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Background. Various definitions of biological complexity have been proposed: the number of genes, cell types, or metabolic
processes within an organism. As knowledge of biological systems has increased, it has become apparent that these metrics
are often incongruent. Methodology. Here we propose an alternative complexity metric based on the number of genetically
uncorrelated phenotypic traits contributing to an organism’s fitness. This metric, phenotypic complexity, is more objective
than previous suggestions, as complexity is measured from a fundamental biological perspective, that of natural selection. We
utilize a model linking the equilibrium fitness (drift load) of a population to phenotypic complexity. We then use results from
viral evolution experiments to compare the phenotypic complexities of two viruses, the bacteriophage X174 and vesicular
stomatitis virus, and to illustrate the consistency of our approach and its applicability. Conclusions/Significance. Because
Darwinian evolution through natural selection is the fundamental element unifying all biological organisms, we propose that
our metric of complexity is potentially a more relevant metric than others, based on the count of artificially defined set of
objects.
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INTRODUCTION
A persistent question in biology is how organismal complexity

changes through the course of evolution [1–5]. Although

significant progress has been made in the understanding and

quantifying organismal characteristics at many level of organiza-

tion (DNA, proteins, metabolic networks, cellular organization,

organ functions, individual behavior) much confusion remains

about how to accurately quantify organismal complexity. Several

intuitive proposals have been made that take into account simple

metrics such as the number of genes or cell types. However, these

simple measures quickly lead to conflicting conclusions [2,3]. Here

we propose a fundamentally different approach to measuring

organismal complexity; as opposed to relying on bottom-up

measures such as the number of genes an organism has, we utilize

an objective biological approach: natural selection. Instead of

asking how complex an organism is from our own perspective, we

ask: how complex is an organism from the perspective of natural

selection? Essentially, this is a top-down metric of organismal

complexity that we term phenotypic complexity.

Phenotypic complexity quantifies the number of genetically

uncorrelated phenotypic traits contributing to an organism’s

fitness. A phenotypic trait contributes to an organism’s fitness

only to the extent that natural selection acts upon that trait. Thus

an organismal phenotype that is no longer under selection (for

example during an evolutionary transition from a generalist to

specialist lifestyle), although expressed by the organism, contri-

butes nothing to organismal complexity. Secondly, if two

phenotypes contribute to complexity, they must be genetically

separable: some mutations must exist that affect one phenotype

but not the other. If no such mutations exist, then although we

may perceive two phenotypes under selection, these phenotypes

contribute only a single trait toward determining phenotypic

complexity. As an example consider the affinity of an enzyme for

a substrate, and the rate at which that substrate is converted to

product. If there are no mutations that affect one of these traits but

not the other, then these two phenotypes are considered one, until

the organism gains the genetic complexity to generate variation in

one phenotype without affecting the second, for example by

evolving functionally separate domains in the enzyme. Phenotypic

complexity is thus a combined description of how natural selection

perceives organismal phenotypes and how phenotypic variation is

generated by the organism. This concept was first articulated by

Orr, and followed later by others [6–8]. Notably, it is similar to

physical complexity, which is a measure of the amount of

information that an organism encodes about its environment [4,5].

An important aspect of measuring complexity in this manner is

that both the organism and the environment affect the metric. An

organism with many phenotypes, but living in simple environment

could thus be just as complex as a simpler organism in the same

environment. For example, if one organism is capable of

metabolizing both lactose and glucose, while second can

metabolize only glucose, the first organism will only be designated

as more complex when there is a possibility that lactose will be

present in the environment.
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Recent population genetic theory [9,10] has suggested that

phenotypic complexity is proportional to the drift load, a quantity

that describes how equilibrium mean population fitness declines

with population size. This can be intuitively understood in the

following manner. An organism’s fitness is a result of how

successfully it interacts with the environment. As the number of

interactions (traits) increases, it becomes difficult to simultaneously

maintain each one. Very large populations maintain nearly

optimal mean population fitness regardless of phenotypic com-

plexity. Small populations can maintain high average fitness only

when there are a small number of traits (low complexity) each

contributing a relatively large amount to fitness; if there are a large

number of traits (high complexity), each contributing only a small

amount to fitness, then small populations will be incapable of

maintaining all of them. Thus for complex organisms, there will be

a large difference in mean fitness between small and large

populations; for simple organisms, this difference in average fitness

will be small.

