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Standardized tests of learning and memory are sensitive to changes

associated with both aging and superimposed neurodegenerative diseases.

Unfortunately, repeated behavioral test administration can be confounded

by practice effects (PE), which may obscure declines in level of abilities and

contribute to misdiagnoses. Growing evidence, however, suggests PE over

successive longitudinal measurements may differentially predict cognitive

status and risk for progressive decline associated with aging, mild cognitive

impairment (MCI), and dementia. Thus, when viewed as a reflection of

neurocognitive plasticity, PE may reveal residual abilities that can add to our

understanding of age- and disease-related changes in learning and memory.

The present study sought to evaluate differences in PE and verbal recall

in a clinically characterized aging cohort assessed on multiple occasions

over 3 years. Participants included 256 older adults recently diagnosed as

cognitively unimpaired (CU; n = 126), or with MCI of amnestic (n = 65)

or non-amnestic MCI (n = 2085), and multi-domain amnestic dementia of

the Alzheimer’s type (DAT; n = 45). We applied a continuous time structural

equation modeling (ctsem) approach to verbal recall performance on the

Hopkins Verbal Learning Test in order to distinguish PE from individual

occasion performance, coupled random changes, age trends, and differing

measurement quality. Diagnoses of MCI and dementia were associated with

lower recall performance on all trials, reduced PE gain per occasion, and

differences in non-linear dynamic parameters. Practice self-feedback is a

dynamic measure of the decay or acceleration in PE process changes

over longitudinal occasions. As with PE and mean recall, estimated practice

self-feedback followed a gradient from positive in CU participants to null

in participants with diagnosed MCI and negative for those with dementia
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diagnoses. Evaluation of sensitivity models showed this pattern of variation

in PE was largely unmodified by differences in age, sex, or educational

attainment. These results show dynamic modeling of PE from longitudinal

performance on standardized learning and memory tests can capture multiple

aspects of behavioral changes in MCI and dementia. The present study

provides a new perspective for modeling longitudinal change in verbal

learning in clinical and cognitive aging research.

KEYWORDS

practice effects, aging, learning, mild cognitive impairment, verbal memory,
dementia, dynamic modeling, Alzheimer’s disease (AD)

Introduction

Standardized neuropsychological tests are sensitive to
cognitive declines associated with older age and incident
mild cognitive impairment (MCI) and dementia. Clinical
characterization of cognitive impairments and the tracking of
progressive declines requires repeated testing, but performance
on repeated standardized tests is contaminated by practice
effects (PE; Duff et al., 2001; Hawkins et al., 2004; Salthouse,
2010; Hoffman et al., 2011). This contamination arises due to
the incidental retention of information from prior exposure
to test format and content, which can enhance performance
at subsequent reinstatement (Wilson et al., 2000; Heilbronner
et al., 2010; Machulda et al., 2013). The potential of PE
to mask true cognitive declines in healthy and pathological
aging has motivated numerous attempts to remove PE from
estimates of level or change in performance (Rabbitt et al., 2001;
Salthouse and Tucker-Drob, 2008; Salthouse, 2010; Calamia
et al., 2012). However, as a measure of the capacity to
benefit from repetition, PE may represent an independent
behavioral dimension sensitive to declines in older age and
neurodegenerative disease (Yang, 2011; Duff et al., 2012). Thus,
rather than treat PE as noise, approaches to integrate modeling
of PE and cognition may provide novel clinical value in
characterizing cognitive impairment and dementia.

Notably, simulation study findings show PE are not easily
distinguished from true changes associated with aging or cohort
effects (Hoffman et al., 2011). Therefore, quantifying PE as
the change dimension of interest may better serve short-term
characterization of functional declines in MCI and dementia.
This proposition is in accord with suggestions that variation
in PE reflects individual differences in neurocognitive plasticity
(Baltes and Raykov, 1996; Yang and Krampe, 2009; Yang, 2011).
Others have reported PE as a marker of clinical declines in older
adults with mild cognitive impairment (MCI) or dementia of
the Alzheimer’s type (DAT; Duff et al., 2007, 2012; Fernandez-
Ballesteros et al., 2012; Sanchez-Benavides et al., 2016).
Lower PE is also associated with performance decrements in

cognitively intact adults with preclinical Alzheimer’s pathology
(Goldberg et al., 2015; Hassenstab et al., 2015). These
findings highlight the intrinsic dependencies between the
contributions of prior experience to cognitive performance and
vulnerability to decline.

Verbal learning tasks provide established clinical markers
of neuropsychological deficits associated with diagnoses of
MCI and DAT (Duff et al., 2001; Hawkins et al., 2004;
Blasi et al., 2009; Lonie et al., 2010; Summers and Saunders,
2012). Standardized tests of verbal learning and memory
typically involve serial auditory presentation of lists of verbal
stimuli, immediately followed by instructions to freely recall all
words remembered. Most standardized tasks then repeat this
procedure for multiple trials with the same stimuli, followed by
a delay and an additional free recall trial. Due to their repetitive
nature, verbal learning tasks are particularly vulnerable to PE
when content is repeated across longitudinal administrations
(Duff et al., 2001; Heilbronner et al., 2010; Machulda et al.,
2013; Campos-Magdaleno et al., 2017). Arguably, repeated
free recall performance on multiple trials distributed over
longitudinal occasions embodies the definition of a dynamic
process – i.e., one that constantly changes and progresses
(Zimprich et al., 2008). Moreover, serial recall represents
retrieval-based learning, in which retrieval of a representation
updates the representation itself (Karpicke et al., 2014).
Furthermore, each repeated trial involves not just encoding
and retrieval, but updating and retrieval monitoring, as well as
potential metacognitive processes (Hertzog and Dunlosky, 2004;
Bender and Raz, 2012). Thus, successful recall performance
involves multiple interactive executive processes, which may
also show decrements in the presence of phenotypic cognitive
impairment. Yet, the extent that task summary scores reflect
these dynamics is unclear.

To date, there is neither consistent operationalization
nor definition of PE in the contexts of clinical and basic
cognitive aging research. Studies report PE estimated both
in variable time scales ranging from minutes to years and
from a host of different behavioral tasks, conditions, and
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stimuli. In addition, PE is largely quantified in extant studies
of normative and pathological aging using difference scores
or via linear modeling frameworks (Raykov et al., 2002;
Salthouse et al., 2004; Duff et al., 2007; Bender et al., 2013,
2020; Goldberg et al., 2015; Hassenstab et al., 2015). However,
linear modeling approaches may fail to capture the interactive,
dynamic processes involved in longitudinal verbal learning
task performance. Modern dynamic modeling methods that
can quantify non-linear processes may provide novel markers
of PE or cognitive decline. In the context of longitudinal
changes in verbal recall, dynamic modeling can account for
the current level of performance at each trial and occasion to
help predict subsequent performance. Thus, within-occasion
and longitudinal performance are modeled as interdependent
processes that play out over time. Modeling performance on
each verbal recall trial as an individual interactive process,
manifest over multiple occasions, permits estimating PE as a
change process independent of overall mean performance and
trial-by-trial random effects.

The continuous time structural equation modeling
(ctsem; Driver et al., 2017) framework applies a differential
equations-based time series analysis for modeling ongoing
dynamic processes, coupled with a measurement layer to
delineate measurement noise from true change. While it
resembles latent growth and latent change score models,
ctsem permits treating time-in-study as a continuous
variable, in addition to other key enhancements. Relevant
to longitudinal verbal learning performance, the framework
permits specifying a non-linear measurement model to account
for factors such as differential measurement error across
groups or levels of performance. It also allows modeling
random effects to capture individual differences in all system
parameters, as well as covariates that can predict such
individual differences. Furthermore, these non-linear processes
may also be sensitive to phenotypic cognitive impairment,
possibly independent of level of performance or PE. Thus,
dynamic modeling of longitudinal verbal learning data
to decompose PE from trial-level performance may offer
additional value for clinical aging populations previously
reported to show a loss of PE.

