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Abstract Tuberculosis disproportionately affects the Canadian Inuit. To address this, it is

imperative we understand transmission dynamics in this population. We investigate whether ‘deep’

sequencing can provide additional resolution compared to standard sequencing, using a well-

characterized outbreak from the Arctic (2011–2012, 50 cases). Samples were sequenced to ~500–

1000x and reads were aligned to a novel local reference genome generated with PacBio SMRT

sequencing. Consensus and heterogeneous variants were identified and compared across

genomes. In contrast with previous genomic analyses using ~50x depth, deep sequencing allowed

us to identify a novel super-spreader who likely transmitted to up to 17 other cases during the

outbreak (35% of the remaining cases that year). It is increasingly evident that within-host diversity

should be incorporated into transmission analyses; deep sequencing may facilitate more accurate

detection of super-spreaders and transmission clusters. This has implications not only for TB, but all

genomic studies of transmission - regardless of pathogen.

Introduction
Tuberculosis (TB) in Canada is highest among the Inuit, an Indigenous population with a rate over

300 times that of the non-Indigenous Canadian-born population in 2016 (Inuit Tapiriit Kanatami,

2018). Canada recently set a goal of TB elimination in the Inuit by 2030, (Inuit Tapiriit Kanatami,

2018) which will not be achieved without halting ongoing transmission. Previous studies have used

genomic data either alone or in conjunction with classical epidemiology to investigate TB transmis-

sion dynamics in the Canadian North, (Tyler et al., 2017; Lee et al., 2015a; Lee et al., 2015b) with

the aim of identifying clusters to help guide public health interventions. Thus far, such studies have

relied on identifying consensus single nucleotide polymorphisms (cSNPs), consistent with prevailing

methodology in this field.

Recent studies suggest that incorporation of within-host diversity into genomic analyses may pro-

vide greater resolution of transmission than cSNP-based approaches alone (Worby et al., 2017;

Martin et al., 2018; Meehan et al., 2019; Séraphin et al., 2019). This may be particularly important

for investigation of outbreaks occurring over short time scales and/or in settings such as the Cana-

dian North, where the genetic diversity of circulating strains is especially low. In both of these cir-

cumstances, it is common to find many samples separated by zero cSNPs, hindering accurate source

ascertainment. To investigate this hypothesis, we used deep sequencing (i.e., to ~10-20 fold more
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than standard, or 500-1000x) to re-evaluate transmission in a densely-sampled outbreak in Nunavik,

Québec.

This outbreak, which has been previously described, (Lee et al., 2015b; Lee et al., 2016) com-

prised 50 microbiologically-confirmed cases of TB who were diagnosed in a single Inuit community

between 2011–2012 - a rate of 5,359/100,000 for that year. Genomic epidemiology analyses using

sequencing depths of ~50x that are standard in such work, identified multiple clusters of transmis-

sion in this outbreak, (Lee et al., 2015b) however, there was insufficient genetic variation detected

to infer precise person-to-person transmission events within these subgroups, given the short time

frame and low mutation rate of M. tuberculosis (~0.2–0.3 SNPs/genome/year for Lineage 4;

Menardo et al., 2019). In this study, we illustrate how within-host diversity can be incorporated into

transmission analyses. In doing so, we find new features of the transmission networks in this commu-

nity, in particular, identifying a previously unrecognized super-spreading event. We highlight a

potential role for deep sequencing in public health investigations, with implications for TB control in

Canada’s North as well as other high-transmission environments.

Materials and methods

Study subjects
All 50 samples from the 2011–2012 outbreak (Lee et al., 2015b) were eligible for inclusion, as well

as samples from all cases (n = 15) diagnosed in same village in the preceding five years (2007

onwards), 13/15 of which were caused by the same strain of M. tuberculosis (the ‘Major [Mj]-III’ subli-

neage; Lee et al., 2015a). There were two episodes of recurrent TB (i.e., where an individual had

microbiologically-confirmed TB once, was cured, but developed TB again during the study period);

otherwise, all samples are from unique individuals. All cases had pulmonary TB that was Lineage 4

eLife digest In Canada, tuberculosis disproportionately affects the Inuit, a group of indigenous

people inhabiting the Arctic regions. Canada is aiming to eliminate tuberculosis among the Inuit by

2030. One way to help stop transmission and prevent future outbreaks is to trace how and where

the disease spreads using DNA sequencing. This information can then be used by public health

organizations to identify possible interventions.

Typically, the DNA of the bacterium that causes tuberculosis – Mycobacterium tuberculosis, or

Mtb for short – is sequenced 50–100 times and a consensus DNA sequence is then generated for

each patient from this data. These consensus DNA sequences are then compared to help piece

together who infected whom. Recently, scientists have realized that the bacteria a person is infected

with may have different DNA sequences due to people being infected with more than one

bacterium or the bacterium developing variations in its genome after the infection. However, current

DNA sequencing practices may miss these differences, making it harder to trace how the disease

spreads.

Now, Lee et al. show that sequencing the DNA of Mtb from an infected person 500–1000 times

(i.e. ~10-20 times more than usual) makes it easier to detect genetic differences and determine how

tuberculosis spreads. This approach, also known as ‘deep sequencing’, was used to analyze DNA

samples of Mtb collected from about 50 people during an outbreak of tuberculosis in 2011-2012,

which had previously undergone standard DNA sequencing.

