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Rainbow trout (Oncorhynchus mykiss) is one of the most common aquaculture fish
species worldwide. Vibriosis disease outbreaks cause significant setbacks to aquaculture.
The stress and immune responses are bidirectionally modulated in response to the health
challenges. Therefore, an investigation into the regulatory mechanisms of the stress and
immune responses in trout is invaluable for identifying potential vibriosis treatments. We
investigated the transcriptional profiles of genes associated with stress and trout immune
functions after Vibrio anguillarum infection. We compared the control trout (CT, 0.9%
saline injection), asymptomatic trout (AT, surviving trout with minor or no symptoms after
bacteria injection), and symptomatic trout (ST, moribund trout with severe symptoms after
bacteria injection). Our results showed activated immunomodulatory genes in the cytokine
network and downregulated glucocorticoid and mineralocorticoid receptors in both AT
and ST, indicating activation of the proinflammatory cytokine cascade as a common
response in AT and ST. Moreover, the AT specifically activated the complement- and
TNF-associated immune defenses in response to V. anguillarum infection. However, the
complement and coagulation cascades, as well as steroid hormone homeostasis in ST,
were disturbed by V. anguillarum. Our studies provide new insights toward understanding
regulatory mechanisms in stress and immune functions in response to diseases.
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Hou et al. Trout Infected by Vibrio anguillarum
HIGHLIGHTS

• Asymptomatic and symptomatic trout mounted different
immune responses

• V. anguillarum infection activated the proinflammatory
cytokine cascade

• The complement- and TNF-related immune defenses were
specifically activated in asymptomatic trout

• Diverse functions were identified among three novel c3-1
subtypes
INTRODUCTION

Teleosts have to cope with various challenges, including the
diversity of the potential environmental stimuli and pathogen
load (1, 2). Although teleosts respond differently to stressors and
the immune responses also remain species-specific,
environmental and aquaculture insults can trigger defensive
reactions of fish, including the activation of the stress response
Abbreviations: CT, control trout; AT, asymptomatic trout; ST, symptomatic
trout; DEGs, differential expression genes; GO, gene ontology; GR, glucocorticoid
receptor; GH-IGF, growth hormone-insulin-like growth factor; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MR, mineralocorticoid receptor; PCA,
principal component analysis; V. anguillarum, Vibrio anguillarum.
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(3, 4). Based on energy balance, the stress response results in
energy redistribution with the ultimate purpose to restore
homeostasis, thus saving the energy that is not necessary to
survive and enabling fishes to prepare for “fight” or “flight” (5–
7). For example, a slightly activated stress response could
enhance immune competence (fight), while a prolonged stress
response suppresses immune function (flight) (8).

Cortisol and its receptors [glucocorticoid receptor (GR) and
mineralocorticoid receptor (MR) (9)] play an important role in
regulating crosstalk between the stress response and immune
networks. Activation of the GR (or MR) may serve as an early
danger alarm and enable the immune system to prepare for the
fight against health challenges (10, 11). Moreover, GR (or MR)
activation modulates the leukocyte-regulated immune responses
and negotiates the initiation and efficacy of immune functions (1).
Inflammation serves as the first step of immunomodulation in
response to infection or irritation (12). Proinflammatory cytokines,
such as interleukin 1 (IL-1) and tumor necrosis factor a (TNFa)
(5), act as an important defense mechanism against pathogens. The
stress response typically regulates the immune response by
suppressing the synthesis and release of proinflammatory
cytokines in both mammals and teleosts (13–15).

In the mid-1980s, a series of papers published in Science
showed that proinflammatory cytokines act as stress-response
regulators [reviewed in (16)]. Another previous study showed
that cytokines regulate stress responses in mammals by
decreasing GR expression, blocking GR translocation, and
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disrupting GR-DNA binding in the nucleus (17). In response to
pathogen infection, the homeostatic interaction between the
stress response and cytokine-induced inflammation in teleosts
is more complicated, showing no negative or positive correlation
among various teleosts. For example, the stress response
(mimicked by cortisol) does not affect cytokine gene
expression in rainbow trout (Oncorhynchus mykiss); however,
the stress response did reduce the stimulated gene expression of
all cytokines in gilthead sea bream (Sparus aurata) (11). In the
European sea bass (Dicentrarchus labrax), genes associated with
glucocorticoid synthesis and inflammatory responses are
simultaneously upregulated after Vibrio anguillarum infection
(5). These studies indicate that the interplay between stress and
immune responses is differentially regulated in various
teleost species.

In addition to the cytokines, the complement cascade is also
involved in immunomodulation in response to pathogen invasion.
The complement system, which was identified a century ago, is the
most ancient and essential immune system component [reviewed
in (18–20)]. The complement system is the first immune response
against invading pathogens and orchestrates the subsequent
immunological and inflammatory processes associated with
detection, destruction, and elimination of the microbial intruders
[Reviewed in (18–20)]. The mammalian complement repertoire
includes ~35 plasma (hydrophilic)- and membrane (hydrophobic)-
bound complement proteins (21). Although the mammalian
complement system can be activated by the classical, lectin, or
alternative pathways, all three pathways share the common step of
activating the component C3 (18). The physiological functions and
signaling cascades of the complement system are mostly conserved
between mammals and teleosts (22, 23). An activated complement
system will release complement protein fragments that typically kill
the microbial intruders and orchestrate immunological and
inflammatory homeostasis (22). Early studies in rainbow trout
showed that the complement system accounts for resistance to
furunculosis or vibriosis (24, 25). These two highly contagious
diseases cause excessive trout mortality, which leads to significant
aquacultural economic loss.