Extant findings show diagnoses of MCI and multi-domain
amnestic dementia (DAT) are associated with reduced or
non-existent PE on standardized verbal learning tasks (Duff
et al., 2007, 2019; Calamia et al., 2012; Goldberg et al.,
2015; Gavett et al., 2016). However, it is unclear whether
differences in PE associated with MCI or dementia are
also influenced by other factors known to influence verbal
memory. For example, whereas older age is associated with
performance decrements on episodic memory tasks, female
sex is associated with better verbal episodic memory (Herlitz
et al., 1997; Herlitz and Rehnman, 2008; Bender et al., 2010).
Furthermore, greater educational attainment also confers a
higher initial level of premorbid performance on memory tasks
(Lovden et al., 2020). Still, it is unclear if such individual

differences may modify the larger effects of MCI or DAT
diagnosis on verbal recall or PE, particularly over less expansive
periods of assessment.

The University of Michigan Memory and Aging Project
(UM-MAP) includes older participants clinically characterized
as cognitively unimpaired (CU) or diagnosed with MCI or DAT.
The available data includes one to four occasions of annual
neuropsychological assessment, including the Hopkins Verbal
Learning Test (HVLT), which was administered using the same
stimulus lists on each occasion of measurement. This provided
an opportunity to apply ctsem for modeling longitudinal verbal
recall performance and PE as dynamic processes in a clinical
aging sample. To our knowledge, this is the first attempt to
apply dynamic modeling to quantify longitudinal changes in
verbal learning, particularly in a clinical aging context. Critically,
dynamically modeled estimates of PE in the present study served
as the primary measure of longitudinal change in performance,
rather than estimating change in ability and PE separately.
We hypothesized that both older age and diagnosed MCI and
DAT would be associated with poorer recall and lower PE.
We also expected the effects of clinical diagnosis would be
modified by individual differences in chronological age, sex,
and educational attainment. Specifically, we hypothesized that
higher education and female sex would be associated with better
verbal recall; however, we had no clear expectations regarding
how these would influence effects of MCI or DAT diagnosis
on recall or PE.

Materials and methods

Participants

The study sample was drawn from research participants in
the University of Michigan Memory and Aging Project (UM-
MAP), which is the primary clinical cohort at the Michigan
Alzheimer’s Disease Research Center (MADRC). The sample
included 256 participants (67% women) from 51 to 89 years
of age at the first assessment. At each measurement occasion
all participants underwent neuropsychological evaluation and a
consensus diagnosis was made during a consensus conference
by neurologists, neuropsychologists, nurses, social workers or
other specialists as appropriate using the National Alzheimer’s
Coordinating Center (NACC) criteria. The sample was divided
into three subgroups based on the last recorded diagnosis
for each participant (Table 1): cognitively unimpaired (CU;
n = 126; 71% women), amnestic or non-amnestic MCI (MCI;
n = 85; 67% women) and multi-domain amnestic dementia
(DAT; n = 45; 60% women) consistent with Alzheimer’s
disease and mixed dementia. Over the course of the study,
six participants progressed from diagnoses of aMCI to DAT
of the Alzheimer’s type, and an additional six participants
changed from CU to MCI diagnoses. In contrast, one
participant initially diagnosed with DAT was subsequently
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characterized as CU, and 15 participants characterized with
MCI at baseline reverted to CU at their final study assessment
2–3 years later.

Longitudinal organization

Following baseline assessment participants returned
annually for repeated testing. The present study data included
assessments on one to four separate measurement occasions
(Table 2), separated by mean intervals of 1.09 years. Mean
intervals between each occasion of measurement, separately by
subgroup are reported in Supplementary Table 1.

Cognitive testing

All participants were administered the Hopkins Verbal
Learning Test (HVLT; Brandt, 1991) on each occasion of
measurement and testing followed the published procedures.
The HVLT auditorily presents 12-item lists of semantically

TABLE 1 Participant characteristics by clinical diagnosis.

CU MCI DAT

Mean (sd) Mean (sd) Mean (sd)

Age 70.06 (6.43) 72.66 (8.04) 72.22 (9.31)

Education 15.90 (2.67) 15.60 (2.47) 15.51 (2.61)

Systolic BP 134.43 (22.97) 139.46 (22.10) 133.81 (15.67)

Diastolic BP 77.88 (11.35) 81.10 (12.03) 74.91 (9.76)

CDR 0.33 (0.41) 0.97 (0.75) 3.67 (2.08)

MoCA 26.85 (1.93) 23.03 (3.19) 15.45 (5.64)

GDS 1.13 (1.39) 1.43 (1.70) 1.60 (1.33)

Values are mean with standard deviation in parentheses. CU, cognitively unimpaired;
MCI, diagnosis of amnestic or non-amnestic MCI; DAT, diagnosis of multi-domain
amnestic dementia. Age and educational attainment are in years. Systolic and diastolic BP
are blood pressure measured in mmHg. CDR, clinical dementia rating; MoCA, montreal
cognitive assessment. GDS, geriatric depression scale.

TABLE 2 Participant counts for total number of measurement
occasions by clinical diagnosis.

Clinical diagnosis Total number of occasions

1 2 3 4 Total
CU 20 45 40 21 126

MCI 34 23 20 8 85

DAT 20 19 6 0 45

Total 74 87 66 29 256

CU, cognitively unimpaired; MCI, diagnosis of amnestic or non-amnestic MCI; DAT,
diagnosis of multi-domain amnestic dementia. Values represent counts of participants
by their total number of measurement occasions. For example, in the top row for CU
participants, 20 had HVLT data for only one occasion, 45 participants completed two
occasions, 40 had three occasions of data, and 21 CU participants had complete data for
all four occasions.

linked verbal stimuli, presented at a rate of 2 s per item.
Following presentation of all items, the participant freely recalls
as many as possible. The score per trial is the total number
of correctly recalled words. This is repeated for two additional
free recall trials, using the same verbal stimuli. A 20-min
delay follows the third recall trial, after which participants
are asked to freely recall as many words as possible without
re-presenting the stimuli. Notably, although the HVLT also
includes additional delayed recall and recognition measures,
the present study focused on the first four trials, i.e., the
three immediate and first delayed recall trials. Critically, the
present study repeated the same lists of verbal stimuli across all
occasions of measurement.

Data analysis

To analyze performance, change as a function of
PE, and individual differences therein, we developed
hierarchical Bayesian continuous time dynamic models
(Driver et al., 2017) implemented in the ctsem software
(Driver et al., 2017;Driver and Voelkle, 2021). A more detailed
description of the model and corresponding mathematical
apparatus follows below in the Supplementary Material.