The phenotypic model used to link drift load to phenotypic

complexity was first formalized by R. A. Fisher [11]. He

envisioned a multidimensional phenotypic space in which the

origin of each axis corresponded to the most-fit or optimum

phenotypic value. As phenotypic values depart from the origin,

fitness decreases. The manner in which fitness declines is described

by a monotonically decreasing function, which may take a variety

of shapes, e.g., linear, concave-up, or –down. Individuals of equal

fitness but different phenotypic values trace out fitness isoclines in

the space. If an organism has only two phenotypes, the phenotypic

space is two-dimensional and the fitness isoclines are a series of

circles centered on the origin of the axes (Fig. 1). If an organism

has n number of phenotypes, phenotypic space is n-dimensional,

and each fitness isocline is an n-dimensional hyper-sphere.

Because of the assumed geometry of the isoclines, this model is

referred to as Fisher’s Geometric Model (FGM) of phenotypic or

adaptive evolution.

A population of individuals can be represented as a collection of

points in FGM and the phenotypic values of each point allow

ascertainment of the fitness of each individual. Individual fitness

then determines the probability of each individual surviving and

reproducing the next generation. Evolution is thus described in

FGM by following the collection of points over many generations.

To generate novel genetic variation, mutations are drawn from an

assumed distribution that is centered on the phenotypic position of

each individual (Fig. 1). By never descending into genotypic space,

FGM is analogous to quantitative genetics models. Both types of

models assume or require only that a component of phenotype is

heritable. However, whereas quantitative genetic models represent

populations by their mean and variance, FGM is an individual-

based model in which each individual is evaluated according to its

fitness.

FGM makes a set of theoretical predictions about how

adaptation tends to occur, and many of these have been

corroborated by experimental results. The greater frequency of

small-sized beneficial mutations [12], the L-shaped distribution of

mutations fixed throughout evolution [13], the existence of fitness

equilibriums [14], and the absence of intrinsically beneficial or

intrinsically deleterious mutations have all been observed during

laboratory evolution, and all conform to the conditions set forth

under FGM. The model thus appears to offer a reasonable

framework for the study of microbial evolution.

The utility of FGM lies in the fact that it does not require any

particular assumptions about the map between phenotype and

genotype, and that the specific predictions about how fitness

changes during evolution appear to be robust. In the present

paper, we further refine previous predictions derived from FGM

[9,10] to take into account some fitness functions compatible with

experimental data and use these results to estimate the phenotypic

complexity of two viruses evolved in the laboratory.

MODEL AND RESULTS
The link between drift load and phenotypic complexity under

FGM was first investigated by Hartl and Taubes [9] (although

Wagner and Gabriel [15] had worked previously on a similar

question), and was later refined by Poon and Otto [10]. Recent

theoretical techniques from statistical physics now allow an exact

solution of FGM for several fitness functions. Sella and Hirsh [16]

found that mean equilibrium fitness SfT can be written as

Sf T ~

Ð1
0

f f v r fð Þ df

Ð1
0

f v r fð Þ df

ð1Þ

In which n = 2?Ne21 in the diploid case and 2?Ne22 in the

haploid, and r(f), the density function, i.e. the size of fitness f

isocline, is dependent on the number of dimensions and of the

fitness function used.

Figure 1. Fisher’s geometric model in two-dimensional phenotypic
space. Fitness varies along two phenotypic axes, with the maximum
fitness located, for convenience, at the origin of these axes. Any
individual in a population (black point) can thus be described by its
phenotypic values, which determine the fitness of that organism. At any
specific fitness, there are a number of other phenotypic combinations
that have equivalent fitness; the values of these phenotypic combina-
tions establish the fitness isoclines (black circle). From the optimum,
fitness declines monotonically according to the structure of the
landscape (see text). Each mutation (arrow) is drawn from a distribution
centered on the phenotypic position of each individual, resulting in
offspring with new phenotypic combinations and fitness values (white
point).
doi:10.1371/journal.pone.0000217.g001
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Linear Fitness Decline
If fitness is assumed to be a linearly decreasing function of the

phenotypic distance to the optimum, then we find that the average

fitness is given by (Methods, Appendix A):

Feq ne, Neð Þ~2Ne= 2Neznez1ð Þ ð2Þ

in the diploid case, in which Feq is the equilibrium fitness (drift

load) expressed as a fraction of the maximum attainable fitness of

the organism, ne is the effective number of dimensions of the

phenotypic space (phenotypic complexity; see the below for a more

detailed discussion of why we term this the effective number of

dimensions), and Ne is the effective population size. This confirms

the results obtained by Poon and Otto who approximated Feq(ne,

Ne) as 2Ne/(2Ne+ne) [10].