This deep sequencing approach identified a ‘super-spreading event’ where one person had likely

transmitted tuberculosis to up to 17 others during the outbreak. Lee et al. found that most of these

people had visited the same ‘gathering houses’ which are social venues in the community.

Implementing targeted public health interventions at these sites may help stop future outbreaks.

To fully understand how useful this method will be for tracking the spread of tuberculosis, deep

and routine sequencing will need to be compared against each other in different settings and

outbreaks. Furthermore, the approach used in this study may be useful for tracking the transmission

of other infectious diseases.
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(Euro-American; Lee et al., 2015b). Cross-contamination was ruled out as described in Lee et al.

(2015b).

DNA extraction and sequencing
Samples were cultured once on Middlebrook 7H10 agar and plate sweeps were collected for DNA

extraction using the van Soolingen method (van Soolingen et al., 1991). Genomic DNA was quanti-

fied using the Quant-iT PicoGreen dsDNA Assay (ThermoFisher Scientific, Massachusetts, USA).

Library preparation and sequencing were done at the McGill University/Genome Québec Innovation

Centre. The Illumina HiSeq 4000 was used to produce paired-end 100 bp reads. To obtain the depth

of coverage needed for this study (~500–1000x for deep sequencing, compared to ~50–100x as rou-

tinely done by public health), pooled libraries were run on four independent lanes.

Bioinformatics
FastQC (v.0.11.5, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess

sequencing data quality and reads were trimmed to remove low-quality bases using Trimmomatic

(v.0.36 Bolger et al., 2014). Kraken (v.1.1 Wood and Salzberg, 2014) was then used to identify

potential contamination with the miniKraken database (minikraken_20171019). Reads classified as

‘Mycobacterium tuberculosis complex’ (MTBC) were extracted using Seqtk (v.1.2, Li H, available at:

https://github.com/lh3/seqtk).

Reads were then aligned using the Burrows Wheeler Aligner MEM algorithm (v.0.7.15 Li, 2013)

to the H37Rv reference (NC_000962.3 in the National Center for Biotechnology Information [NCBI]

RefSeq database) and sorted using Samtools (v.1.5 Li et al., 2009). Analyses were later repeated

using a local reference genome (described below). Reads were with ambiguous mappings were

excluded, as were reads with excessive soft-clipping (i.e., more than 20% of read length) based on

our previous work (Martin et al., 2018). Duplicate reads were marked using Picard MarkDuplicates

(v.2.9.0, https://broadinstitute.github.io/picard/) and reads were locally re-aligned around indels

using Genome Analysis ToolKit (GATK, v.3.8 McKenna et al., 2010). All sites were called using

GATK’s Unified Genotyper algorithm, with the -d 1500 to avoid downsampling to 250 (done by

default with this tool during variant calling). Variants (cSNPs and heterogenous SNPs [hSNPs]) versus

H37Rv were annotated using snpEff (v.4.3t Cingolani et al., 2012).

Variants were filtered for quality using custom Python scripts (v.3.6) with the following thresholds:

Phred < 50, Root Mean Squared Mapping Quality (RMS-MQ) � 30, depth (DP) < 20, Fisher Strand

Bias (FS) � 60 and read position strand bias (ReadPos) < �8 (Martin et al., 2018). cSNPs were classi-

fied as positions where � 95% of reads were the alternative allele (ALT), hSNPs were classified as

positions where > 5% and < 95% of reads were ALT, and positions with the ALT present in �5% of

reads were classified as ‘reference’. We also compared inferences of transmission from this analysis

to i) when these thresholds were increased to the minimum values among cSNPs in the initial H37Rv

analysis, and ii) when cSNPs were classified using a threshold of � 99%, and hSNPs were classified

when 1% < ALT < 99%, in order to assess the robustness of inferences to different filtering

protocols.

Low-quality variants, variants in proline-proline-glutamic acid (PE) and proline-glutamic-acid/poly-

morphic-guanine-cytosine-rich sequence (PE_PGRS) genes, transposons, phage and integrase, and

positions with missing data, were excluded. All samples were drug-susceptible, except for MT-6429,

which was rendered resistant to isoniazid by a frameshift deletion at position 1284 in the catalase-

peroxidase gene katG. As such, positions associated with drug resistance were not masked in this

analysis. Alignments with informative hSNPs were reviewed using Tablet (v.1.17.08.17, Milne et al.,

2013).

Concatenated core cSNP alignments were made using snp-sites -c (v.2.4.0 Page et al., 2016),

with positions with hSNPs excluded. Pairwise cSNP distances between samples were computed

using snp-dists (v.0.6, available at https://github.com/tseemann/snp-dists). The frequency of hSNPs

at each position in the genome was tabulated and hSNPs were reviewed to identify variants shared

between samples.
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Phylogenetics and clustering
Core cSNP alignments were used to generate maximum likelihood trees using IQ-Tree (v.1.6.8

Nguyen et al., 2015). Model selection was based on the lowest Bayesian Information Criterion. Hier-

archical Bayesian Analysis of Population Structure (Cheng et al., 2013) was run in R (v.3.5.2) to iden-

tify clusters. Phylogenetic trees were visualized using Interactive Tree of Life (Letunic and Bork,

2016).