Modeling practice effects and performance in
ctsem

To account for varying observation timing and to allow
for continuously interacting processes, ctsem estimates an
underlying continuous-time model, which is translated into
discrete time expectations and covariance matrices using
matrix exponentiation (Voelkle et al., 2012; Voelkle and Oud,
2013). To account for the multiple timescales at play (i.e.,
within and between occasion), each of the immediate (i.e.,
Trials 1, 2, and 3) and delayed recall trials (Trial 4) were
modeled as independent latent processes over four occasions
of measurement, with correlated random disturbances. This
means that although we may not have been able to predict every
fluctuation in performance, when an unpredicted fluctuation
occurs this contributes to predictions for the other trials within
and (potentially) across occasion. We estimated the standard
deviation and within-occasion correlations of the diffusion
process, separately for each Trial (e.g., Diffusion T1). These
parameters capture the extent of unpredictable random changes
across measurement occasions, which are nevertheless useful
for predicting performance on other trials within-occasion, or
across-occasion – thus more likely representing some genuine
aspect of performance. In contrast, the standard deviation
of the measurement error (i.e., measurement error) captures
unpredictable changes in observed performance that do not
provide value for prediction on other trials. The model also
contained a parameter reflecting Trial self-feedback (sf_Trial);
this parameter describes the persistence of the random changes
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between measurement occasions for each trial. Put differently,
sf_Trial represents the extent to which unpredicted shifts up
or down (independent of measurement error) on performance
for a specific trial, can be used to predict performance for
the same trial number on the next occasion, i.e., across-
occasion persistence. On top of this base structure allowing
for correlated random processes, PE was modeled as a latent
process that changed at the end of each occasion. As for
the trial specific processes, we also specified a Practice self-
feedback (sf_Practice) parameter to provide an estimate of total
feedback on PE; this parameter serves as a measure of the decay
or acceleration in the change to Practice effect process over
the observed range of occasions. Like sf_Trial, the sf_Practice
parameter reflects the extent that the current level of practice
(i.e., at the end of each occasion) contributes to the Practice
effect at the next occasion. Thus, a positive sf_Practice value
would reflect an increase in gains due to practice on later
occasions, whereas a negative sf_Practice value reflects a decay
or deceleration of learning processes that reduce total PE and
implies reducing gains due to further practice. Each model
output includes estimates of population means for all modeled
parameters, correlations between trial manifest means and the
PE parameter, and estimates of time independent predictor
effects and interactions.

Time independent predictors and covariates
Parameters of the system and measurement models also

varied on an individual level as a function of clinical diagnosis, as
well as random effects. The effects of other sources of individual
differences were examined in separate sensitivity models to
evaluate effect modification by individual linear covariates,
including baseline age, sex, and educational attainment. This
accounts for a broad range of phenomena, such as heterogeneity
of measurement error variance with age and performance.
Therefore, we first evaluated most recent clinical diagnosis of
MCI or DAT as time independent predictors, in relation to
CU participants. This was followed by independent subsidiary
sensitivity models that evaluated covariate effects age, sex, and
educational attainment (scaled and centered at the respective
sample means) on model parameters and their interactions with
diagnostic group. Last, independently for the three diagnostic
groups we evaluated each of the time independent predictors
age, sex, and education in separate models.

Bayesian estimation
Due to the large number of parameters and random

effects, we opted for Bayesian maximum a posteriori
estimation. Priors on the parameter means were relatively
broad and non-influential, while tighter priors (i.e.,
pushing estimates toward zero) were used for modeling
individual differences to mitigate over-fitting. Despite
yielding more conservative estimates, this permits a
more pragmatic approach for estimating and interpreting

models with many parameters and modest sample
sizes. For details on priors, and the expanded stochastic
differential equation and related measurement model see the
Supplementary Material.

Results

A guide to interpreting model results
and figures

The time independent predictor effects and interactions
are best represented by the accompanying expectation plots
(Figures 1–4). As these are likely to be unfamiliar to
most readers without prior dynamic modeling experience,
their interpretation benefits from some explanation. Figure 1
provides an example of the expected effects of educational
attainment on performance, uncomplicated by additional
interactions. The plot depicts model expectations of recall
performance, measured over four occasions, with each trial
type (i.e., 1–4) depicted separately in the four panels. The
y-axes represent the number of correctly recalled words on
a trial, and the x-axis represents time; the dashed vertical
lines depict the individual measurement occasions. The black
plotted line depicts the expectation of change in the total
sample, in the absence of any covariates. The level of the
line on the y-axis represents the number of words recalled
for a trial in the total sample and this expected value is
incrementally increased before the next measurement occasion
as a function of the estimated PE parameter. Starting at baseline
(T0) the line is flat until just before the second occasion (T1)
where PE is first relevant. The magnitude of the increase
reflects PE at that occasion. The slope of the line between
T1 to T2 and from T2 to T3 also reflects the amount of
positive feedback or decay in PE as estimated by positive or
negative sf_Practice – the feedback component on PE that
allows for increasing or reducing gains of further practice.
The dashed and solid red lines show model expectations when
the covariate in question is ±1 and all other covariates are
zero. For dichotomous covariates like sex, this reflects group
differences. Here, higher education (dashed red line) predicts
higher level of performance, with stronger effects on Trials 2–
4 and occasions T0–T2, but the difference is reduced at T3.
The lower education group (solid red line) has a higher PE
gain at the end of each occasion, despite the lower initial level.
In addition, this is accompanied by greater decay (i.e., less
positive practice self-feedback) on the PE process. Of note,
for interactions (e.g., Figures 2–4), the dashed or solid lines
represent only the interaction effect, not the interaction plus
main effects. For example, in the case of Sex × DAT, the +1
line shows only the additive effect of female sex and positive
DAT diagnosis, assuming the individual Sex and DAT diagnosis
covariates are 0.
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FIGURE 1

Expectation plots for change in recall performance (black line) across four measurement occasions (e.g., T0: baseline, T1: 1 year). The solid and
dashed red lines depict effect modification by education; higher (dashed) and lower (solid) levels of education predict different levels and
patterns of change. The complete guide to interpreting expectation plots can be found in Section “A Guide to Interpreting Model Results and
Figures.”

Diagnostic groups model

The model with diagnostic groups as the only time
independent predictor provided overall characterization of
the sample (Table 3). The estimated population mean of PE
was significantly positive, indicating overall improvement
in performance across longitudinal occasions of 0.4 words,
for the entire sample. The mean trial self-feedback (sf_Trial)
parameter was very negative, implying that random changes
at the trial level did not persist across occasions. In addition,
the mean for the sf_Practice parameter was not significant,
suggesting that gains in PE neither increase nor decrease
substantially, given further repetitions. The means for the
other parameters, including diffusion for each trial and total
measurement error were all positive. Furthermore, the means
for all four Trials were positively correlated within-subject,
but there were no significant correlations with PE gain
per occasion in the total sample. Evaluation of diagnostic

groups as time independent predictors showed MCI and
dementia diagnosis predicted lower mean performance on
all four trials (Table 4), as well as a non-significant trend
for DAT diagnosis predicting lower PE. Both MCI and
DAT diagnoses predicted significantly higher Diffusion
effects for Trial 3 only, implying that diagnoses of MCI and
dementia were associated with greater random changes
in Trial 3 that were nevertheless predictive of other
trials, thus likely representing genuine change and not
measurement error.

Sensitivity models

Next, we evaluated independent sensitivity models to
examine the modifying effects of individual differences in age,
sex, and educational attainment on main effects and interactions
with diagnostic group (Table 5).
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TABLE 3 Estimated population mean values and correlations for diagnostic group and sensitivity models.