Infectious diseases are constant threats to aquaculture and
larviculture, causing significant financial losses due to high
infectivity and mortality (11). V. anguillarum, the causative
agent of vibriosis, is a gram-negative bacteria that causes severe,
frequently deadly hemorrhagic septicemia in teleosts (26, 27). The
previous studies showed that fish exhibit higher individual
variations in response to pathogen infection (28–30). Genetic
factors that favor the survival of asymptomatic individuals could
be used as targets for selecting disease-resistant fish, thus reducing
economic loss from infectious disease (31). Although
accumulating studies have been focused on generating disease
(or stress)-resistant fish strains, the mechanisms remain largely
unknown (31, 32). Investigation of the target genes and pathways
associated with disease-resistant could potentially provide
molecular markers for genetic breeding.

Rainbow trout (Oncorhynchus mykiss) is one of the most
common aquaculture fish species worldwide (Food and
Agriculture Organization of the United Nations); however, the
Frontiers in Immunology | www.frontiersin.org 3
trout industry is severely affected by vibriosis (27). In this study, the
RNA-Seq datasets were retrieved from our previous studies (33,
34), and we analyzed a total of 27 RNA-Seq libraries. Briefly, we
investigated control trout (0.9% saline-injection), asymptomatic
trout (AT; surviving trout with minor or no symptoms after V.
anguillarum injection), and symptomatic trout (ST; moribund
trout with severe symptoms after V. anguillarum injection). The
brain, kidney, and spleen were collected for RNA-Seq. Previous
studies in trout revealed important genes involved in regulating
stress responses and immune functions (35–40); therefore, we
targeted these candidate genes (Figure 1). Our studies showed
that complement- and TNF-associated immune defenses were
specifically activated in AT. Our studies provide new insights
into the stress-immune network in response to pathogen
infection in trout and provide potential molecular markers for
genetic breeding of disease-resistant trout populations.
MATERIALS AND METHODS

Ethics Statement
Experiments in this study were conducted in accordance with
Guidelines of Animal Research and Ethics Committees of Ocean
University of China (Permit Number: 20141201), U.K. Animals
(Scientific Procedures) Act, 1986 and associated guidelines, EU
Directive 2010/63/EU for animal experiments, and use of laboratory
animals (NIH Publications No. 8023, revised 1978) National
Institutes of Health Guide for the Care and Use of Laboratory
Animals (NIH publication no. 8023, revised 1978). No endangered
or protected animal species were used. The effects of sex were not
considered because trout juveniles are sexually immature.

Animals
Rainbow trout juveniles were obtained from Linqu Salmon and
Trout Aquatic Breeding LLC (Weifang, Shandong, China). These
juveniles were from the same full-sibling family batch and
spawned on the same day with synchronized development.
Trout were acclimatized for 14 days in indoor cuboidal tanks
equipped with a water pump, chiller system, sand filter, and
biofilter at the Experimental Fish Facility in Key Laboratory of
Mariculture, Ocean University of China. According to the
Standards of Linxia Salmon and National Trout Elite Breeding
and Protection Farm (Linxia, Gansu, China, Approved by
Department of Agriculture, China, 2009), trout were cultured at
~16°C and ~7 mg/L of dissolved oxygen. Trout were fed a
commercial pellet twice a day at 7% of total body weight.

V. anguillarum
The V. anguillarum strain was obtained from the Laboratory of
Pathology and Immunology of Aquatic Animals, Ocean
University of China (41, 42). The bacteria were grown
overnight at 28°C in 2216E medium. The bacterial suspension
was then centrifuged and resuspended with 0.01 M phosphate-
buffered saline (PBS, pH = 7.2). V. anguillarum suspension
density was adjusted to serial dilutions for preliminary testing:
109, 108, or 107 colony forming units (CFU)/ml (33).
April 2021 | Volume 12 | Article 639489
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Experimental Design
This manuscript used the same RNA-Seq samples previously
described in two papers evaluating the growth hormone and
insulin-like growth factor axes, as well as the caspase gene family
in rainbow trout (33, 34). Previous studies showed 107 to 109

CFU/ml of V. anguillarum could cause vibriosis in rainbow trout
and other teleosts (5, 41–43). Our published paper further
showed that V. anguillarum of 107 CFU/ml at 20°C exhibited
mild to moderate symptoms of vibriosis disease with a relatively
lower mortality (33). Therefore, trout were challenged by 107

CFU/ml of V. anguillarum at 20°C. In the control group, 90 trout
were randomly distributed into three tanks, with 30 trout in each
tank. The control trout (CT) were intraperitoneally injected with
200 ml physiological saline (saline-challenged, 0.9% NaCl). In the
challenged group, 90 trout were equally and randomly
distributed into three tanks. Trout of the challenged group
were challenged by intraperitoneal injection of 200 ml V.
anguillarum (107 CFU/ml). In challenged groups, the first
three erratically swimming moribund trout showing severe
symptoms, such as hemorrhage in fins, in tank #1 were pooled
as sample #1 of the symptomatic trout (ST). After 120 h post-
challenge, the three surviving trout with minor or no symptoms
were pooled as sample #1 of the asymptomatic trout (AT)
(Figure 1). Likewise, sample #2 of ST and AT, as well as
sample #3 of ST and AT, were collected from tank #2 and tank
#3, respectively (Figure 1). Trout were anesthetized by MS-222
(35–45 mg/L [ppm]) before sampling. Biological samples of
Frontiers in Immunology | www.frontiersin.org 4
organs and tissues (brain, spleen, kidney, liver, and gill) were
isolated and stored at −80°C for further analysis.

RNA-Seq Analysis
A total of 27 libraries [3 tissues (brain, kidney, spleen) × 3 replicated
samples (each sample contained three pooled individuals × 3
treatment groups] was constructed via the TruSeq™ RNA Sample
Prep Kit (Illumina, CA, USA). This study used the same RNA-Seq
data with our previously published paper (33, 34), but we focused
on different functional genes and used various analyses. The
sequence reads are available from the NCBI sequence read
archive (SRA) with the accession number of PRJNA667799.