Single molecule Real-Time (SMRT) sequencing and assembly
To examine the influence of potential alignment errors in identification of hSNPs, we used SMRT

sequencing with the PacBio RSII platform to create a local reference genome for the outbreak. Sam-

ple MT-0080 was chosen for sequencing because this was previously identified as the probable

source for as many as 19 of the 50 cases diagnosed in 2011–2012 (Lee et al., 2015b). Prior to

sequencing, the culture was grown on a Middlebrook 7H10 agar plate. A single colony was then

selected and grown further in 3 mL of Middlebrook 7H9 Broth to provide sufficient DNA for SMRT

sequencing and Illumina MiSeq (for polishing of the long-read assembly). DNA for SMRT sequencing

was extracted using the MagAttract High Molecular Weight DNA Kit from Qiagen (Maryland, USA).

High molecular weight fragments were verified using gel electrophoresis. Library preparation and

sequencing were then done at the McGill University/Genome Québec Innovation Centre. Prior to

sequencing, fragment size was evaluated using a BioAnalyzer and the BluePippin system (Sage Sci-

ence, Massachusetts, USA) was used for size selection. DNA for Illumina MiSeq was extracted using

the van Soolingen method, as previous (van Soolingen et al., 1991).

Long-reads were assembled and corrected using Canu (v.1.7.1 Koren et al., 2017). Pilon (v.1.23

Walker et al., 2014) was then used to polish the assembly using the Illumina MiSeq reads from the

same colony. This was re-run until no further corrections were possible. Quast (v.5.0.2,

Gurevich et al., 2013) was used to evaluate assembly quality. RASTtk (v.2.0 Brettin et al., 2015)

was used for annotation, to identify regions for masking as previous.

Epidemiological data
Epidemiological and clinical data were collected on all cases and contacts using standardized ques-

tionnaires as part of the routine public health response, described previously in Lee et al. (2015b);

Lee et al. (2016).

Statistical analyses
A two-sample test of proportions was used to compare overall proportions across references, and

the Wilcoxon Signed Rank test was used to compare paired SNP distances. Analyses were done in

Stata (v.15, StataCorp, College Station, TX, USA).

Results
62/65 (95�4%) available TB samples from cases diagnosed between 2007–2012 were successfully

sequenced and passed quality control. This included 48/49 (98�0%) of the samples with an identical

Mycobacterial Interspersed Repetitive Units Variable Number Tandem Repeats (MIRU-VNTR) pattern

during the outbreak year. The remaining three samples could not be re-grown. Reads that were

non-MTBC were removed (Source data 1) and there was no obvious association between percent

contamination and hSNP frequency. Epidemiological and clinical data on all outbreak cases are

described in Lee et al. (2015b).

Average genome coverage and depth across the H37Rv reference was 98�64% [SD 0�07%] and

714�53 [SD 92�68], respectively. Our primary filtering protocol yielded 51,430 cSNPs and 4,897

hSNPs across all individual samples (Source data 2). Excluding positions that were invariant com-

pared to the reference or where any sample was missing and/or was low-quality resulted in a core

alignment of 860 cSNP positions and 136 hSNP positions (note, these are not mutually exclusive, as

positions with cSNPs in some samples may have hSNPs in others).

42 positions had hSNPs that were shared across all 62 samples (Table 1, Source data 3). Depth

of coverage at these positions was, on average, 39% higher than the average depth across the same

sample (SD 36�7%, Source data 4). Along with manual review of alignments (Figure 1), this
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Table 1. Comparison of alignments to H37Rv and MT-0080_PB.

Based on these filters: Phred < 50, Root Mean Square Mapping Quality (RMS-MQ) � 30, depth (DP) < 20, Fisher Strand Bias (FS) � 60

and read position strand bias (ReadPos) < �8 and an allelic fraction of � 95% for cSNPs, with hSNPs classified when 5% < ALT < 95%.

Quality metrics for the individual cSNPs/hSNPs identified in each sample are given in Source data 2.

H37Rv (4,411,532 bp) MT-0080_PB (4,426,525 bp) P value

Number of positions according to reference genome

Invariant reference across all samples, n (%) 4,018,786 (91�10%) 4,084,195 (92�27%) <0�00005 a

Position was missing/low quality in at least one sample, n (%) 391,761 (8�88%) 342,179 (7�73%) <0�00005 a

Position was an c/hSNP in at least one sample, n (%) 985 (0�22%) 152 (0�00%) <0�00005 a

Shared cSNPs across all samples, n (%) 764 (0�02%) 1 (0�00%) <0�00005 a

Shared hSNPs across all samples, n (%) 42 (0�00%) 0 (0%) <0�00005 a

Core pairwise distances

Core cSNPs vs. reference, median (range) 791 (790–792) 3 (1–65) <0�00005 b

Core cSNPs between samples, median (range) 3 (0–64) 3 (0–66) <0�00005 b

a Two sample test for difference in proportions.
b Wilcoxin Signed Rank test.

Figure 1. Pileup of reads showing hSNPs suspected to be due to alignment error as listed in Source data 3, with MT-4942 used as an example and

zoomed on position 2,255,171 to 2,280,170 in H37Rv (National Center for Biotechnology Information RefSeq Database Accession NC_000962.3). Binary

Alignment Map (BAM) file were loaded into Tablet (v.1.17.08.17, Milne et al., 2013) to visualize the pileup compared to H37Rv.
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suggested that many of these were false positives, potentially due to alignment error (e.g., from

underlying structural variation in our samples compared to the H37Rv reference).