Diagnostic groups Age Sex Education

Mean (SD) 95% CI Mean (SD) 95% CI Mean (SD) 95% CI Mean (SD) 95% CI

Population means
sf_Practice 0.009 (0.256) −0.506, 0.523 −0.006 (0.244) −0.502, 0.475 −0.049 (0.280) −0.594, 0.504 −0.200 (0.314) −0.824, 0.429

sf_Trial −3.471 (1.065) −5.671,−1.650 −3.001 (0.749) −4.596,−1.669 −3.218 (1.051) −5.513,−1.454 −2.733 (0.691) −4.161,−1.545

Diffusion T1 3.795 (0.609) 2.702, 5.067 3.548 (0.445) 2.743, 4.467 3.748 (0.607) 2.688, 5.026 3.442 (0.466) 2.599, 4.432

Diffusion T2 3.523 (0.580) 2.538, 4.814 3.333 (0.431) 2.574, 4.247 3.512 (0.575) 2.487, 4.708 3.138 (0.417) 2.396, 4.009

Diffusion T3 2.781 (0.458) 2.025, 3.806 2.707 (0.352) 2.126, 3.439 2.801 (0.450) 1.993, 3.739 2.514 (0.348) 1.883, 3.244

Diffusion T4 5.499 (0.838) 4.089, 7.203 5.231 (0.650) 4.055, 6.515 4.816 (0.765) 3.449, 6.415 4.401 (0.582) 3.330, 5.583

Meas. error 0.299 (0.190) 0.080, 0.780 0.260 (0.173) 0.060, 0.713 0.233 (0.160) 0.054, 0.669 0.476 (0.923) 0.006, 2.934

Practice effect (PE) 0.399 (0.110) 0.184, 0.607 0.436 (0.117) 0.213, 0.665 0.388 (0.124) 0.145, 0.617 0.467 (0.123) 0.216, 0.714

Trial 1 6.087 (0.154) 5.781, 6.381 5.964 (0.163) 5.631, 6.263 5.939 (0.168) 5.611, 6.261 6.079 (0.161) 5.772, 6.389

Trial 2 8.782 (0.146) 8.514, 9.074 8.762 (0.149) 8.467, 9.046 8.663 (0.155) 8.366, 8.976 8.773 (0.141) 8.510, 9.056

Trial 3 9.837 (0.140) 9.578, 10.111 9.789 (0.141) 9.517, 10.055 9.733 (0.149) 9.428, 10.033 9.845 (0.136) 9.594, 10.114

Trial 4 8.478 (0.211) 8.054, 8.902 8.432 (0.212) 8.001, 8.839 8.297 (0.218) 7.877, 8.727 8.546 (0.199) 8.173, 8.925

Population correlations
Trial 1–PE 0.013 (0.251) −0.472, 0.474 −0.034 (0.224) −0.461, 0.396 0.037 (0.315) −0.552, 0.630 0.124 (0.331) −0.511, 0.707

Trial 2–PE 0.186 (0.271) −0.379, 0.681 0.102 (0.256) −0.381, 0.588 0.199 (0.328) −0.447, 0.766 0.293 (0.340) −0.435, 0.811

Trial 3–PE 0.135 (0.280) −0.463, 0.646 0.009 (0.260) −0.495, 0.503 0.172 (0.344) −0.505, 0.764 0.245 (0.363) −0.502, 0.810

Trial 4–PE 0.178 (0.246) −0.354, 0.627 0.048 (0.238) −0.403, 0.487 0.194 (0.308) −0.417, 0.727 0.249 (0.340) −0.470, 0.785

Trial 2–Trial 1 0.897 (0.049) 0.783, 0.958 0.889 (0.058) 0.743, 0.967 0.901 (0.047) 0.778, 0.965 0.892 (0.057) 0.750, 0.961

Trial 3–Trial 1 0.816 (0.057) 0.686, 0.910 0.800 (0.077) 0.606, 0.911 0.824 (0.065) 0.659, 0.919 0.801 (0.076) 0.619, 0.911

Trial 4–Trial 1 0.654 (0.084) 0.476, 0.791 0.613 (0.113) 0.359, 0.798 0.634 (0.086) 0.447, 0.782 0.675 (0.099) 0.459, 0.833

Trial 3–Trial 2 0.927 (0.038) 0.832, 0.974 0.910 (0.051) 0.763, 0.972 0.925 (0.042) 0.827, 0.976 0.916 (0.045) 0.805, 0.974

Trial 4–Trial 2 0.817 (0.064) 0.674, 0.909 0.773 (0.089) 0.552, 0.901 0.799 (0.069) 0.620, 0.901 0.831 (0.076) 0.649, 0.931

Trial 4–Trial 3 0.867 (0.056) 0.724, 0.944 0.839 (0.077) 0.657, 0.942 0.843 (0.064) 0.685, 0.933 0.902 (0.055) 0.759, 0.973

95% CI, values are upper (2.5%) and lower (97.5%) bounds. sf_Practice, practice self-feedback; sf_Trial, trial self-feedback; Diffusion, standard deviation of diffusion processes for a given
trial (e.g., T1 is Trial 1); Meas. error, measurement error; Trial represents manifest mean recall for each Trial, aggregated across occasions.

Age
The addition of years of age as a time independent predictor

showed on average, older age was associated with worse
performance on all four trials. However, this was qualified by
interactions of mean trial performance with clinical diagnosis.
Older age was associated with poorer performance on Trials 1, 2,
and 3 among those with MCI diagnoses, but with trends toward
better recall on trials 1 and 3 in those with DAT diagnoses
(Figure 2). Moreover, the negative effect of dementia on PE
gain per occasion was significant when accounting for age.
A significant negative interaction of Age × MCI × Diffusion
Trial 3 was due to older age attenuating the positive effects
of MCI diagnosis on Trial 3 Diffusion. Here, whereas MCI
diagnosis predicted higher levels of random variations in
Trial 3 that benefited model prediction, this was limited by
more advanced age.

Sex
Inclusion of participant sex in the model showed superior

mean performance by women on all four recall trials. This

was qualified by significant negative interactions of sex with
diagnostic group predictors on Trial 1 for MCI and on all
trials for DAT. As shown in the expectation plots (Figure 3),
female sex was associated with lower performance in diagnosed
DAT. In addition, significant positive interaction of sex
with MCI on Trial 1 Diffusion, was due to higher Trial
1 Diffusion among women than men with MCI diagnoses.
However, a significant negative interaction of sex with
DAT on Trial 4 Diffusion showed lower predictive random
changes in women than men with diagnoses of DAT on
delayed recall trials.

Educational attainment
Greater educational attainment was marginally associated

with higher performance on Trial 3 and 4 in the total sample.
However, this was qualified by positive interactions between
education and both MCI and DAT on Trial 4 only, where
higher education predicted better delayed recall performance
(Figure 4). More years of education also predicted lower
measurement error in the MCI group, but higher measurement
error in the DAT group.
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TABLE 4 Effects of diagnostic groups in the total sample.

Interaction Mean (SD) 95% CI

MCI× sf_Practice 0.063 (0.095) −0.121, 0.248

MCI× sf_Trial 0.043 (0.291) −0.548, 0.615

MCI× Diffusion T1 −0.477 (0.330) −1.181, 0.136

MCI× Diffusion T2 0.284 (0.264) −0.225, 0.800

MCI× Diffusion T3 0.466 (0.217) 0.052, 0.903*

MCI× Diffusion T4 0.012 (0.397) −0.835, 0.743

MCI×Meas. error 0.007 (0.065) −0.114, 0.148

MCI× Practice effect −0.120 (0.133) −0.372, 0.157

MCI× Trial 1 −1.423 (0.218) −1.846,−0.996*

MCI× Trial 2 −1.769 (0.210) −2.168,−1.356*

MCI× Trial 3 −1.778 (0.204) −2.191,−1.382*

MCI× Trial 4 −2.923 (0.310) −3.525,−2.350*

DAT× sf_Practice −0.002 (0.103) −0.198, 0.200

DAT× sf_Trial 0.182 (0.312) −0.454, 0.802

DAT× Diffusion T1 −0.047 (0.404) −0.835, 0.716

DAT× Diffusion T2 0.404 (0.323) −0.219, 1.071

DAT× Diffusion T3 0.730 (0.307) 0.168, 1.379*

DAT× Diffusion T4 −0.948 (0.638) −2.227, 0.215

DAT×Meas. error −0.013 (0.071) −0.160, 0.113

DAT× Practice effect −0.435 (0.257) −0.931, 0.068+

DAT× Trial 1 −2.328 (0.303) −2.866,−1.741*

DAT× Trial 2 −3.807 (0.297) −4.401,−3.211*

DAT× Trial 3 −4.409 (0.295) −4.993,−3.839*

DAT× Trial 4 −6.345 (0.410) −7.194,−5.554*

Values are mean with standard deviation in parentheses. 95% CI, values are upper (2.5%)
and lower (97.5%) bounds. sf_Practice, practice self-feedback; sf_Trial, trial self-feedback;
Diffusion, standard deviation of diffusion processes for a given trial (e.g., T1 is Trial 1);
Meas. error, measurement error; Trial represents manifest mean recall for each Trial,
aggregated across occasions. The asterisk * denotes significant effects; the + indicates
nonsignificant trends.