Novel Gene(s) Identification
The amino acid sequences of trout novel C3-1 proteins, and zebrafish
(Danio rerio), southern catfish (Silurus meridionalis), rat (Rattus
norvegicus), and human (Homo sapiens) C3 proteins were used for
the phylogenetic analysis and sequence alignment. Phylogenetic
analyses were plotted using the Neighbor-joining (N-J) method via
MEGA 7, with 1000 bootstrap replications for phylogeny. The
SWISS-MODEL between trout and mammalian C3 proteins was
generated using the SWISS-MODEL (https://swissmodel.expasy.
oAT/) (44, 45). The mammalian C3 with an intact thioester at 3Å
resolution [PDB ID: 2B39 (46)] was used as the template.
Comparison of the domains between trout and mammalian C3
and the cartoon, stick, and sphere structures of the proteins were
generated with the PyMOL software package (47, 48).
A B

FIGURE 1 | Experimental setup. (A) 90 trout were randomly and equally distributed into three tanks and then challenged with V. anguillarum with 107 CFU/ml. The
first three erratically swimming individuals with severe symptoms in tank #1 were pooled as sample #1 of the symptomatic trout (ST). After 120 h post-challenge, the
three surviving individuals with minor or no symptoms were pooled as sample #1 of the asymptomatic trout (AT). Likewise, sample #2 of ST and AT, as well as
sample #3 of ST and AT, were collected from tank #2 and tank #3, respectively. The control trout were injected with 0.9% NaCl and then sampled with the same
protocol. (A) was partly adapted from Figure 1 in our previous paper (33)]. (B) Based on previous studies (35–40), genes in the brain, kidney, and spleen associated
with stress and immune functions were investigated in CT, ST, and AT.
April 2021 | Volume 12 | Article 639489
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Statistical Analysis
Based on published papers on biomedical and fishery studies (49–
51), the peak intensity tables of selected genes were uploaded to the
websites of MetaboAnalyst and NetworkAnalyst (ATtps://
www.xialab.ca/tools.xATml) for data processing and analyses (52).
The uploaded data (count normalized by DESeq2 package in the R
software (53)) were performed by sum normalization, thus
obtaining the belt data (Poisson) distribution for further statistical
analysis (Figure S1). In the multivariate analysis module of
MetaboAnalyst, the normalized data were then subject to
principal component analysis (PCA) and partial least squares
discriminant analysis (PLSDA) for pattern discovery (Figure S1).
Genes of each pairwise comparison (ST/CT, AT/CT, or AT/ST)
were selected to create a heatmap (Based on log10(normalized count
+1)) and correlation analysis (with Pearson’s correlation) (51).
RESULTS

Differentially Expressed Genes Between
ST and CT
The heatmap displayed the transcriptional profile of genes
associated with the stress response, cytokines and cellular
functions, and the complement system between ST and CT
(Figures 2A–C). The overall transcriptional profiles of target
genes in ST and CT in response to V. anguillarum infection were
summarized by PCA (Figure 2D). Red dots show the vector
containing overall gene expression in CT, and green dots showed
the vector containing overall gene expression in ST. Separated
PCA vectors were present, indicating that the V. anguillarum
infection resulted in different profiles of genes associated with
the stress response, cytokines and cellular functions, and the
complement system between ST and CT (Figure 2D). The
loading plot of PCA shows the genes exerting stronger
influences on PCA analysis (Figure 2E, points far away from
the zero point, Table S1).

The volcano plots showed that, compared to CT, the ST showed
significantly downregulated kidney mra, mrb, c7-2, and cd93, and
spleen gra, grb, c7-2, and c1qa, and brain c7-2 and c3-4 (Figures 2F,
G). Compared to CT, the kidney il11, mbl-h2, and c3-1b1, and
spleen il1b1, il1b2, il8, tnfa2, c3-1a, c3-1b1, and c3-3 were
significantly upregulated in ST (Figures 2F, G). The genes
showed in volcano plots were labeled in the loading plot
(Figure 2E).

The correlation analysis of all target genes is depicted using a
heatmap (Figure 2H and Figure S2). The Pearson correlation
coefficients showed that the kidney mra or mrb exhibited strong
negative relationships with the cytokines of il1b3, il4, il8, and
tnfa3 (Figures 2H–J). The spleen grb showed negative
relationships with il1b1, il1b2, il8, and tnfa2 (Figures 2H, K).

Differentially Expressed Genes Between
AT and CT
The transcriptional profiles of genes involved in the stress
response, cytokines, cellular functions, and the complement
system between AT and CT were shown by heatmap (Figures
Frontiers in Immunology | www.frontiersin.org 5
3A–C). Separated PCA plots indicate that genes related to
cytokines, the stress response, cellular functions, and the
complement system were differently expressed in AT and CT
(Figure 3D). The loading plot showed the genes significantly
involved in the separated PCA plots (Figure 3E, points far away
from the zero point, Table S2).

The volcano plots showed that, compared to CT, the AT
showed downregulated kidney c7-2, cd93, and spleen mra, mrb,
grb, hsd11b2, c7-2, c6, and c8g, and brain c7-2 (Figures 3F, G).
The AT exhibited significantly upregulated kidney il1b2, il11, c4,
andmbl-h2, and spleen il1b1, il1b2, il1b3, il6, tnfa3, cfb, cfp1, c3-
1b2, c3-3, and bcf2-b (Figures 3F, G). These genes were
highlighted in the loading plot (Figure 3E).

Heatmap showing the Pearson correlation coefficients of
genes (Figure 3H and Figure S3). Pearson correlation
coefficients showed that the spleen mra or mrb exhibited
strong negative relationships with the cytokines of il1b1, il1b2,
il1b3 and tnfa3 (Figures 3H–J). The spleen grb exhibited
negative Pearson correlation coefficients with il1b3, and tnfa3
(Figures 3H, L), while the kidney gra showed negative
relationships with il1b1, il1b3, tnfa1 and tnfa3 (Figures 3H, K).