To address this, we generated a local reference genome for the outbreak, MT-0080_PB. Quality

metrics for the MT-0080_PB assembly are given in Source data 5. Compared to H37Rv, mean

genome coverage and depth were higher with MT-0080_PB (at 99�33% [SD 0�09%] and 717�07 [SD

93�01], respectively), fewer positions were missing/low-quality (p < 0�00005, Table 1), and overall,

fewer variable positions were detected (p < 0�00005). While core cSNP distances were similar

between samples regardless of the reference (Table 1), the number of hSNPs was greatly reduced

using MT-0080_PB (Source data 2); while 4,897 hSNPs were identified across all individual samples

using H37Rv, only 125 hSNPs were identified using MT-0080_PB. There were also no hSNPs shared

across all 62 samples using MT-0080_PB. Together, these findings support our hypothesis that align-

ment error is responsible for many of the detected variants, and indicate a local reference is impor-

tant for accurate identification of hSNPs. All further results presented are based on the MT-0080_PB

alignment.

A maximum likelihood tree was generated from 90 core cSNP positions (excluding sites invariant

across all samples and the reference) compared to MT-0080_PB (Figure 2). All 62 samples (historical

and outbreak) were included, for comparison with our previous work. (Lee et al., 2015b) Consistent

with this, (Lee et al., 2015b) hierBAPS identified two main sub-lineages (‘Mj-V’ and ‘Mj-III’ per

Lee et al., 2015a), with three sub-clusters (Mj-IIIA/B/C).

hSNPs identify a novel super-spreading event and more accurately
resolve transmission clusters
The core cSNPs and hSNPs between samples are shown in Source data 6, with the sub-groups iden-

tified in the original analysis indicated. Overlaying hSNPs with the cSNP-based analysis revealed a

novel super-spreader (MT-504) in Cluster Mj-IIIB, undetected by genomic epidemiology analyses

relying on lower sequencing depth. (Lee et al., 2015b).

In brief, our previous analysis using routine sequencing depth had suggested that Mj-IIIB was

comprised of two distinct transmission networks (which we refer to as ‘subgroups’ for consistency

with our earlier work); the first subgroup consisted of five cases diagnosed between December 2011

and October 2012, while the second subgroup consisted of 13 cases diagnosed between March and

November 2012. Epidemiologic curves for these subgroups are given in Figure 2—figure supple-

ment 1A. These two subgroups were distinguished from one another based on the presence or

absence of a shared cSNP (at position 276,685 according to H37Rv/276,544 in the MT-0080_PB

alignment, Source datas 6, 7, 8); all samples in the subgroup of five cases shared an alternative ‘C’

allele at this position, while all samples in the subgroup of 13 cases shared the reference ‘A’ allele.

Given the short time period, low mutation rate of TB, and overall low diversity of strains circulating

in the village, we would expect 0 SNPs to accrue in recent transmission, refuting transmission

between these subgroups. In the original analysis, MT-504 was identified as the probable source for

the subgroup of five cases. This individual was diagnosed in late 2011 with smear-positive, cavitary

disease, and had attended the same local community ‘gathering houses’ (social venues specifically

identified by public health during the outbreak) as all four others in this subgroup. For the second

subgroup of 13 cases, MT-2474 was identified as the probable source, as this was the first smear-

positive case in this subgroup (diagnosed in May 2012, Figure 2—figure supplement 1A).

In contrast to the analysis based on routine sequencing data, our in-depth investigation of within-

host diversity using deep sequencing data revealed that MT-504 harboured both the alternative

allele (563 reads [80�9%]) shared by all members of the subgroup of five as well as the reference

allele (133 reads [19�1%]), shared by all members of the subgroup of 13 (Figure 2—figure supple-

ment 1B). Given that MT-504 was the first contagious case diagnosed in Mj-IIIB (Figure 2—figure

supplement 1A), and all 13 cases in the second subgroup had attended or resided in a gathering

house (with 9/13 [69�2%] reporting attendance at the same houses as MT-504), this strongly suggests

that MT-504 is in fact the most probable source for both subgroups.

hSNP analysis adds support for suspected transmission
Sample 68995 and MT-5543 were from 2007, and were the only strains from the Mj-VA sub-lineage

in this village. Previous analysis indicated Mj-VA strains from other villages were distantly related,
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Figure 2. Transmission of M. tuberculosis in village K. Maximum likelihood tree of 62/65 cases diagnosed between 2007–2012 in village K based on

consensus single nucleotide polymorphisms (cSNPs). After aligning to a local reference, MT-0080_PB, cSNPs were identified based on a minimum

threshold of �95% of reads supporting the alternative allele. A core cSNP alignment was then produced with 90 positions.and IQ-Tree (v.1.6.8

Nguyen et al., 2015) was used to generate the tree using a KP3 model with correction for ascertainment bias. Model selection was based on the

Figure 2 continued on next page
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(Lee et al., 2015b) while these two samples were separated from one another by zero core cSNPs.

This suggests direct transmission between these historical cases, a hypothesis strongly supported by

hSNP analysis, as the samples share hSNPs that are not found in any other sample in the dataset.

These hSNPs were present even when highly conservative filtering thresholds were used

(Source data 7), but were not included when using H37Rv as the reference - potentially due to dif-

ferences in annotation and subsequent filtering.