Subsidiary models by diagnostic
groups

In a series of models specific to each diagnostic group we also
evaluated separate models with the time independent predictors
age, sex, and educational attainment (Table 6). Complete details
of all model outputs, including population means, population
correlations and effects of time independent predictor are
provided in Supplementary Material.

Cognitively unimpaired
The three models limited to the CU participants showed

significant negative correlations between PE and mean
recall performance on Trials 3 and 4 (Supplementary
Table 2); those with better performance in the later and
delayed recall trials had lower PE gain per occasion.
Older age in CU participants was associated with higher
Diffusion on Trials 3 and 4, and with lower overall
mean performance on all trials (Table 6). In contrast,

analysis of sex differences in the CU subsample showed
men have higher Trial 3 diffusion and lower Trial 4
diffusion than women. Last, the education model showed
higher educational attainment was associated with higher
Trial 4 Diffusion, lower measurement error, and higher
Trial 3 mean recall.

Mild cognitive impairment
Notably, the mean estimated PE gain per occasion

parameter did not differ significantly from zero in the MCI
subgroup analyses (Supplementary Table 3). In addition, MCI
subgroup models did not show any significant correlations
between mean Trial performance and PE gain. As with the
CU analysis, older age in the MCI subgroup predicted lower
Diffusion on Trials 3 and 4 and lower mean performance
on Trials 2, 3, and 4. Modeling effects of sex in the MCI
subgroups showed women to have better recall on Trials 3
and 4. Higher educational attainment in the MCI subgroup
predicted better performance on Trials 1, 2, and 3, as well as
lower overall PE.

Dementia
The DAT subgroup models showed significantly negative

PE gain estimates (Supplementary Table 4). In addition, the
subgroup models for Age and Sex both produced significant
negative parameter estimates for the correlations between
PE and mean performance on Trial 2 and Trial 4. Older
age in the DAT subgroup predicted negative sf_Practice, but
better mean performance on Trials 2 and 3. Sex differences
were only manifest in mean level of Trial 3, where women
performed worse than men. Higher educational attainment
predicted higher Trial 4 Diffusion and trends for higher
measurement error and lower PE, but no apparent effects on
mean Trial performance.

Comparison of subgroup models
The individual models by clinical diagnosis demonstrated

effects that were modified by the inclusion of specific covariates,
as well as those that were consistent across subgroup sensitivity
models. The sf_Practice parameter appeared sensitive to clinical
diagnosis, with estimates that were more negative in the CU
group and closer to zero in MCI; in contrast, estimated
sf_Practice was positive in the DAT subgroup, and this was
magnified by older age. In addition, PE gain was negatively
correlated with Trial 3 and 4 recall performance for the
CU subgroup; no correlations were significant between PE
gain and performance in the MCI subgroup. The dementia
subgroup showed higher PE was associated with lower recall
performance only on Trials 2 and 4; however, this was
only manifest in sensitivity models with Age and Sex and
became non-significant when accounting for differences in
Education. Similarly, the manifest means for all four recall
Trials were consistently positively correlated across subgroup
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TABLE 5 Significant and trending covariate effects and interactions with diagnostic groups in sensitivity models of age, sex and education.

Age Mean (SD) 95% CI Sex Mean (SD) 95% CI Education Mean (SD 95% CI

Age× T1 −0.520 (0.152) −0.820,−0.219 Sex× T1 0.357 (0.158) 0.038, 0.653 Educ.× T1 0.060 (0.059) −0.053, 0.179

Age× T2 −0.255 (0.138) −0.520, 0.007 Sex× T2 0.302 (0.136) 0.049, 0.566 Educ.× T2 0.077 (0.051) −0.015, 0.186

Age× T3 −0.344 (0.130) −0.614,−0.089 Sex× T3 0.280 (0.129) 0.026, 0.528 Educ.× T3 0.081 (0.048) −0.008, 0.183

Age× T4 −0.521 (0.201) −0.915,−0.125 Sex× T4 0.448 (0.207) 0.072, 0.841 Educ.× T4 −0.031 (0.069) −0.167, 0.108

MCI× Diff. T1 −0.489 (0.305) −1.129, 0.045 MCI× Diff. T1 −0.700 (0.339) −1.445,−0.101 MCI× Diff. T1 −0.417 (0.317) −1.052, 0.207

MCI× Diff. T2 0.389 (0.220) −0.034, 0.778 MCI× Diff. T2 0.467 (0.220) 0.065, 0.931 MCI× Diff. T2 0.428 (0.203) 0.007, 0.818

DAT× Diff. T3 0.663 (0.281) 0.150, 1.241 DAT× Diff. T3 0.628 (0.301) 0.087, 1.283 DAT× Diff. T3 0.792 (0.271) 0.287, 1.324

DAT× Diff. T4 −1.355 (0.585) −2.535,−0.269 DAT× Diff. T4 −0.949 (0.629) −2.210, 0.253 DAT× Diff. T4 −1.435 (0.679) −2.850,−0.149

DAT× PE −0.514 (0.248) −1.003,−0.020 DAT× PE −0.463 (0.259) −0.981, 0.039 DAT× PE −0.472 (0.257) −0.980, 0.004

Age×MCI× sf_Prac 0.020 (0.107) −0.180, 0.231 Sex×MCI× sf_Prac 0.057 (0.101) −0.149, 0.258 Educ.×MCI× sf_Prac −0.097 (0.081) −0.254, 0.063

Age×MCI× Diff. T1 0.050 (0.281) −0.497, 0.576 Sex×MCI× Diff. T1 0.625 (0.312) 0.060, 1.273 Educ.×MCI× Diff. T1 0.178 (0.213) −0.252, 0.554

Age×MCI× Diff. T3 −0.455 (0.219) −0.893,−0.036 Sex×MCI× Diff. T3 0.126 (0.230) −0.336, 0.581 Educ.×MCI× Diff. T3 0.045 (0.136) −0.220, 0.308

Age×MCI× T1 −0.070 (0.204) −0.441, 0.339 Sex×MCI× T1 −0.483 (0.227) −0.925,−0.038 Educ.×MCI× T1 0.061 (0.089) −0.114, 0.230

Age×MCI× T2 −0.385 (0.194) −0.745,−0.019 Sex×MCI× T2 −0.167 (0.217) −0.595, 0.256 Educ.×MCI× T2 0.040 (0.083) −0.127, 0.197

Age×MCI× T3 −0.303 (0.186) −0.673, 0.062 Sex×MCI× T3 −0.104 (0.207) −0.503, 0.302 Educ.×MCI× T3 0.094 (0.081) −0.070, 0.242

Age×MCI× T4 −0.660 (0.276) −1.208,−0.149 Sex×MCI× T4 −0.208 (0.303) −0.777, 0.390 Educ.×MCI× T4 0.213 (0.119) −0.024, 0.447

Age× DAT× Diff. T4 −0.493 (0.576) −1.623, 0.618 Sex× DAT× Diff. T4 −1.519 (0.628) −2.800,−0.408 Educ.× DAT× Diff. T4 0.546 (0.433) −0.328, 1.436