Differentially Expressed Genes Between
ST and AT
We compared the overall gene expression between ST and AT by
heatmap (Figures 4A–C). In PCA plots, vectors showing gene
expression in ST were separated from those showing gene
expression in AT, demonstrating differential gene expression
between ST and AT in response to V. anguillarum infection
(Figure 4D). The loading plot showed key genes resulting in
discrimination and stronger influences on PCA vectors (Figure
4E, points far away from the zero point, Table S3).

Volcano plots showed the expression of genes (kidney
hsd11b2, sod3, mra, and mrb, and spleen c1qa, and brain
pomcb, cat, c3-4, and c7-2) in ST were significantly lower than
those of AT (Figures 4F, G). Compared to AT, ST showed
upregulated gene expression of spleen c7-1 and c3-1b1 and brain
c8g (Figures 4F, G). The Pearson correlation coefficients of target
genes are indicated by a heatmap (Figure 4H and Figure S4).
The kidney gra and grb showed strong negative relationships
with the cytokines of il10b and il4, respectively (Figures 4H,
I, K).

Identification of Novel c3 Gene Subtypes
We identified three novel c3 gene subtypes in RNA-Seq data.
Based on the alignment of the amino acid sequences, these three
C3 proteins showed the conserved functional domains, including
the ANATO domain, thioester domain, and C3-convertase
cleavage site (Figure 5A and the whole sequences alignment
are shown in Figure S7). Based on mammalian C3 (PDB ID:
2B39), the SWISS-MODEL illustrated conserved motifs between
trout and mammalian C3 with blue cartoons (Figure 5B and
Figures S7, S8, S9A, S9B, S9C). Red and green boxes mark the
ANATO and thioester domains, respectively (Figures 5B, C).
The comparison of the thioester (green) and ANATO (red)
domains between trout and mammalian C3 are shown in
April 2021 | Volume 12 | Article 639489
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cartoons (Figure 5C and Figures S9B, S9C). The conserved
amino acid sequences of GCGEQ in thioester domain were
labeled (Figure 5C, top figure). The locations were adjacent,
and the identities were identical for both GCGEQ sequences of
mammalian and trout C3 (Figure 5C, top figure; Figure S9C).
Likewise, the ANATO domains of both mammalian and trout C3
are similarly organized, and their amino acid sequences were
highly identical (Figure 5C, bottom figure; Figure S9B). The
gene expression levels of three c3 were shown (Figures S9D–F).
Compared to CT, the ST showed significantly upregulated c3-1a
and c3-1b1 expression in the kidney and spleen (Figures S9D, E).

Functional Enrichment Analysis of DEGs
Compared to CT, the AT showed upregulated Ko04610
(complement and coagulation cascades) in the kidney and
spleen (Figure 5D) . In contrast , the ST showed a
downregulated Ko04610 pathway in the brain, kidney, and
spleen (Figure 5D). No significant changes in the Ko04610
pathway were observed in the kidney and spleen between AT
and ST. The overlapping genes in the Ko04610 pathway are
shown in Venn diagrams (Figures S9G, S9H), and their
expression levels among CT, AT, or ST were shown by
heatmap (Figures S9I–S9L).

We showed gra and grb were shared in the list of DEGs
between groups of CT and ST or CT and AT. In the gene
ontologies (GO) terms involved in gra and grb, 8 GO terms were
shared between the comparisons of CT and ST or CT and AT
(Figure 6A, details in Table 2). Three GO terms were specifically
enriched in the comparison of CT and ST (Figure 6B, details in
Table 2), and five GO terms were specifically enriched in the
comparison of CT and AT (Figure 6B, details in Table 2).
Likewise, tnfa subtypes were shared in the DEGs list between CT
and ST or CT and AT. Five GO terms associated with tnfa were
both identified between the comparisons of CT and ST or CT
and AT (Figure 6C, details in Table 2). Three GO terms were
specifically enriched in the comparison of CT and ST (Figure
6D, Details in Table 2), and 14 GO terms were specifically
enriched in the comparison of CT and AT (Figure 6D, details in
Table 2).

Genes of mra and mrb were identified in the list of DEGs
between the comparison of ST and AT. Based on the KEGG
database, four pathways that are associated with functions of
steroid hormones were enriched (Figure 7A), including ko04960
(aldosterone-regulated sodium reabsorption, Figure 7B),
ko04978 (mineral absorption), ko00140 (steroid hormone
biosynthesis, Figure 7C) and ko04913 (ovarian steroidogenesis,
Figure 7D).
DISCUSSION

Several studies have already focused on reactions of stress- and
immune-related functions to V. anguillarum infection in teleosts,
showing the teleosts exhibit species-specific modulations (1, 5,
11). Therefore, we evaluated stress response and immune
network changes in trout after V. anguillarum infection.
Previous studies evaluated the immunomodulation of
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A B C D

E F

FIGURE 6 | Enriched GO terms associated with gr subtypes (A, B) or associated with tnfa subtypes (C, D). (A) The enriched GO terms shared in comparisons of
CT vs. ST and CT vs. AT. (B) The enriched GO terms specifically identified in CT vs. ST or CT vs. AT. (C) The enriched GO terms shared in comparisons of CT vs.
ST and CT vs. AT. (D) The enriched GO terms that are specifically identified in CT vs. ST or CT vs. AT. Details for GO terms annotation are shown in Table 2.
(E) M1 macrophage polarization potentially activates proinflammatory cytokine cascade response. (F) The phosphorylated STAT dimer enhances TNFa-regulated
immunomodulation, thus enabling the trout in AT to fight off the pathogen infection.
A B C

