) and Valouev et al. (2008) as in-
dicated by Guo et al. (2012).

Software availability

The software, manual, and example data is available for download
at https://sourceforge.net/projects/bracil/.
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