Age× DAT×ME 0.002 (0.058) −0.107, 0.134 Sex× DAT×ME 0.005 (0.049) −0.084, 0.110 Educ.× DAT×ME 0.129 (0.279) −0.006, 0.985

Age× DAT× T1 0.549 (0.286) −0.016, 1.130 Sex× DAT× T1 −0.646 (0.301) −1.221,−0.048 Educ.× DAT× T1 −0.033 (0.126) −0.276, 0.216

Age× DAT× T2 0.352 (0.265) −0.147, 0.880 Sex× DAT× T2 −0.570 (0.283) −1.118,−0.008 Educ.× DAT× T2 0.120 (0.119) −0.111, 0.354

Age× DAT× T3 0.491 (0.258) −0.010, 0.985 Sex× DAT× T3 −0.705 (0.266) −1.240,−0.184 Educ.× DAT× T3 −0.014 (0.112) −0.248, 0.202

Age× DAT× T4 −0.037 (0.355) −0.729, 0.633 Sex× DAT× T4 −0.796 (0.376) −1.499,−0.037 Educ.× DAT× T4 0.444 (0.156) 0.125, 0.752

Table depicts significant effects and interactions present in one or more of the three sensitivity models. Covariate effects that were not significant in any model are not shown. 95% CI,
values are upper (2.5%) and lower (97.5%) bounds. MCI, diagnosis of amnestic or non-amnestic MCI; DAT, diagnosis of multi-domain amnestic dementia. sf_Prac, practice self-feedback;
T, trial; for Diff. T1 is standard deviation of diffusion process for Trial 1; values of T1, T2, T3, T4 refer to manifest mean recall for each Trial, aggregated across occasions. PE, practice
effect; ME, measurement error. Sex, men modeled as−1 and women as+1.

sensitivity models for CU and MCI subgroups, whereas the
dementia subgroup showed more variable patterns across
sensitivity models.

Comparison of covariate effects between subgroup and
sensitivity models (Table 5) shows that older age was
associated with lower mean performance on all trials for
CU and MCI subgroups, and with higher performance
on Trials 2 and 3 in the DAT subgroup (Table 6 and
Supplementary Table 5). Moreover, whereas older age predicted
higher Diffusion on Trials 3 and 4 in the CU subgroup,
the opposite effect was manifest for the MCI group. In
addition, older age only predicted more negative sf_Practice
in those with diagnosed dementia. There were fewer effects
of participant sex (Supplementary Table 6), although notably,
while women in the MCI subgroup had higher Trial 3
performance, this was reversed in the DAT analysis. Higher
educational attainment was associated with marginal benefits
on mean performance on Trials 1–3 in the CU and MCI
subgroups and with higher Trial 4 Diffusion in CU and
DAT subgroups, but not MCI (Supplementary Table 7).
Similarly, higher education was associated with lower PE only
in the MCI subgroup.

Reparametrized to estimate
within-occasion practice effects

The models reported in the present study focused on
longitudinal practice effects. To address whether trial-by-trial
improvements were also associated with clinical diagnosis
we reparametrized the original diagnostic groups model to
estimate relative within-occasion improvement. The new model
estimated a parameter for Baseline performance as well as
the deviations from Trial 1 for Trials 2, 3, and 4, rather
than absolute performance, while otherwise maintaining the
same model setup. Model results showed the population
means (Supplementary Table 8) were consistent with the
results from the original diagnostic groups model with one
exception. The reparametrized model showed higher estimated
level of Trial 3 Diffusion (mean = 4.873, sd = 0.384; 95%
CI = 4.169–4.857) than the original (mean = 2.781, sd = 0.458;
95% CI = 2.025–3.806). Time independent predictor effects
showed MCI and dementia diagnosis attenuated trial-by-trial
improvements (Supplementary Table 9). Diagnosis did not
interact with PE, measurement error, sf_Trial or sf_Practice, but
both DAT and MCI diagnosis predicted significantly lower Trial
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FIGURE 2

Education sensitivity model expectation plots for change in recall performance (black line) across four measurement occasions (e.g., T0:
baseline, T1: 1 year). The solid and dashed colored lines depict effect modification by time independent predictors: DAT diagnosis (red lines),
MCI diagnosis (green lines), Education (blue lines; higher: +1; lower: –1), and interactions of Education × DAT and Education × MCI. For
covariate effects, higher (dashed) and lower (solid) levels of the covariate are shown to modify the level and expected slope. All covariate effects
are in reference to 0 values of other covariates. The dashed red line reflects DAT, and the solid red line represents all other participants.
Interaction effects only represent the total additive value of the interaction holding the main effects at zero. For example, in Trial_4 (lower right),
the interaction of educational attainment and DAT shows higher education (+1) is associated with better performance in those with dementia
diagnoses.

3 Diffusion. Inspection of the estimated population correlations
between the trial-level deviations and parameter values for PE
and Baseline performance showed higher baseline performance
was associated with lower within-occasion improvement for
Trial 2 and Trial 3 only (Supplementary Table 9). However,
neither the trial-level deviations nor Baseline performance
estimates were significantly correlated with PE. In addition, all
three trial-level deviation parameters were positively correlated;
greater improvement from Trial 1 tended to generalize
across later trials.

Discussion

Dynamic modeling of PE from multi-occasion verbal
learning data revealed multiple notable effects associated with

clinical diagnoses of MCI and dementia. First, in accord with our
initial hypotheses both manifest recall performance and overall
PE varied as a function of diagnostic severity. In addition to
diagnosis-specific variation in levels of mean trial performance,
we observed a gradient of PE across the three diagnostic
groups – from positive in CU participants to significantly
negative in participants diagnosed with dementia. Whereas
repeated performance conferred subsequent improvements in
recall for unimpaired older adults, this was not consistently
the case in those with diagnosed MCI; moreover, we observed
ongoing decline in participants diagnosed with DAT, despite
repeated testing, as evidenced by negatively estimated PE.
Notably, modeling the four recall trials as individual processes
permitted estimating mean performance separately from PE.
Thus, mean trial performance is modeled as a stable, trait-like
factor, whereas estimated PE served as the primary measure of
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FIGURE 3

Age sensitivity model expectation plots for change in recall performance (black line) across four measurement occasions (e.g., T0: baseline, T1:
1 year). The solid and dashed colored lines depict effect modification by time independent predictors: DAT diagnosis (red lines), MCI diagnosis
(magenta lines), Age (light blue lines), and interactions of Age × DAT and Age × MCI. For main effects, higher (dashed) and lower (solid) levels of
the covariate modifies the level and expected patterns of change. All effects are in reference to 0 values on other covariates. The dashed red
line reflects DAT, and the solid red line represents all other participants. Interaction effects only represent the total additive value of the
interaction, when holding the main effects at zero.

change. This modeling perspective contrasts with most prior
efforts that model PE as a linear change within or between
occasions (Duff et al., 2007; Bender et al., 2013, 2020; Goldberg
et al., 2015; Gavett et al., 2016). In addition, the PE parameter
does not delineate between true decline and gains due to
practice, as these are not considered separable processes in a
dynamic system. The sensitivity of dynamic estimates of PE
and performance to clinical diagnosis demonstrates the value of
dynamic modeling in longitudinal clinical aging data.