D E

FIGURE 7 | Enriched KEGG pathways (A) and transcriptional levels of DEGs from enriched pathways (B–D). (A) The enriched KEGG pathways in comparisons of AT
vs. ST. (B) Transcriptional levels of DEGs from enriched KEGG pathway of ko04960 (aldosterone-regulated hydromineral balance). (C) Transcriptional levels of DEGs
from enriched KEGG pathway of ko04913 (steroidogenesis). (D) Transcriptional levels of DEGs from enriched KEGG pathway of ko00140 (steroid hormone
biosynthesis). (E) The enriched KEGG pathways showed endocrine dyshomeostasis resulting from V. anguillarum infection might serve as a lethal factor in trout of ST.
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European sea bass and flounder (Paralichthys olivaceus) with V.
anguillarum concentration of 107 CFU/ml (5, 54). Consistently,
our preliminary trial showed trout challenged by 107 CFU/ml of
V. anguillarum exerted mild to moderate symptoms compared to
trout infected by 108 or 109 CFU/ml of V. anguillarum (33). In
brief, trout challenged by 107 CFU/ml of V. anguillarum began to
die within 24 h after challenge and the mortality is around 20%
within 120 h after challenge (33). Moreover, the RNA-seq and
qPCR data consistently showed the ST and AT exerted different
expressions of genes in caspase family (34). For example, ST
showed higher up-regulated casp8, which is involved in apoptosis
regulation, pathogen detection and immunomodulation (34). In
this study, based on multivariate analysis of PCA, significant
differences in the transcriptional profiles of stress and immune-
related genes were observed in trout between the pairwise
comparisons of CT, AT, and ST (Figures 2D–4D and Figure
S1). The analysis of gene expression and pathway enrichment
showed that the proinflammatory cytokine cascade response,
which is potentially caused by M1 macrophage polarization, is
activated in both AT and ST (Figures 6 and 8). However, the
complement system showed phenotype-specific responses
between AT and ST (Figures 6 and 8).

Complement System
The C3 serves as a major acute-phase protein (55). The
expression of c3 gene subtypes is significantly upregulated in
response to bacterial or LPS stimulation in multiple teleosts,
Frontiers in Immunology | www.frontiersin.org 11
including the dojo loach (Misturnus anguillicaudatus), rainbow
trout, southern catfish (Silurus meridionalis), and grass carp
(Ctenopharyngodon idella) (56–59). Consistently, our study
found that the trout c3 gene subtypes showed upregulation in
responses to V. anguillarum infection. Salmonidae species, such
as trout and salmon, experienced four rounds of genome
duplication. Consequently, the genetic expansions are
characterized by duplicated functional gene copies (paralogs)
in Salmonidae fishes (60, 61). Previous studies identified multiple
trout c3 subtypes (c3-1, c3-3, and c3-4) with functional diversity
(62, 63). Our study identified three novel subtypes within c3-1
(c3-1a, c3-1b1, and c3-1b2) (Figure 5 and Figures S7–S9). These
genes exhibited conserved sequence identity but specific
expression patterns in responses to V. anguillarum infection
(Figure 5 and Figures S7–S9), indicating that these genes can
encode bioactive proteins with diversity in functions.

The complement system served as a major governor of
inflammatory responses (64). The homeostasis of inflammatory
reactions plays a vital role in modulating health balance. Either
inefficient or overactive activation of the complement system
could disturb the homeostasis, which is detrimental for health
balance (64, 65). Compared to CT, the kidney and spleen of ST
exhibited downregulated complement cascades (Ko04610).
Previous studies in mice indicated that the inefficient activation of
complement cascades might be associated with increased
susceptibility to infectious diseases (64, 66). Therefore, the ST
showed severe symptoms in response to V. anguillarum infection.
FIGURE 8 | Putative pathways involved in defense mechanism, hemostasis, and inflammatory responses based on RNA-Seq signatures.
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The complement and coagulation cascades belong to a complex
inflammation regulatory network (67, 68). In most of the
pathophysiological processes, both the complement and
coagulation cascades are activated simultaneously (69). Consistent
with the downregulated complement cascades, key genes in
coagulation cascades were downregulated in the kidney and
spleen of ST, including vwf subtypes (von Willebrand factor),
a2m (a-2-macroglobulin), and f13a (Coagulation factor XIII A
chain). The ST also showed downregulated platelet activation
(ko04611, Figure S10). The downregulated coagulation cascades
and platelet activation probably caused severe hemorrhages in the
fins, kidneys, and other visceral masses in ST, all of which were
lethal to the trout. Studies in biomedical and fishery sciences showed
healthy individuals could efficiently regulate the complement
system, thus not only preventing the complement(s) exhaustion
but also enabling the complement(s) to restore (21, 70). However,
the moribund trout might fail to efficiently regulate the complement
system. The complement exhaustion further reduced the defense to
pathogen infection and eventually caused the worse outcomes
(death) (71, 72).

The complement system can activate the innate immune
system and thus play an essential role in linking the innate and
adaptive systems in mammals and teleosts (18, 35, 55, 73). The
AT showed upregulated complement and coagulation cascades,
enabling the AT to fight the inflammatory pathogenesis and
prevents life-threatening bleeding (69). Consistently, AT had
higher fga and fgb expression (fga and fgb: fibrinogen a/b chain,
which has a significant function in hemostasis, Figure S10).
Based on these pieces of evidence, we propose that the different
responses of complement and coagulation cascades might link to
varying phenotypes of trout in response to V. anguillarum
infection. A recent study showed that complement cascades
serve as a bridge between immunomodulation in trout in
response to bacterial infection (74), consistent with what we
found in our study.

Cytokine Networks
The cytokine networks govern the normal development and
physiology in animals, and dysregulations of cytokine networks
are involved in pathophysiological alternations (75). In humans,
the IL1 serves as the most potent endogenous pyrogens in
organisms affected by infectious diseases (76, 77). Likewise, IL1
plays an apical role in initiating inflammatory responses in
teleosts (78), and V. anguillarum infection results in
significantly upregulated il1b in teleosts, including Atlantic cod
(Gadus morhua), sea bream, and European sea bass (79–82). Our
study showed that ST and AT exhibited significantly upregulated
il1b subtypes (Figures 2 and 3, Table 1). ST and AT also showed
upregulated tnfa subtypes (Figures 2 and 3, Table 1), which was
consistent with a previous study showing that the functions of
IL1 and TNF largely overlap in teleosts (83). Indeed, the IL1 and
TNF work synergistically, and the TNF usually acts as the first
cytokine to follow an IL1 surge in an inflammatory response
(83). Like IL1b, IL11 could regulate a series of important
immunomodulatory effects by affecting proliferation and
differentiation of hematopoietic progenitors, thus serving as a
multifunctional modulator (84, 85). Studies showed kidney il11
Frontiers in Immunology | www.frontiersin.org 12
was significantly upregulated in response to bacterial pathogens
in golden pompano (Trachinotus ovatus) (86), which is in line
with our results (Figures 2 and 3, Table 1).