Potential utility for discriminating TB recurrence
Six individuals had TB recurrence in 2011–2012. Paired samples were available for two of these

(Patient 1: samples MT-5195 [Mj-IIIA] in 2007 and MT-1838 [Mj-IIIC] in 2012; Patient 2: samples MT-

5543 [Mj-VA] in 2007 and MT-1206 [Mj-IIIB] in 2012, Figure 2). Clinically, both patients had new

lesions detected at their second episode, compared to their previous chest x-rays. cSNP-based anal-

yses suggested their second episodes of TB were due to re-infection with a new strain, rather than

relapse with the strain causing their original disease. Investigation of within-host diversity strongly

supported this conclusion; using deep sequencing, we verified that there was a single, different

strain present at both baseline and their second episodes of TB. There was no evidence for mixed

infection at either baseline or second episode with these strains, more definitively ruling out relapse

in this low diversity setting (Source datas 6, 7, 8).

Impact of altering cSNP and hSNP thresholds
To ensure we were not missing lower frequency variants using the prior cSNP/hSNP thresholds, we

re-ran our analysis such that hSNPs were classified when 1% < ALT < 99%. Quality scores for individ-

ual cSNPs and hSNPs are given in Source data 9 and the core cSNP/hSNP alignment is shown in

Source data 8. While our primary analysis using a threshold of �95% for cSNPs identified a single

cSNP (A to G) shared across all samples compared to MT-0080_PB, close examination of the MT-

0080 deep sequencing data (obtained using DNA from a sweep of the plate) showed that this sam-

ple had both alleles at this position, with only the minority ‘A’ allele (33 reads/1189 [2�8%]) isolated

for SMRT sequencing. Based on this, we recommend sequencing samples both using a clean sweep

(with an alternative sequencing platform) and a single colony pick when generating a reference

genome for TB, as using the latter alone may introduce error and affect epidemiological inferences.

With this exception, no other informative hSNPs were detected using these thresholds.

Discussion
As the TB epidemic continues among the Canadian Inuit, targeted public health interventions are

essential to halt ongoing transmission. In order to do so, it is important that transmission events and

associated risk factors are accurately identified. Our previous work suggested that hSNP analysis

could enhance resolution of TB transmission (Martin et al., 2018). To investigate how this approach

could be applied for TB control, we used deep sequencing to re-examine a major TB outbreak in the

Canadian Arctic.

Several recent studies, including work by our group (Martin et al., 2018), have shown that M.

tuberculosis within-host diversity can be transmitted between individuals (Séraphin et al., 2019;

Guthrie et al., 2019). Using deep sequencing data allowed us to better identify this diversity in a

Nunavik outbreak compared to previous analyses with standard sequencing depth, (Lee et al.,

Figure 2 continued

lowest Bayesian Information Criterion. 1000 bootstrap replicates were done; only p values > 60% are shown. Clusters were identified using hierarchical

Bayesian Analysis of Population Structure (Cheng et al., 2013). These clusters were consistent with the sub-lineages previously identified in Lee et al.

(2015a); Lee et al. (2015b), thus only sub-lineage names are indicated (Major sub-lineages [Mj]-IIIA, B, C, and Mj-VA). Only Mj-IIIA/B/C were present in

2011–2012; Mj-IIIA was first seen in village K in 2007, IIIB was first seen in 2009, and IIIC was first seen in 2012. Alleles informative for transmission in Mj-

IIIB, identified using deep sequencing, are indicated. Between 2007–2012, there were two individuals who had a second episode of TB; stars are used

to highlight these samples, with a different colour for each patient. MT-0080 is included in the alignment as the deep sequencing data from a sweep of

all colonies identified a cSNP compared to the MT-0080_PB reference, which itself was generated from a single colony pick.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of epidemiologic inferences using ’routine’ versus ’deep’ sequencing.

Lee et al. eLife 2020;9:e53245. DOI: https://doi.org/10.7554/eLife.53245 8 of 15

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.53245


2015a; Lee et al., 2015b) and facilitated detection of a novel super-spreading event, where one

source case may have transmitted to ~1/3 of the other cases diagnosed between 2011 to 2012. This

was in addition to a previously identified super-spreader linked to 19 secondary cases - suggesting

up to 75% of the outbreak (36/48, excluding the putative super-spreaders) may be attributable to

these events. Super-spreading has been described in a number of pathogens, (Stein, 2011) includ-

ing TB (Kline et al., 1995). Our findings suggest this can play an important role in driving TB out-

breaks, and that accurate detection of super-spreading events is important for informing

appropriate public health interventions. In the case of MT-504, as nearly all of the secondary cases

had attended the same local community gathering houses as the putative source, this strongly sug-

gests these venues play an important role in facilitating transmission in this setting.

Several studies have used genomics to investigate TB recurrence, (Witney et al., 2017;

Bryant et al., 2013; Guerra-Assunção et al., 2015) however, the methods used to assess for mixed

infection at either time point have been inconsistent and may not be sufficient to discriminate recur-

rence in settings with low strain diversity. In this analysis, we provide proof-of-principle that deep

sequencing can potentially help rule out relapse. The distinction between relapse and re-infection is

important at individual and population levels; high rates of relapse in a community would indicate a

problem with treatment or adherence, potentially warranting changes to clinical management, while

re-infection would indicate the need for public health interventions such as active case finding. Also,

individuals in Nunavik who have had prior treatment for active TB disease in the past are also not

routinely offered prophylaxis on re-exposure, based on historical data suggesting ~80% protection is

afforded by prior infection (Menzies, 1997). The degree to which re-infection drives recurrence in

Nunavik is currently unknown, but if re-infection is the primary cause, this clinical practice may need

to be re-evaluated. A population-level genomic epidemiology study is currently underway to evalu-

ate this.