Although earlier studies on FGM model have used such linear

fitness functions (for the sake of mathematical simplicity), recent

experimental studies do not seem to support the use of such

a function [17–19]. Linear fitness functions give rise to dramatic

synergistic epistasis. For example, a mutation that increases the

distance to the optimal phenotype by 0.1 units may decrease

fitness by 10% in the optimal genotype (which by definition has

a fitness of 1); an analogous mutation will decrease fitness by 50%

in an organism with a fitness of 0.2; this mutation will become

lethal in any genotype with a fitness less than 0.1. Recent

experimental work suggests that epistasis between deleterious

mutations is either antagonistic [17–19] or null [20]. We therefore

decided to use a family of exponential fitness functions with

a parameter that allows control over the level and shape of

epistasis.

Exponential-type Fitness Decline
In an effort to explore fitness functions more compatible with

experimental data, we studied the following family of functions.

f(d) = exp(2(dQ)), in which fitness is an exponentially decaying

function of the distance to the optimum to the power of Q. Q is

a parameter that modifies the concavity of the fitness decline. As

organisms move away from the optimum the effect of the mutation

tend to have bigger effect if Q.1 and smaller effect if Q,1. In

such a case the fitness equilibriums are (Methods, Appendix A).

Feq ne, vð Þ~ v= vz1ð Þð Þne=Q ð3Þ

Thus in the haploid case on which we will focus later:

Feq ne, Neð Þ~ 1{ 2Ne{1ð Þ{1
� � ne=Qð Þ

ð4Þ

The validity of these results was confirmed by an individual

based model of simulation analogous to one used previously [6]

(Fig. 2).

Robustness of Fitness Equilibrium to FGM

Hypothesis
The implementation of FGM requires several assumptions in

regards to the biology of the organism. The distributions of the

mutations and the shape of the fitness function are required, and

the geometry of the fitness isoclines needs to be symmetrical.

However, we show below that the equilibrium drift load is fairly

insensitive to these strict assumptions.

First, as equation (4) suggests, the fitness equilibrium is

independent of the mutational properties. As long as mutation is

assumed to be isotropic, only the convergence time to equilibrium,

and not the equilibrium fitness value, is affected by the distribution

of mutational effects (data not shown). Second, although the results

depend on the shape of the fitness function (linear or exponential-

type), they are independent of the slope: equilibrium values will be

the same if f(d) = exp(2adQ) (Methods, Appendix B). Third,

although the canonical FGM assumes circular fitness isoclines,

it can be shown that if fitness isoclines are elliptical instead of

circular, then the density function is affected, but this cancels

out in the calculation of fitness equilibrium. This holds for

fitness isoclines and also for any fitness function of the form

f(X) = exp(2Saixi
Q), where X = (x0, x1, …, xn) is the coordinate of

an individual in FGM, and ai are positive parameters (Methods,

Appendix B). Finally, if the mutation cloud is a Gaussian ellipsoid,

it has been shown that an appropriate change of axes result in

a space in which fitness isoclines are ellipsoid while the mutation

cloud is circular [21]. Hence it seems that asymmetry in both the

mutational distribution and the fitness isoclines do not affect the

equilibrium fitness values, a robustness of the equilibrium fitness

confirmed by some simulation data (data not shown).

The equilibrium drift load seems to be a robust property of

FGM that is determined by the number of dimensions of

phenotypic space, the population size and the fitness function

(especially its curvature). An accurate estimate of phenotypic

complexity can thus be obtained if it is possible to estimate

equilibrium fitness values (drift load) for several population sizes, as

well as the amount of curvature in the fitness function.

Viral Evolution
We used two sets of evolution experiments in which both fitness

equilibrium values and fitness curvature have been investigated

(Fig. 3). In the first set of experiments we evolved the

bacteriophage wX174 on a bacterial lawn of its host, Escherichia

coli C. We increased the mutation rate of the phage to hasten

convergence to fitness equilibrium with the use of hydroxylamine;

this resulted in a mean mutation rate of 0.1 per genome per

Figure 2. Predicted equilibrium fitness as a function of phenotypic
complexity (ne). Results are shown for populations of size 100 (black),
ten (grey), and three (white). An exponential fitness decline in which
Q = 1 was used (yielding a fitness function of f(d) = exp(2d)). Circles
indicate the average fitness reached in the simulation model; curves
indicate the analytical results.
doi:10.1371/journal.pone.0000217.g002
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generation through the 450 generations of evolution. Population

size-dependent fitness equilibriums were observed, confirming that

evolution occurred in a manner compatible with the assumptions

of FGM. From these populations we obtained 21 measures of

equilibrium fitness at five different population sizes. Every transfer

corresponded roughly to five phage generations and effective

population size was then approximated to five times the number of

plaques transferred (the harmonic mean).