Second, the present findings revealed previously unreported
relationships between clinical diagnosis and dynamic process
estimates. As with PE, the sf_Practice parameter followed
a gradient of positive to negative values that corresponded
with diagnostic severity. Practice self-feedback provides a non-
linear measure of the extent level that practice (i.e., after

completing all four trials for a given occasion) can boost
or reduce estimated PE at the next occasion. The more
positive estimates of sf_Practice in CU participants reflects an
increase in practice-related gains on subsequent occasions. In
contrast, both PE and sf_Practice were negatively estimated
in participants with diagnosed dementia. Thus, while recall
performance declined over time in these participants even with
repeated testing (i.e., as indicated by negative PE estimates),
dementia diagnosis was associated with less acceleration in
decline. In other words, performance appears to stabilize at
a lower level above floor in those diagnosed with dementia,
despite both the absence of retest improvements and overall
decline. In addition, both measurement error and diffusion
processes (particularly on Trials 3 and 4), were sensitive to
diagnostic group and other covariate effects. The standard
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FIGURE 4

Expectation plots for change in recall performance (black line) across four measurement occasions (e.g., T0: baseline, T1: 1 year) in the
sensitivity model of participant age. The solid and dashed colored lines depict effect modification by time independent predictors: DAT
diagnosis (red lines), MCI diagnosis (green lines), Sex (blue lines; women: +1; men: –1), and interactions of Age × DAT and Age × MCI. For
covariate effects, higher (dashed) and lower (solid) levels of the covariate are shown to modify the level and expected slope. All covariate effects
are in reference to 0 values of other covariates.

deviation of the diffusion processes reflects unpredictable
variations in trial performance that are nevertheless useful
in predicting performance on other trials. In tasks like the
HVLT, recall performance on later immediate recall trials
necessarily includes savings from the preceding recall trials.
The reported findings suggest that meaningful variations in
Trial 3 performance may provide a uniquely sensitive marker
of clinical cognitive impairment and dementia. Although the
interpretation of such unpredictable variations is not clear,
one possibility is Trial 3 diffusion processes may partly reflect
impaired executive or amnestic encoding abilities. For example,
reduced mental flexibility and working memory in MCI and
dementia may produce more inconsistent recall performance
across study occasions. Alternatively, higher Trial 3 diffusion
processes may capture increasing reliance on list recency due
to impaired short-term verbal encoding ability. Nevertheless,
multiple cognitive processes are potentially implicated, which
are likely to be further complicated by diagnosis and etiology.

Therefore, additional work relating differences in non-linear PE
estimates to more fine-grained neuropsychological performance
is needed to clarify the cognitive processes responsible for
variations in Trial 3 diffusion or other parameter estimates.

Third, evaluation of sensitivity and subgroup models
revealed important sources of individual differences that
modified multiple effects and qualified several interactions.
For example, older age predicted worse mean recall on all
Trials in the CU and diagnosed MCI subgroups, but better
recall on trials 2 and 3 among those with dementia diagnoses
(Table 6). This may suggest a survivor effect, as those who
reach more advanced age before onset of dementia may
maintain some residual abilities that enhance recall on these
trials. Age also modified trial-specific diffusion processes for
CU and MCI diagnosed participants, despite positive mean
Diffusion estimates in both groups (Supplementary Tables 2, 3).
Whereas older age predicted higher Diffusion on Trials 3 and
4 in the CU subgroup, the opposite effect was manifest for
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TABLE 6 Significant and trending covariate effects of participant age, sex, and education on model parameters by subgroup.

CU MCI DAT

Interaction Mean (sd) 95% CI Mean (sd) 95% CI Mean (sd) 95% CI

Age× sf_Practice −0.002 (0.095) −0.196, 0.175 0.044 (0.093) −0.130, 0.217 −0.067 (0.033) −0.130,−0.002*

Age× Diffusion T3 0.431 (0.210) 0.048, 0.909* −0.568 (0.331) −1.235, 0.085 −0.016 (0.360) −0.750, 0.712

Age× Diffusion T4 0.699 (0.365) 0.034, 1.473* −0.687 (0.409) −1.499, 0.069 −0.060 (0.133) −0.388, 0.138

Age× PE 0.080 (0.094) −0.107, 0.260 −0.181 (0.131) −0.435, 0.082 0.074 (0.201) −0.330, 0.468

Age× Trial 1 −0.489 (0.140) −0.763,−0.221* −0.706 (0.139) −0.980,−0.432* 0.163 (0.258) −0.324, 0.627

Age× Trial 2 −0.305 (0.124) −0.556,−0.067* −0.660 (0.155) −0.969,−0.375* 0.493 (0.203) 0.097, 0.893*

Age× Trial 3 −0.330 (0.104) −0.532,−0.136* −0.669 (0.145) −0.972,−0.400* 0.473 (0.224) 0.047, 0.900*

Age× Trial 4 −0.482 (0.167) −0.784,−0.175* −1.200 (0.256) −1.724,−0.703* −0.090 (0.215) −0.497, 0.313

Sex× Diffusion T3 −0.305 (0.194) −0.693, 0.073 −0.279 (0.304) −0.907, 0.307 −0.506 (0.348) −1.284, 0.135

Sex× Diffusion T4 1.113 (0.322) 0.471, 1.737* −0.019 (0.417) −0.838, 0.785 −0.057 (0.133) −0.403, 0.118

Education× Diffusion T4 0.753 (0.247) 0.336, 1.252* 0.305 (0.270) −0.223, 0.852 0.450 (0.316) 0.035, 1.144+

Education×Meas. Error −0.050 (0.010) −0.070,−0.032* −0.037 (0.050) −0.123, 0.094 0.024 (0.083) −0.033, 0.178

Education× PE −0.018 (0.040) −0.096, 0.062 −0.101 (0.058) −0.217, 0.015+ −0.081 (0.080) −0.240, 0.079

Education× Trial 1 0.035 (0.055) −0.069, 0.146 0.107 (0.062) −0.011, 0.227+ 0.016 (0.112) −0.205, 0.238

Education× Trial 2 0.063 (0.048) −0.034, 0.159 0.095 (0.069) −0.029, 0.233+ 0.101 (0.094) −0.088, 0.282

Education× Trial 3 0.072 (0.041) −0.007, 0.153+ 0.127 (0.065) −0.002, 0.255+ 0.074 (0.107) −0.128, 0.277

Significant interactions denoted by asterisk (*). CU, cognitively unimpaired; MCI, diagnosis of amnestic or non-amnestic MCI; DAT, diagnosis of multi-domain amnestic dementia. Values
are mean with standard deviation in parentheses. 95% CI, values are upper (2.5%) and lower (97.5%) bounds. sf_Practice, practice self-feedback; sf_Trial, trial self-feedback; Diffusion,
standard deviation of diffusion processes for a given trial (e.g., T1 is Trial 1); Meas. error: measurement error; PE, practice effect gains; trial represents manifest mean recall for each Trial,
aggregated across occasions. The + indicates nonsignificant trends.

the MCI group. This shows that in unimpaired adults older
age enhances the generation of unpredictable but meaningful
variation in performance but exerts the opposite effect in those
diagnosed with MCI.

Greater education weakly predicted higher mean immediate
recall abilities for CU and MCI. Higher educational attainment
was also weakly associated with lower PE in the two subgroups
with diagnoses of MCI or dementia (Table 6). Notably,
estimated PE did not differ from zero in the MCI subgroup even
though mean recall performance did not show a ceiling effect;
furthermore, PE and recall were not significantly associated
in this group. Thus, greater educational attainment in the
presence of manifest cognitive impairment may predict greater
loss of neurocognitive plasticity necessary to benefit from
repetition. Critically, this finding should be interpreted in the
context of recent reports showing education does not appear
neuroprotective or to confer resilience to cognitive decline or
neurodegeneration. Rather, more years of early-life education
may increase premorbid level of ability and positively offset
trajectories of decline (Wilson et al., 2019; Lovden et al., 2020;
Nyberg et al., 2021). However, for those whose neurocognitive
abilities have reached a functional threshold for impairment,
higher education may be associated with accelerated declines.
Here, PE appears to be a marker of such accelerated functional
declines. Similarly, the advantage of female sex on tests of
verbal memory (Herlitz et al., 1997; Herlitz and Rehnman, 2008;
Bender et al., 2010) was largely negligible, with one notable
exception. Whereas women in the MCI diagnosis subgroup

had better mean recall on Trial 3, this was reversed in the
more impaired participants with dementia diagnoses. As with
education, it is possible that this reflects a positive offset in
trajectories of decline due to higher premorbid level of verbal
memory abilities, resulting in steeper declines following onset of
dementia.