To use deep sequencing to investigate within-host diversity, it is critical we minimize false positive

hSNPs. We have shown that using a local strain as a reference can not only reduce error, but

improves detection of epidemiologically-informative variants. Genomic differences between out-

break strains and H37Rv have been previously illustrated by Roetzer et al. (2013); O’Toole and

Gautam (2017), with O’Toole and Gautam (2017) warning that clinical TB strains may be needed to

fully detect virulence genes in reference-based analyses. Our analysis suggests these may also be

warranted for hSNP analysis; where possible, we suggest using long-read sequencing to generate

complete and local reference genomes.

Overall, our study has a number of strengths. Firstly, we had access to a densely-sampled out-

break, which was previously investigated using ‘standard’ sequencing depth and for which detailed

epidemiological data was available. This allowed us to readily compare methodological approaches,

showing how and when deep sequencing might be beneficial for public health. In this study, we

have also identified important methodological considerations for hSNP detection, with implications

for transmission analyses, but also potentially for resistance prediction as well (Liu et al., 2015).

Finally, the use of long-read data has allowed us to completely assemble a novel TB genome from

Nunavik. This will serve as a valuable resource for future studies of transmission in Nunavik (given

the low strain diversity in the region Lee et al., 2015a), as well as other Inuit territories.

A potential limitation of this work is that, given the historical nature of the outbreak, deep

sequencing was done using DNA extracted from culture. Due to methodological challenges of

sequencing directly from sputum, (Brown et al., 2015; Votintseva et al., 2017; Doyle et al., 2018)

few studies have examined the effect of culture on genome diversity. A recent study by

Shockey et al. (2019)., which analyzed allelic variation among reads from individual samples, sug-

gests that some diversity may be lost during the culturing process. However, several studies looking

at potential transmission (Votintseva et al., 2017; Doyle et al., 2018; Nimmo et al., 2019) found

results were congruent between cSNP analyses from culture versus raw samples. In terms of hSNPs,

Votintseva et al. (2017) Doyle et al. (2018); Nimmo et al. (2019) reported detecting fewer hSNPs

with sequencing from culture versus from sputum, in Nimmo et al. (2019), the median hSNPs was

only 4.5 versus 5 hSNPs, respectively – a difference that may not be clinically significant, regardless

of statistical significance. Given the inconsistency of results and paucity of data, further study is

needed to understand how hSNP diversity may be affected by the culturing process, and to assess

whether this affects inferences of transmission. We note that it is likely that enhanced detection of

the hSNPs present in sputum would improve the resolution over that which we present in this work.
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Another potential limitation is that, while we can compare the epidemiological inferences made

between our previous analysis and our deep sequencing analysis, the sequencing data and bioinfor-

matics pipelines themselves are not directly comparable. Methods to accurately identify hSNPs and

incorporate them into transmission analyses are currently an area of active research. We illustrated in

our recent paper (Martin et al., 2018) that additional steps and strict thresholds must be used to

minimize false positive hSNPs, and have conducted the current analysis in consideration of this. How-

ever, we note that pre-filtering, our 2015 analysis found that MT-504 had five reference alleles at

position 276,685 in the H37Rv alignment (out of 75) and randomly downsampling the current data

to simulate ~50 x yielded similar results (5/47 reads at position 276,544 aligned to MT-0080_PB). As

most genomic studies of TB employ conservative thresholds of 75–90% allele frequency to classify

cSNPs, many bioinformatics pipelines would consider this heterogeneity as potentially suspect at

standard sequencing depth. This suggests that greater depth and/or different analytic approaches

(e.g., Wyllie et al., 2019) are needed to ensure accurate discrimination of sequencing/analytic error

from true variation; ultimately, the optimal approach used to identify variants needs to be carefully

considered, and appropriate for the study question and data being analyzed.

Finally, while deep sequencing allowed us to detect a novel superspreading event in this context,

this approach may not always be necessary; indeed, our previous analysis had identified another

super-spreader in the same outbreak using routine sequencing. We acknowledge that this Northern

outbreak may not be representative of outbreaks from other settings and/or involving other M.

tuberculosis lineages. Further studies are needed to quantify the degree to which super-spreading

occurs in TB, and examine how and when deep sequencing should be used to detect this.

In summary, we have found evidence of mixed variants with important epidemiologic implications

that would not have been detected with standard methods and common filtering criteria. To our

knowledge, however, no other studies have been published comparing epidemiological inferences

obtained with deep versus routine sequencing for TB outbreak resolution – thus this work represents

an important methodological advance in this area. We illustrate that genomic methods, while power-

ful, still require careful interpretation and can still harbor considerable ambiguity when comparing

very close links in a transmission chain, or, as also suggested in Xu et al. (2019), when trying to iden-

tify source cases. This finding is likely relevant beyond TB, given the increasing number of pathogens

undergoing genomic investigation. Our work also highlights the importance of reproducing previous

genomic epidemiology analyses; as the technology and methods used in this field continue to

develop, these can lead to improved resolution of transmission and ultimately, challenge previously-

held inferences – with critical implications for public health. In terms of TB control, we demonstrate

that deep sequencing can aid in transmission analyses, in particular by allowing accurate identifica-

tion of TB super-spreading events and associated epidemiological characteristics. We propose that

deep sequencing is most useful for understanding transmission in settings with low strain diversity,

and that these may benefit from routine use of this approach. We hypothesize deep sequencing

may also provide additional resolution of transmission events within outbreaks occurring over short,

limited timescales – irrespective of local strain diversity, as (by definition) all samples involved in

recent transmission would be expected to be closely-related. However, further studies comparing

deep versus routine sequencing, ideally from a diversity of clusters and epidemiologic contexts, are

needed to fully quantify the added value of this approach for epidemiologic studies of TB.