To estimate the curvature of the fitness function we performed

a mutation accumulation analysis for high and low fitness clones

and showed that the distribution of deleterious mutations was

similar at both ends of the fitness range spanning a 300-fold

difference. This suggests that there is very little curvature of the

fitness function.

We used a second set of data from the literature, in which

populations were evolved for 20 transfers at different effective

sizes. Novella et al. [22] evolved four clones of vesicular stomatitis

virus (VSV) using plaque-to-plaque transfers of sizes two, five, and

30. They also observed a population size-dependant fitness

convergence. Although the time for convergence was relatively

short (40 viral generations), several populations experienced no

significant increases or decreases in fitness over all replicates at

a given population size, suggesting that those population were at or

near an equilibrium fitness value. We used the fitness estimates

from 24 populations evolved at population sizes of two, five and

30. Every transfer corresponded to roughly two viral generations

and effective population size was thus approximated as two times

the number of viral plaques transferred.

Additionally, an impressive set of data using site directed

mutagenesis in VSV suggests that the concavity of fitness function

is slightly upward [19]. However, in further analyses we estimate

Q as 1 for both the phage and the virus, as no clear departure from

1 has been observed in either case.

Maximum Likelihood Estimate of Phenotypic

Complexity
We wish to use the previous mathematical results to estimate

phenotypic complexity from experimental data. However, there

are two unknown parameters in the experimental system that

affect the equilibrium drift load in a population: phenotypic

complexity and the maximum attainable fitness that can be

reached by the viruses in the laboratory environment (this

parameter has been scaled to one in the previous derivations).

Using methods from statistical physics, we can find the distribution

of population fitness at equilibrium (shown above), and thus derive

a likelihood model that gives the probability of the observed data

for each couplet (ne/Q, fref), in which ne is the phenotypic

complexity, Q a parameter of the curvature of the fitness surface,

and fref the maximum attainable fitness. We also take into account

the noise in our experimental assessment of fitness values;

especially for high fitness populations, noise in the estimates of

fitness can alter the estimation of fref, as this parameter is by

definition higher than all fitness measures. Thus rather than using

the probability of the point estimate of fitness, we integrated the

probability between plus (f+) and minus (f2) one standard deviation

of the point estimate. In Appendix C we show that

Lk f{, fz, Ne ne, fref

��� �
~

C ne, 2Ne{2ð ÞLog
fref

fz

� �
, 2Ne{2ð ÞLog

fref

f{

� �h i
C neð Þ

ð5Þ

Estimates of Phenotypic Complexity for VSV and

wX174
We applied the maximum likelihood estimator to the experimental

estimates of population fitness for wX174 and VSV, and using

a likelihood ratio test we defined 95% confidence intervals (CI),

which we list here in parentheses. For wX174 we found ne/Q = 45

(42249), and fref = 1.245 (1.2321.26), whereas for VSV we found

ne/Q = 10 (8212) and fref = 1.98 (1.9422.05) (Fig. 3). In both of

these cases, fref is calculated per generation relative to the ancestral

virus for wX174 and relative to a reference strain for VSV. As no

strong signature of curvature in the fitness surface has been found

for either virus, we assume that Q is approximately one.

DISCUSSION
To understand how biological complexity changes during the

course of evolution, a metric is needed. Previously, measures such

as the number of genes, cell types or metabolic processes have

been proposed, but they often lead to incongruent results.

Organisms with more cell types do not necessarily have more

genes. Here we suggest that a metric unifying biological systems

has not been appropriately identified. To circumvent this problem,

we have developed a metric of biological complexity termed

phenotypic complexity (ne). We have quantified this metric in the

viruses wX174 and VSV by utilizing a population genetic model

that describes how phenotypic complexity affects the drift load that

a population experiences.

Phenotypic complexity (ne) is a measure of the number of

genetically uncorrelated phenotypes that are acted upon by

natural selection. Because Darwinian evolution through natural

selection is the fundamental element unifying all biological

organisms, we propose that ne is potentially a more relevant

metric than those previously suggested.