Under the present dynamic modeling framework,
performance on each occasion reflects ongoing processes that
are inherently altered by prior testing exposure or experience.
Here, PE reflects total intra-person change as the combination
of maintenance or decline in addition to contributions of
prior experience. Therefore, while the variable gains or losses
following practice are not clearly dissociable from ongoing
declines, separating level from change across trials captures
multiple behavioral dimensions relevant to clinical diagnosis.
For example, we note that the relationship between better
recall performance and lower PE was only observed in the
participants with CU or dementia diagnoses, but not in those
with MCI. Unimpaired participants performing closer to ceiling
had less room to improve and were more likely to show reduced
subsequent gains. In contrast, the negative estimates of PE in
the subgroup with dementia diagnoses captures longitudinal
declines – those with higher overall performance also had the
furthest to decline. However, the disconnection between PE
and level of performance in MCI suggests these two dimensions
may provide unique diagnostic or prognostic information.
This aligns with prior findings showing PE differences are a
meaningful indicator of progressive decline in older adults with
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MCI diagnoses who exhibit low-to-moderate levels of recall
performance (Duff et al., 2007; Rabin et al., 2009; Hassenstab
et al., 2015; Gavett et al., 2016).

The present findings point to greater inconsistencies in
responses, across trials and occasions as additional markers
of cognitive impairment and dementia. We found that mean
recall performance was consistently correlated across trials
in the CU and MCI subgroups, but not in those diagnosed
with dementia. Furthermore, correlations among Trials for
the dementia subgroup showed more variable patterns across
sensitivity models. In addition to declines in PE and mean recall
performance, it is possible that loss of neurocognitive plasticity
may also manifest as less consistent responses. Although the
models were specified to focus primarily on longitudinal
practice effects, such inconsistency may reflect reduced within-
occasion improvement across trials. We also observed MCI
and DAT diagnoses attenuated trial-by-trial improvements in
the reparametrized model. Similarly, reduced short-term PE
has previously been related to differences in clinical diagnosis,
cognitive function, and brain structure (Duff et al., 2007, 2012;
Fernandez-Ballesteros et al., 2012; Bender et al., 2020). These
findings support the view that dynamic estimates of PE within
and across occasions provides meaningful proxies for cognitive
plasticity associated with advanced age or pathology (Baltes and
Raykov, 1996; Yang, 2011). Further work is needed to identify
which aspects of PE provide the most sensitive behavioral
markers of ongoing declines.

Limitations and future directions

The present findings provide important evidence regarding
the value of dynamic modeling approaches in estimating
longitudinal change in performance as a function of PE.
The limitations in the present study methods and findings
must be acknowledged, while also highlighting corresponding
opportunities for further inquiry. The model treated clinical
diagnosis as a time independent predictor, but this did not
accurately represent the diagnostic variability manifest in 11%
of the study sample across study occasions. Six participants
with initial diagnoses of amnestic MCI converted to DAT, and
an additional six participants originally characterized as CU
later received diagnoses of MCI. In addition, 15 participants
with baseline MCI diagnoses were characterized as CU at their
most recent visit. Although the modeling approach used here
did not attempt to account for such variation in diagnosis,
further work is needed to evaluate dynamic modeling for
more transient changes in cognitive status. One alteration
from the present approach could be to model diagnosis as a
time varying measure, provided sufficient variation is present.
Similarly, data sampled more intensively or with more variable
timing would also make better use of capacity for modeling
time in ctsem. While it is possible that accounting for such
variation in assessed cognitive status may affect the results,

future work should examine how intra-individual variation
in clinical diagnosis is manifest in HVLT recall performance
and PE. Similarly, the dementia subgroup only included
participants with Alzheimer’s (including mixed dementia) and
including participants with other forms of dementia associated
with other neurodegenerative diseases such as Lewy bodies,
fronto-temporal dementia, or posterior cortical atrophy may
demonstrate further sensitivity of PE and dynamic performance
estimates to underlying pathologies. Furthermore, the same
stimulus lists were presented on each occasion in the present
study; future work should compare the effects of repeated vs.
non-repeated content.

In addition, the available data for participants with dementia
diagnoses was limited to three observations, although these
were distributed across the actual occasions of assessment.
While most statistical methods typically focus only on observed
data, prior findings show patients with moderate Alzheimer’s
dementia are more prone to non-response (Feng et al., 2020;
Wang et al., 2021). The HVLT is a challenging task for
patients with mild to moderate dementia and patients may
become quickly discouraged. The modeling of non-ignorable
missingness for statistical inference is a daunting task in
practice owing to its unknown nature and non-identifiable
model parameters. Although challenging, additional research is
needed on further implementation of methods for modeling
informative missingness in the context of estimating PE in a
Bayesian structural equation modeling framework.

The reported findings suggest that meaningful variations in
Trial 3 performance may provide a uniquely sensitive marker
of clinical cognitive impairment and dementia. This may show
that certain trials are more important in HVLT performance
and PE, which could be useful in clinical applications. More
work is needed to shed light on differences in individual trials
and their potential utility in clinical applications. However, this
would require substantially more individual data to generate
population-based normative estimates for direct comparison
with individual patient cases. Similarly, for other potential
applications of these methods, such as power estimation for
dementia prevention trials, a larger number of normative data
would help reduce uncertainty in parameter estimates (i.e.,
shrink confidence intervals) for such complex dynamic models.
Notably, prevention trials tend to have rigorously standardized
schedules of assessment, while ctsem benefits from more variable
timing across assessments in order to reduce uncertainty. Thus,
clinical trials may benefit from increased flexibility in timing to
better leverage dynamic modeling approaches. New methods for
intensive behavior sampling using smartphones provide a clear
opportunity to bridge this divide, as they allow for considerably
more dense measurement and greater variability in timing.
Future work should evaluate dynamic models of PE in large,
normative data sets from acquired with such methods.

In addition, the present study only evaluated HVLT task
data with 12 words per recall trial; however, the use of longer
lists of 15 or 16 words in other verbal learning tasks could
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conceivably modify effects where CU participants performed
close to ceiling. Future work should evaluate the effect of
differences in cognitive load as a function of varying lengths of
study lists. Similarly, the verbal nature of the data may confound
lexical fluency with memory and PE; future investigations
applying dynamic modeling approaches to estimate PE in non-
verbal tasks and response times.

The present study generated far more testable hypotheses
than it directly addressed. Nevertheless, the findings reported
here demonstrate the expanded potential for evaluating new
measures of performance affected by aging, neurodegeneration,
or clinical diagnosis afforded by modeling non-linear
dynamic processes.

Conclusion

The present findings highlight the sensitivity of dynamically
modeled estimates of PE and verbal recall to diagnosed MCI
and dementia. Modeling PE as the primary measure of change
of showed PE gains and non-linear practice self-feedback, as
well as mean level of recall performance are sensitive to severity
of cognitive impairment and clinical dementia diagnosis.
Moreover, applying dynamic modeling to longitudinal verbal
learning data captures new behavioral dimensions reflecting
intra-individual variations that are sensitive to cognitive
impairment and dementia. Dynamic modeling using the
ctsem framework provides a new perspective for modeling
longitudinal changes in performance due to aging and dementia.
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