Overall, this work has important implications for the Canadian North, as well as other regions

with high TB transmission; as next-generation sequencing becomes a mainstay in public health sur-

veillance, it is critical we recognize the limitations of analyses done using routine sequencing data.

Accurate resolution of transmission is essential for TB control programmes, in order to better under-

stand risk factors for such transmission and enable prioritization of public health resources. With

respect to Nunavik, our findings were regarded as very valuable by the regional public health unit

and local community leaders; as a direct consequence of this work, ongoing and new investigations

of TB genomic epidemiology in Nunavik are using deep sequencing to inform transmission analyses.

However, while costs continue to decline, we recognize deep sequencing of all samples in an out-

break may not be economically viable in every setting.
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Additional files
Supplementary files
. Source data 1. Percent of kmers classified as Mycobacterium tuberculosis Complex (MTBC). hSNP

frequency is shown using the alignment to MT-0080_PB after removing non-MTBC reads, and filter-

ing with the following thresholds: Phred score < 50, Root Mean Square Mapping Quality [RMS-

MQ] � 30, depth [DP] < 20, Read Position Rank Sum [ReadPosRankSum] < �8, Fisher Strand Bias

[FS] � 60

. Source data 2. Comparison of consensus single-nucleotide polymorphisms (cSNPs) and heteroge-

neous alleles (hSNPs) in all samples aligned to H37Rv versus MT-0080_PB, after initial filtering with

Allelic Fraction for cSNPs � 0�95 and 0�05 < hSNP < 0�95. Initial filtering thresholds used were:

Phred score < 50, Root Mean Square Mapping Quality [RMS-MQ] � 30, depth [DP] < 20, Read Posi-

tion Rank Sum [ReadPosRankSum] < �8, Fisher Strand Bias [FS] � 60. As a consequence of the

depth of coverage, where allelic fraction was 0�05 < alternative allele [ALT] < 0�95, all hSNPs had at

least 2 REF and ALT alleles by default. This includes all hSNPs and cSNPs identified across all sam-

ples, except variants in PE_PGRS and PPE genes, as well as those in mobile elements; some of these

variants will be in positions that are excluded from the core alignment, as they failed quality control

or are missing in at least one sample in the dataset. Read Position Rank Sum can only be calculated

when both reference and alternative alleles are present at a position, therefore the number of cSNPs

included in the summary statistics for this variable are 14720 for the H37Rv alignment and 153 for

the alignment to MT-0080. *As samples were downsampled to this threshold, this is truncated at

1500.

. Source data 3. Positions with shared heterogeneous alleles (hSNPs) in all 62 samples versus H37Rv.

. Source data 4. Quality metrics for each heterogeneous allele (hSNPs) that was shared across all 62

samples versus H37Rv.

. Source data 5. Assembly metrics for Single Molecule Real-Time sequencing of MT-0080 (‘MT-

0080_PB’), aligned to NC_000962.3 (H37Rv). Quast (v.5.0.2 Gurevich et al., 2013) was used to tabu-

late the above statistics, with the exception of the number of CDS and RNA, where annotation was

done using RASTtk (v.2.0 Brettin et al., 2015).

. Source data 6. Core cSNPs and hSNPs between samples, where cSNPs >= 0.95 and 0.05 < hSNP

< 0.95 and Phred < 50, RMS-MQ <= 30, DP < 20, FS >= 60, ReadPos < �8, with a minimum of 2

ALT and 2 REF alleles to call hSNPs. This alignment was also filtered to remove variants in PE_PGRS

and PE genes, as well as transposons, phage, and integrase as annotated using RASTtk (v.2.0). The

original clusters and subgroups identified in Lee et al. (2015b) are indicated using different colours.

cSNPs and hSNPs are indicated in grey, while cells with alleles that are the same as the reference

are filled with white. Due to the minimum DP and allele frequency, a minimum of 2 ALT and 2 REF

alleles were needed to call hSNPs by default.

. Source data 7. Core cSNPs and hSNPs between samples, where cSNPs >= 0.95 and 0.05 < hSNP

< 0.95 and Phred < 596, RMS-MQ <= 39, DP < 20, FS >= 46, ReadPos < �6, with a minimum of 2

ALT and 2 REF alleles to call hSNPs. This alignment was also filtered to remove variants in PE_PGRS

and PE genes, as well as transposons, phage, and integrase as annotated using RASTtk (v.2.0). The

original clusters and subgroups identified in Lee et al. (2015b) are indicated using different colours.

cSNPs and hSNPs are indicated in grey, while cells with alleles that are the same as the reference

are filled with white. Due to the minimum DP and allele frequency, a minimum of 2 ALT and 2 REF

alleles were needed to call hSNPs by default.