Figure 3. Equilibrium drift load as a function of population size for
vesicular stomatitis virus and wX174. Each point indicates the mean
fitness of a population. The VSV populations are shown in dark grey and
the wX174 are shown in white. Some points have been displaced on the
x-axis for clarity. The VSV populations were transferred at effective
population sizes of four, ten, and 60; the wX174 populations were
transferred at effective population sizes of 15, 50, 150, 500, and 1250.
The dotted lines specify the maximum likelihood estimate of the fref

value (the maximum attainable fitness); the dark dotted line indicates
the value for VSV and the lighter dashed line indicates the value for
wX174.
doi:10.1371/journal.pone.0000217.g003
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Robustness of the Model
Using recent theoretical results we have analytically quantified the

dependency of the drift load (equilibrium fitness) on the effective

population size and phenotypic complexity. The linear fitness

function that has been employed previously to simplify the

mathematical analyses is no longer necessary. Such a function

makes strong assumptions about the form of the fitness landscape;

specifically, mutational effects become very large as fitness is

reduced. Thus at low fitness most mutations are either lethal or of

very large effect, a scenario which is incompatible with what we

have previously observed [14].

We have therefore studied a more general family of fitness

functions of the form f(d) = exp(2(dQ)), and found that Feq(Ne,

ne) = (12(2?Ne21)21)(ne/Q). It appears that this equation remains

valid over a much wider range of conditions than those used in the

canonical FGM, in which mutations are required to be isotropic

and fitness isoclines are symmetric about the origin. An interesting

feature of this formula is that it does not require a model in which

mutations can affect all phenotypic traits simultaneously. In the

initial formulation of FGM, all phenotypic axes intersect at the

origin of each axis. This original FGM can be modified slightly

such that some phenotypes are grouped into separate phenotypic

modules, and within a module, all phenotypes again intersect at

each other’s origin. Any mutation that occurs within a module can

affect only other phenotypes within that module, and none that lie

outside of it (i.e. there is no pleiotropy between modules, an idea

similar to previous conceptions of modularity [23]). Using the

more general description of the equilibrium drift load that we have

derived above, a phenotypic landscape a composed of a single

module with ne dimensions has the same drift load function as

a landscape composed of m independent modules of size ne,i with

Si ne,i = ne because we have

1{ 2Ne{1ð Þ{1
� � ne=Qð Þ

~P i 1{ 2Ne{1ð Þ{1
� �ne,i=Q

ð6Þ

Hence the drift load formula that we have obtained seems to be

robust to many of the assumptions underlying FGM.

Other Attempts to Estimate Phenotypic Complexity
Recently, another theoretical study developed a framework to

estimate phenotypic complexity [21]. The model developed used

predictions on the distribution of mutational effects to estimate

complexity. This analysis, which is completely independent from

ours, found an interesting correlation between gene number and

complexity in a variety of organisms ranging from a virus to C.

elegans. However, for all the organisms for which enough data

existed to perform the analysis, the number of phenotypic

dimensions estimated was very small; 0.21 phenotypic dimensions

for E. coli, 1.07 in VSV, 1–2 for S. cerevisiae, and 2–3 for D.

melanogaster and C. elegans. We think that several effects may limit

the predictive quality such a method. Firstly, mutation accumu-

lation methods and the inherent noise in fitness estimates are very

different across species and comparison across species are thus

difficult. One illustration of this is the large variability in fitness

estimates for mutations in a single species using two methods: in

VSV earlier estimates (using Bateman-Mukai estimates) predicted

a 0.002 mean fitness effect per mutation, while more recent and

accurate estimates (which introduced each mutation individually)

brought the estimate it to 14% (a 70-fold difference). Secondly,

neutral mutations are not considered in the model developed by

Martin and Lenormand. However, part of the mutation produced

by transposable elements might affect genes useless in laboratory

conditions and will therefore be taken into account in the

calculation of mean fitness effects of mutations even if they do

not affect any phenotype in the laboratory environment. Third,

contrary to our model, if phenotypes are organized in different

modules (as many data suggest), their model will provide different

estimates; in other words, their model requires that all traits can be

simultaneously affected by a single mutations. All these considera-

tions suggest that a second independent model should be used to

estimate phenotypic complexity.