In addition to upregulated cytokine genes (il1b subtypes, tnfa
subtypes, and il11), ST and AT showed specifically upregulated il8
and il6, respectively (Figures 2 and 3). IL6 and IL8 are two
important proinflammatory cytokines that play an important role
in regulating local or systemic inflammation (87). Studies showed
both IL1a and IL1b subtypes could initiate the signal transduction
and trigger the expression of IL6 and IL8 (12, 88). Consistently, this
study revealed strong positive relationships between the expression
of il6/il8 and il1b subtypes (Figures 2 and 3, Figures S2, S3, S6). For
example, the il1b3 and il6 were both upregulated in AT rather than
ST (Figures 3). During evolution, the IL1a is evolving faster than
IL1b, thus resulting in decreased sequence and functional homology
between trout and mammalian IL1a orthologs (89, 90). Our further
studies will investigate whether the evolutionally conserved IL1b
exhibits subtype-specific IL6/IL8 expression regulation.

Compared to trout in ST, trout in AT exhibited more
upregulated GO terms associated with immune defenses and
the resulting intracellular signaling (Figure 6 and Table 2),
including GO:0051607, defense response to virus; GO:0035631,
CD40 receptor complex; GO:0002768, immune response-
regulating cell surface receptor signaling pathway; GO:2000353,
positive regulation of endothelial cell apoptotic process;
GO:0043123, positive regulation of I-kB kinase/NF-kB
signaling; GO:0051092, positive regulation of NF-kB
transcription factor activity; and GO:0042531, positive
regulation of tyrosine phosphorylation of STAT protein.
Despite limited studies on TNF-regulated intercellular and
intracellular signaling transduction in teleosts, the in vivo
studies on humans and rodents provide a potential model that
could describe the immune mechanisms specifically activated in
AT. Relevant to the GO terms of GO:2000353, GO:0043123,
GO:0051092, and GO:0042531, previous biomedical studies
showed TNFa activates the intracellular NF-kB signaling,
while the cytoplasmic STAT serves as a negative regulator of
TNFa-triggered NF-kB activation (91). The activation of NF-kB
signaling and NF-kB transcriptional factors maintains an
evolutionarily conserved and important role in initiating and
coordinating the innate and adaptive immune responses (92).
The phosphorylated STAT dimer will translate and localize to
the nucleus, where it cannot interact with the TNFa-receptor
complex. STAT localization to the nucleus allows a more robust
TNFa-triggered NF-kB activation (91), enabling the trout to
activate the immune defenses in response to V. anguillarum
infection (Figure 6E).

Glucocorticoid Receptor and
Mineralocorticoid Receptor
In addition to the GR, the teleost MR also serves as a receptor for
stress perception. Our results showed the asymptomatic trout
showed upregulated kidney mra and mrb expression.
Consistently, previous studies showed MR and/or GR are
expressed in immune tissues and regulate the immunomodulation
(93–95). Moreover, increased stress hormone levels are observed in
trout and zebrafish treated with the V. anguillarum vaccine (1, 96).
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TABLE 1 | Gene list of Figures 2–4.

Gene Full Name Function Description Gene ID Expression
patterns between

the pairwise
comparisons

ST
vs.
CT

AT
vs.
CT

ST
vs.
AT

pomcb
(B)

pro-opiomelanocortin b stimulate the adrenal glands to release
cortisol.

The stress
response

NM_001124719.1 down

mra (K) mineralocorticoid receptor a mineralocorticoids/glucocorticoid receptor NM_001124730.1 down down
mrb (K) mineralocorticoid receptor b mineralocorticoids/glucocorticoid receptor NM_001124740.1 down down
mra (S) mineralocorticoid receptor a mineralocorticoids/glucocorticoid receptor NM_001124730.1 down
mrb (S) mineralocorticoid receptor b mineralocorticoids/glucocorticoid receptor NM_001124740.1 down
gra (S) glucocorticoid receptor a regulate inflammation, cellular proliferation,

and differentiation
NM_001124730.1 down

grb (S) glucocorticoid receptor b regulate inflammation, cellular proliferation,
and differentiation

NM_001124482.1 down down

hsd11b2
(S)

corticosteroid 11b
dehydrogenase isozyme 2

catalyzes the conversion of cortisol to the
inactive metabolite cortisone

NM_001124218.1 down

hsd11b2
(K)

corticosteroid 11b
dehydrogenase isozyme 2

catalyzes the conversion of cortisol to the
inactive metabolite cortisone

NM_001124218.1 down

il1b1 (S) interleukin 1b1 endogenous pyrogen Cytokines NM_001124347.2 up up
il1b2 (S) interleukin 1b2 endogenous pyrogen XM_021622166.1 up up
il1b2 (K) interleukin 1b2 endogenous pyrogen XM_021622166.1 up
il1b3 (S) interleukin 1b3 endogenous pyrogen XM_021590496.1/

AJ557021.2
up

tnfa2 (S) tumor necrosis factor a2 potent pyrogen by stimulation of interleukin-
1

NM_001124374.1 up

tnfa3 (S) tumor necrosis factor a3 potent pyrogen by stimulation of interleukin-
1

XM_021559781.1 up

il6 (S) interleukin 6 stimulate lymphocyte and monocyte
differentiation

NM_001124657.1 up

il8 (S) interleukin 8 response to an inflammatory stimulus NM_001124362.1 up
il11 (K) interleukin 11 stimulate proliferation of hematopoietic stem

cells and megakaryocyte progenitor cells
NM_001124382.1/

AJ535687
up up

sod3 (K) extracellular superoxide
dismutase (Cu-Zn)

convert superoxide radicals into hydrogen
peroxide and oxygen

XM_021619043.1 down

cat (B) catalase protect cells from the toxic effects of
hydrogen peroxide

XM_021564294.1 down

c3-1a (S) Complement C3-1A activation of the complement system Complements XM_021561545.2 up
c3-1b1
(K)

Complement C3-1B1 activation of the complement system XM_021561577.2 up up

c3-1b1
(S)

Complement C3-1B1 activation of the complement system XM_021561577.2 up up

c3-1b2
(S)

Complement C3-1B2 activation of the complement system XM_021595453.2 up

c3-3 (S) Complement C3-3 activation of the complement system XM_021568201.2 up up
c3-4 (B) Complement C3-4 activation of the complement system XM_021557344.2 down down
c4 (K) or
c4b

Complement C4 classical complement pathway NM_001124385.1 up up

c6 (S) Complement C6 play a key role in the innate and adaptive
immune response

NM_001124621.1 down

c7-1 (S)
or c7b

Complement C7-1 play a key role in the innate and adaptive
immune response

NM_001124618.1 up up

c7-2 (S)
or c7a

Complement C7-2 play a key role in the innate and adaptive
immune response

NM_001124407.1 down down

c7-2 (K)
or c7a

Complement C7-2 play a key role in the innate and adaptive
immune response

NM_001124407.1 down down

c7-2 (B)
or c7a

Complement C7-2 play a key role in the innate and adaptive
immune response

NM_001124407.1 down down down

c8g (S) Complement component C8
gamma chain

regulate complement binding NP_001117880.1 down

c8g (B) regulate complement binding NP_001117880.1 up

(Continued)
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TABLE 2 | The enriched GO term lists.

GO Term Function Description Up- or Downregulation

The enriched GO terms that are shared in comparisons of ST vs. CT and AT vs. CT
GO:0004883 glucocorticoid receptor activity Molecular function, The stress response Down
GO:0038050 glucocorticoid-activated sequence-specific DNA binding Molecular function, The stress response Down
GO:0031963 cortisol receptor activity Molecular function, The stress response Down
GO:1990794 basolateral part of the cell Cellular component Down
GO:0005496 steroid-binding Molecular function, The stress response Down
GO:0045944 positive regulation of transcription by RNA polymerase II Biological process, Transcription Down
GO:0051414 response to cortisol Biological process, The stress response Down
GO:0098531 direct ligand regulated sequence-specific DNA binding Molecular function, Transcription Down
GO:0042832 defense response to protozoan Biological process, Immunomodulation Up
GO:0032735 positive regulation of interleukin-12 production Biological process, Immunomodulation Up
GO:0043491 protein kinase B signaling Biological process, Immunomodulation Up
GO:0030890 positive regulation of B cell proliferation Biological process, Immunomodulation Up

The enriched GO terms that are specifically identified in ST vs. CT
GO:0046688 response to copper ion Biological process Down
GO:0071383 cellular response to steroid hormone stimulus Biological process, The stress response Down
GO:0010628 positive regulation of gene expression Biological process, The stress response Down
GO:0006955 immune response Biological process, Immunomodulation Up
GO:0031625 ubiquitin-protein ligase binding Molecular function, Immunomodulation Up
GO:0005164 tumor necrosis factor receptor binding Molecular function, Immunomodulation Up

The enriched GO terms that are specifically identified in AT vs. CT
GO:0005737 cytoplasm Cellular component Down
GO:0001046 core promoter sequence-specific DNA binding Molecular function, Transcription Down
GO:0003700 DNA-binding transcription factor activity Molecular function, Transcription Down
GO:1990239 steroid hormone binding Molecular function, The stress response Down
GO:0006325 chromatin organization Biological process, Transcription Down
GO:0051607 defense response to viruses Biological process, Immunomodulation Up
GO:0090037 positive regulation of protein kinase C signaling Biological process, Signaling Up
GO:0048304 positive regulation of isotype switching to IgG isotypes Biological process, Immunomodulation Up
GO:0035631 CD40 receptor complex Cellular component, Immunomodulation Up
GO:0002768 immune response-regulating cell surface receptor signaling pathway Biological process, Immunomodulation Up
GO:2000353 positive regulation of endothelial cell apoptotic process Biological process, Immunomodulation Up
GO:0051023 regulation of immunoglobulin secretion Biological process, Immunomodulation Up
GO:0051092 positive regulation of NF-kB transcription factor activity Biological process, Immunomodulation Up
GO:0043123 positive regulation of I-kB kinase/NF-kB signaling Biological process, Immunomodulation Up
GO:0043536 positive regulation of blood vessel endothelial cell migration Biological process Up
GO:0042531 positive regulation of tyrosine phosphorylation of STAT protein Biological process, Immunomodulation Up
GO:0042113 B cell activation Biological process, Immunomodulation Up
GO:0009897 external side of plasma membrane Cellular component Up
GO:0043547 positive regulation of GTPase activity Biological process Up
Frontiers in Immuno
logy | www.frontiersin.org April 2021 | Vo14
TABLE 1 | Continued

Gene Full Name Function Description Gene ID Expression
patterns between

the pairwise
comparisons

ST
vs.
CT

AT
vs.
CT

ST
vs.
AT

Complement component C8
gamma chain

cfb (S) Complement factor B alternate pathway of the complement
system

XM_036933232.1 up

bfc2b (S) Complement factor B/C2-B NM_001124201 up
cfp1 (S) Properdin a positive regulator of the alternate pathway

of complement
XM_021566443.2 up

c1qa (S) Complement C1q
subcomponent subunit A

the first component of the serum
complement system

XM_036968033.1 down down

cd93 (K) Complement component C1q
receptor

enhancement of phagocytosis in
monocytes and macrophages

XM_021574853.2 down down

mbl-h2
(K)

Mannan-binding lectin H2 calcium-dependent lectin involved in innate
immune defense

NM_001160480.1 up up
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Indeed, bidirectional communication exists between stress and
immune responses, and low levels of stress (eustress) may result
in enhanced immune competence (97). The slightly upregulated
mra and mrb could act as an alarm and stimulate the immune
system to fight against V. anguillarum infection, consistent with
previous studies (10, 11).