One of the central FGM hypotheses that we have so far not

addressed is the single-peaked nature of the landscape. Although

FGM contains few assumptions about the nature of the genotypic

landscape, the model explicitly requires a phenotypic landscape

containing a single peak; without this, then the fitness function,

f(d), cannot be described by a decreasing function. However,

recent experimental evidence over large evolutionary time scales

strongly suggests that while the genotypic landscape may contain

multiple peaks, the phenotypic landscape is generally much less

complex. Several experimental studies using microbes have shown

that a considerable amount of phenotypic convergence occurs

during evolution [24–27], even when organisms begin from

different starting points in the landscape [28]. These phenomena

would only be expected if the phenotypic landscape exhibited

a single-peak. However, the evidence for ruggedness in the genetic

landscape is also substantial, especially in experiments that have

looked at bacterial evolution of resistance to antibiotics [29]. In

this case, the fitness relationships between the wild type genotypes,

resistant genotypes, compensated resistant genotypes, and sensitive

genotypes bearing the compensatory mutation exhibit high levels

of epistasis, characteristic of a rugged genetic landscape. In other

studies in which the cost of resistance was associated with

a phenotype [30], fitness restoration to wild-type level was

sometimes observed and, more importantly for our concern, it

was associated with a restoration of the phenotypic damage

associated with the occurrence of the resistance mutation

(transcription efficiency of rifampicin resistant mutants was

restored back to the level observed in rifampicin sensitive strain).

This also suggests the singularity of the phenotypic optimum,

although different genetic combinations may underlie this

optimum. However, as our model is focusing neither on the

genetic nature of the adaptive landscape, nor on the rate of

adaptation (ruggedness means that several mutations could be

needed to restore the effect of one) it should not be too sensitive to

the small level ruggedness of the genetic landscape described so

far.

The Concept of Phenotypic Complexity
As discussed previously, the quantity denoted by ne is the number

of genetically uncorrelated phenotypes that are influenced by the

action of natural selection. The dimensions enumerated by ne are

thus genetically orthogonal to each other, and analogous to the

axes needed to describe the variation among multiple phenotypes

measured on a collection of individuals and mutants in a principal

component analysis. However, the number of axes enumerated by

ne is filtered by natural selection, while in a PCA analysis the

number of axes is limited only by the number of independent

phenotypes that are measured. Because each phenotype is

optimized at a value determined by each organism’s ecological

environment, there is a dependence of phenotypic complexity on

the complexity of the ecological niche experienced by each

organism; if natural selection does not act on a phenotype, then

that phenotype does not contribute to the complexity metric.

Finally, although the estimates of ne arise from an idealized model

Population Genetic Complexity
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of phenotypic evolution; as Orr suggested previously, estimates of

phenotypic complexity using FGM can be viewed as ‘‘effective’’

estimates of phenotypic complexity [6]. This concept is analogous

to the concept in population genetics of effective population size,

Ne, in which two populations with different numbers of individuals

and different sex ratios might have the same effective population

size and therefore respond similarly to the different population

genetic forces. Thus two organisms, although they may differ in

both the underlying genetic mechanisms and in the complexity of

the environment in which they live, may have similar phenotypic

complexities. The utility of the concept lies not in the implications

it makes about specific phenotypes or genetic details, but in that it

enables a general quantification of how an organism is affected by

natural selection (the complexity with which natural selection acts),

and furthermore, how this action affects the evolutionary

dynamics of that organism [6].

Viral Estimates of Phenotypic Complexity
Unsurprisingly, our estimates of phenotypic complexity are orders

of magnitude smaller than either the number of nucleotides or

even the number of amino acids encoded by the genomes of these

organisms (5386 bp and 11,161bp in wX174 and VSV, respec-

tively). This agrees with the concept of phenotypic complexity that

we have defined. Although mutations that occur at one nucleotide

or amino acid do not affect those at another (i.e. they are

genetically separable phenotypes), it is clearly unlikely that each

nucleotide or amino acid is independently acted up by natural

selection. Secondly, each estimate of complexity is greater than the

number of genes encoded by each virus (11 and 5 for wX174 and

VSV, respectively). The presence of multiple functional domains

within a single protein is consistent with an estimate of complexity

that is greater than the number of encoded proteins.

Although we have only two estimates, we can briefly consider

them from a comparative standpoint: although the genome size of

wX174 is half of VSV, our estimate of phenotypic complexity

quantifies wX174 as being approximately four-fold more complex.

It is notable, then, that wX174 contains approximately twice the

number of genes as VSV. Additionally, the lifestyle of wX174 is

arguably much more elaborate than that of VSV. wX174 interacts

with several host factors in order to perform transcription and

replication; 13 host factors are required for replication alone [31].

This can be contrasted with VSV, in which transcription and

replication are similar processes, both performed by the viral

polymerase. Few host factors (and thus few interactions) are

necessary at all during the entire life cycle of VSV [32].

These estimates suggest that, for very simple organisms such as

viruses, phenotypic complexity correlates well with the number of

genes in an organism, and more specifically, with the number of

interactions characteristic of that organism [2]. This observation

supports the idea that phenotypic complexity depends on the

interactions between an organism and its environment. Genome

size in itself seems to be a poor correlate of phenotypic complexity,

a notable result in consideration of the very small genome sizes of

these organisms. Whether such correlations or absence of

correlation with gene number or genome length would hold for

more complex organisms remains an open question. Nevertheless,

by studying very simple organisms, we have shown that the use of

drift load could be used to estimate complexity in a novel and

consistent way. We now propose that such a method could be

helpful to identify and quantify the strongest determinants of

biological complexity of higher organisms.

Although the theory presented here appears to be quite robust,

it is too early to conclude that it is an accurate reflection of the

underlying biology. To be studied in an FGM framework,

organisms need to present at least one phenotypic property to

selection. Additionally, populations, even those of very small size,

should evolve towards a fitness equilibrium that is explicitly

dependent on population size. We found data in the literature

consistent with this expectation for one organism, VSV. We now

provide further support for population size-dependent fitness

equilibria by evolving populations of the bacteriophage wX174.

Together, these two data sets suggest that evolutionary analyses

using an FGM framework are a valid approach. Moreover, the use

of very simple organisms such as viruses is useful for gaining insight

into metrics of complexity, as for such simple organisms, gene

number is likely to be a very good correlate of organismal

complexity, and this should be reflected by the metric. Although

our observations are currently limited to two viral species, it is

clear that from both a qualitative level (i.e. population size-

dependent fitness equilibria), and a quantitative level (that the

number of phenotypic dimensions are reasonable) that the

predictions from FGM theory are borne out. An assessment of

drift load and phenotypic complexity in a greater number of

organisms is needed before further conclusions can be drawn.

Conclusions
Here we have presented a top-down approach to quantifying

biological complexity. This can be contrasted with previously

proposed metrics of complexity, which have relied on physically

measurable quantities of the organism (bottom-up approaches).

Two important conceptual differences separate these two ap-

proaches. Most importantly, phenotypic complexity is dependent

on both the organism and the environmental context. An

organism is not complex because it has many measurable

phenotypes; it is complex because it has many phenotypes on

which natural selection acts. Secondly, phenotypic complexity

does not rely on artificially constructed concepts such as genes

[33]. As an example, if two genes are deemed to be of equal

complexity because they are functionally equivalent, such a

measure necessarily ignores the subtle ways in which each may

be regulated, or spliced, or expressed within the cell. Quantify-

ing such multiple layers of complexity is difficult if the metric

relies on physically measurable quantities.

However, phenotypic complexity remains an inherently abstract

metric. It cannot aid in identifying the specific characteristics

contributing to the complexity of an organism. Instead, it addresses

the complexity with which natural selection views an organism, and

the complexity with which an organism is capable of generating

novel phenotypic variation. For this reason, testing how phenotypic

complexity compares to more traditional metrics of complexity (for

example, the numbers of genes, protein interactions, or cellular

pathways) may provide significant insight into biological systems.

Finally, phenotypic complexity (and the resulting equilibrium drift

load) affords a unique opportunity to contrast the action of natural

selection between different organisms or different environments in

a very general and unconstrained manner.

METHODS

Viral Evolution
The details of experimental evolution of wX174 have been

described previously [14]. Briefly, phage were mutagenized in

250 mM hydroxylamine, 1mM EDTA at 37uC for 140 minutes.

Mutagenic treatment was stopped by 100 to 1000-fold dilution

into fresh media, after which they were plated on LC agar plates

containing a bacterial lawn and grown overnight at 32uC. From

these plates, a number of plaques equal to the bottleneck size were

randomly selected and diluted into culture tubes containing 3 ml
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of 1mM EDTA. These tubes were vortexed and centrifuged,

after which 0.5 ml was removed to a fresh eppendorf tube.

Chloroform was added, the tubes were vortexed and centrifuged,

and 0.3 ml was removed. This stock was then used for further

mutagenesis.