Studies on humans, rodents, and other mammals showed that
cytokines could affect the genes associated with the stress
response through cytokine-specific mechanisms. For example,
IL1 and IL6 exhibit positive effects, while the TNFa exhibits the
opponent manners (16, 98, 99). These cytokines have also been
reported to dysregulate and/or block the functions of GR
subtypes (17). In teleosts, the immune responses regulated by
the interactions between the genes in the stress response and
cytokine networks are not homogeneous. Previous studies
showed it is greatly affected by specific characteristics of
challenges (environmental stressors or disease pathogens),
target tissues (in vitro or in vivo; peripheral tissues or mucosal
surfaces), and the adaptive life story of each species (bream, bass,
or trout) (1, 5, 13, 100). In this study, the results showed that
downregulated mr and gr subtypes exhibited strong negative
relationships with cytokine genes of il1b and tnfa subtypes in AT
and ST (Figures 2 and 3), which were partially consistent with
the results in mammalian studies. Previous studies in sea bream
showed that the stress response can suppress the gene expression
of cytokines (13). These results indicated that the stress response
and cytokine networks are intimately and bidirectionally linked,
enabling teleosts to cope with challengers from environmental
stimuli and/or pathogen invasion (8, 10, 83, 97).

After V. anguillarum infection, ST and AT both exhibited
significantly downregulated GO terms associated with functions of
gra and grb (GO:0004883, glucocorticoid receptor activity;
GO:0031963, cortisol receptor activity; GO:0005496, steroid
binding), and significantly upregulated GO terms that are
involved in tnfa-regulated immune responses (GO:0042832,
defense response to protozoan; GO:0030890, positive regulation
of B cell proliferation) (Figure 6 and Table 2). The upregulated
il1b, il6, il8, and tnfa genes are markers of M1 macrophage
polarization, which activates the proinflammatory cytokine
cascade against the pathogen invasion (101). The M1
macrophage-triggered proinflammatory cytokine cascade is
suppressed by glucocorticoids and GR in basal conditions, but is
activated by downregulated glucocorticoids and GR in an active
infection (102). In this study, both ST and AT exhibited
downregulated GO terms associated with cortisol and cortisol
receptor functions and upregulated M1 macrophage polarization
markers. These results suggest that activation of the
proinflammatory cytokine cascade by M1 macrophage
polarization is a general response for trout to fight
pathogen invasion.

Compared to trout of AT, four KEGG pathways involved in
steroid hormone biosynthesis and functions were downregulated in
ST (Figure 7). Steroid hormones, which include corticosteroids and
sex steroids, play an important role in regulating homeostasis via
modulating metabolism, immunomodulation, salt balance, water
balance, and reproduction. The KEGG analysis revealed that the
Frontiers in Immunology | www.frontiersin.org 15
genes associated with the biosynthesis of corticosteroids and sex
steroids (ko04913 and ko00140) were significantly downregulated,
suggesting that V. anguillarum infection severely dysregulated the
homeostasis of the steroid hormone network in trout of ST (Figure
7E). The dyshomeostasis of steroid hormone might disturb the
bidirectional link between stress and immune responses. Thus,
steroid hormone receptors (such as kidney mr subtypes) might
fail to transduce the “alarm” of pathogen infection to immune
systems in symptomatic trout. Based on previous studies, the well-
orchestrated stress response can be divided into three phases: alarm,
resistance, and exhaustion (103–105). Downregulated steroid
hormone biosynthesis might indicate that the ST was in an
exhaustion phase, which is consistent with the human study
showing death may be associated with an exhausted adrenal
cortex (106–108).

Previously published chapters in the book of Fish Physiology
(Biology of Stress in Fish, Volume 35) showed that, with the
perception of health challenges, the induction of neuroendocrine
cascades serves as the primary responses. The secondary
response to stressors includes the physiological adjustments of
hydromineral balance and immune function (3, 7, 109).
Hydromineral dysfunction is a typical stress response because
the altered adrenaline, which is induced by stressors, can change
the gill blood flow and gill permeability and dysregulate the
cardiovascular and respiratory functions (7, 109, 110).
Consistently, our studies showed significantly downregulated
KEGG pathways associated with aldosterone-regulated salt and
water balance (ko04960 and ko04978) (Figure 7E), indicating
that ST trout show hydromineral dyshomeostasis. Previous
studies in Chinook salmon (Oncorhynchus tshawytscha)
showed the hydromineral balance is changed during
euthanasia (111), which is consistent with our KEGG results.
Based on this data, we propose positive feedback between severe
infection and imminent death: (1) infection and its resulting
stress response disturb the hydromineral homeostasis, thus
resulting in a moribund condition. (2) The moribund
condition further exacerbated the dyshomeostasis of
hydromineral functions, leading to death.
CONCLUSIONS

Based on pairwise comparisons of CT, AT, and ST, we found the
CT, AT, and ST show distinct transcriptional profiles of genes in
stress and immune networks (Figure 8). The AT exhibited the
eustress response, and eustress can stimulate the immune system to
fight against bacterial infection. The ST exhibited a strong stress
response, and the distress resulted in a secondary stress response,
thus exacerbating immune dysfunctions and hydromineral
dyshomeostasis. Regarding the immunomodulation, analysis of
gene expression and pathway enrichments showed activation of
the proinflammatory cytokine is a general response of AT and ST in
responses to V. anguillarum infection. Additionally, the specifically
upregulated complement and coagulation cascades and TNF-
associated immune defenses probably enable the AT to fight the
inflammatory pathogenesis and the resulting bleeding.
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