Appendix A: Derivation of Fitness Equilibriums
Sella and Hirsh [16] showed that mean equilibrium fitness could

be written

Sf T ~

Ð1
0

f f v r fð Þ df

Ð1
0

f v r fð Þ df

in which n = 2Ne21 in the diploid case and 2Ne22 in the haploid,

and r(f) is the density function of fitness value f.

In an n-dimensional space, the density r(f) df is derived from the

hyper-sphere surface of radius x, with f = f(x), f(x) being the fitness

function describing the dependency of fitness on the distance to the

optimum, x. The surface of the hyper-sphere of radius x is

V(n)x(n21), where V(n) is the unit radius hyper-sphere surface,

V(n) = 2?p(n/2)/C(n/2). We have therefore r(f)df = V(n) x(n21) dx

If fitness is defined as f(x) = 12x, then V(n) x(n21) dx = 2V(n)

(12f)n21 df and

Sf T ~

Ð1
0

f f v 1{fð Þn{1
df

Ð1
0

f v 1{fð Þn{1
df

~
1zv

1zvzn

If fitness is defined as: f(x) = exp(2xQ) we have

V nð Þ xn{1 dx ~ {
V nð Þ

Q

{Log fð Þð Þ
n
Q
{1

f
df

and

Sf T ~

Ð1
0

f v {Log fð Þð Þ
n
Q{1

df

Ð1
0

f v{1 {Log fð Þð Þ
n
Q
{1

df

~
v

1zv

� �n
Q

This expression is independent of mutational properties.

Appendix B: robustness to assumptions.
Slope of the fitness function Note that if f(x) = exp(2a xQ)

V nð Þ xn{1 dx ~ {
V nð Þ
a

n
QQ

{Log fð Þð Þ
n
Q
{1

f
df

and SfTis not affected.

Ellipsoidal fitness isoclines Let us assume that

f = exp(2RQ) where R is defined by

Xn

i~1

a2
i x2

i ~R2

in which x = (x1,x2,…,xn) is the position in the n-dimensional space

and ai are positive numbers. We then have ellipsoidal fitness

isoclines of semi-axes R/ai. As the volume of such an ellipsoid is

V fð Þ~ P
n

i~1

R

ai

p
n
2

C 1z n
2

� � ~ RnP
n

i~1

1

ai

p
n
2

C 1z n
2

� � ~

{Log fð Þð Þ
n
Q P

n

i~1

1

ai

p
n
2

C 1z n
2

� �

with C(a)~

ð?
0

ta{1e{tdt being the Euler Gamma function and

the density r(f) df = dV(f) df is similar to the one found in the

previous case

r fð Þ df ~ K n, a1, a2, � � � , anð Þ {Log fð Þð Þ
n
Q
{1

f

with

K n, a1, a2, � � � , anð Þ~ {
n

Q
P
n

i~1

1

ai

p
n
2

C 1z n
2

� �
we therefore find the same value of SfT, as the constant cancels

out in the ratio of integrals. More generally, if fitness is defined as

f xð Þ~ exp {
Xn

i~1

ae
i xe

i

 !Q
0
@

1
A

We can show through recursions that this defines volumes

V fð Þ~ {Log fð Þð Þ
n
Q P

n

i~1

1

ai

2n C 1z 1
e

� �n

C 1z n
e

� �

and that once again the equilibrium fitness remains unchanged.

Appendix C: Maximum Likelihood Analysis
Sella and Hirsh showed that the probability of being at fitness f is

P fð Þ~ f v r fð ÞÐ1
0

f v r fð Þ df

Using the previous derivations with f(x) = exp(2xQ), we find the

probability that f lies between a and b is

P avf vb n, Q, vjð Þ~

Ðb
a

f v {Log fð Þð Þ
n
Q
{1

df

Ð1
0

f v{1 {Log fð Þð Þ
n
Q
{1

df

~

C n
Q

, {v Log bð Þ, {v Log að Þ
� �

C n
Q

� �

with C(a,x,y)~

ðy
x

ta{1e{tdt being the generalized incomplete

gamma function
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Because we do not know maximum fitness fref, we must estimate

it and therefore fitness b and a be used relative to fref.

P a v f v b, fref n, Q, vj
� �

~
C n

Q
, v Log

fref

b

� �
, v Log

fref

a

� �� �
C n

Q

� � ,

if fref wb wa,

P a v f v b, fref n, Q, vj
� �

~
C n

Q
, 0, v Log

fref

a

� �� �
C n

Q

� � ,

if b wfref wa, and

P a v f v b, fref n, Q, vj
� �

~ 0, if a wfref
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