. Source data 8. Core cSNPs and hSNPs between samples, where cSNPs >= 0.99 and 0.01 < hSNP

< 0.99 and Phred < 50, RMS-MQ <= 30, DP < 20, FS >= 60, ReadPos < �8, minimum of 2 ALT and

2 REF alleles. This alignment was also filtered to remove variants in PE_PGRS and PE genes, as well

as transposons, phage, and integrase as annotated using RASTtk (v.2.0). The original clusters and

subgroups identified in Lee et al. (2015b) are indicated using different colours. cSNPs and hSNPs

are indicated in grey, while cells with alleles that are the same as the reference are filled with white.

. Source data 9. Comparison of consensus single-nucleotide polymorphisms (cSNPs) and heteroge-

neous alleles (hSNPs) in all samples aligned to H37Rv versus MT-0080_PB, after initial filtering with
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Allelic Fraction for cSNPs � 0�99 and 0�01 < hSNP < 0�99. Initial filtering thresholds used were:

Phred score < 50, Root Mean Square Mapping Quality [RMS-MQ] � 30, depth [DP] < 20, Read Posi-

tion Rank Sum [ReadPosRankSum] < �8, Fisher Strand Bias [FS] � 60. Where 0�01 < alternative allele

[ALT] < 0�99, a minimum of 2 REF/ALT alleles were required for all hSNPs to reduce risk of including

sequencing error; those that failed to meet these criteria were excluded. This includes all hSNPs and

cSNPs identified across all samples, except variants in PE_PGRS and PPE genes, as well as those in

mobile elements; some of these variants will be in positions that are excluded from the core align-

ment, as they failed quality control or are missing in at least one sample in the dataset. Read Position

Rank Sum can only be calculated when both reference and alternative alleles are present at a posi-

tion, therefore the number of cSNPs included in the summary statistics for this variable are 13255 for

the H37Rv alignment and 148 for the alignment to MT-0080 in the cSNPs � 0�99 and 0�01 < ALT <

0�99 analysis. *As samples were downsampled to this threshold, this is truncated at 1500. P values

were calculated using on the Wilcoxon-Mann-Whitney test.

. Transparent reporting form

Data availability

Sequencing data and the assembly for MT-0080 are available on the NCBI’s Sequence Read Archive

under BioProject PRJNA549270.

The following dataset was generated:
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Lee RS, Proulx J-F,
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2019 Deep sequencing of a major TB
outbreak in the Canadian Arctic

https://www.ncbi.nlm.
nih.gov/bioproject/?
term=PRJNA549270

NCBI BioProject,
PRJNA549270

References
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics
30:2114–2120. DOI: https://doi.org/10.1093/bioinformatics/btu170

Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla
M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible
implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of
genomes. Scientific Reports 5:8365. DOI: https://doi.org/10.1038/srep08365, PMID: 25666585

Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZ, Depledge DP, Nikolayevskyy V, Broda
A, Stone MJ, Christiansen MT, Williams R, McAndrew MB, Tutill H, Brown J, Melzer M, Rosmarin C, McHugh
TD, Shorten RJ, Drobniewski F, et al. 2015. Rapid Whole-Genome sequencing of Mycobacterium tuberculosis
isolates directly from clinical samples. Journal of Clinical Microbiology 53:2230–2237. DOI: https://doi.org/10.
1128/JCM.00486-15, PMID: 25972414

Bryant JM, Harris SR, Parkhill J, Dawson R, Diacon AH, van Helden P, Pym A, Mahayiddin AA, Chuchottaworn C,
Sanne IM, Louw C, Boeree MJ, Hoelscher M, McHugh TD, Bateson AL, Hunt RD, Mwaigwisya S, Wright L,
Gillespie SH, Bentley SD. 2013. Whole-genome sequencing to establish relapse or re-infection with
Mycobacterium tuberculosis: a retrospective observational study. The Lancet Respiratory Medicine 1:786–792.
DOI: https://doi.org/10.1016/S2213-2600(13)70231-5, PMID: 24461758

Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. 2013. Hierarchical and spatially explicit clustering of
DNA sequences with BAPS software. Molecular Biology and Evolution 30:1224–1228. DOI: https://doi.org/10.
1093/molbev/mst028, PMID: 23408797

Cingolani P, Platts A, Wang leL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for
annotating and predicting the effects of single Nucleotide Polymorphisms, SnpEff: snps in the genome of
Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92. DOI: https://doi.org/10.4161/fly.19695,
PMID: 22728672

Doyle RM, Burgess C, Williams R, Gorton R, Booth H, Brown J, Bryant JM, Chan J, Creer D, Holdstock J, Kunst
H, Lozewicz S, Platt G, Romero EY, Speight G, Tiberi S, Abubakar I, Lipman M, McHugh TD, Breuer J. 2018.
Direct Whole-Genome sequencing of sputum accurately identifies Drug-Resistant Mycobacterium tuberculosis
faster than MGIT culture sequencing. Journal of Clinical Microbiology 56:e00666. DOI: https://doi.org/10.1128/
JCM.00666-18, PMID: 29848567

Guerra-Assunção JA, Houben RM, Crampin AC, Mzembe T, Mallard K, Coll F, Khan P, Banda L, Chiwaya A,
Pereira RP, McNerney R, Harris D, Parkhill J, Clark TG, Glynn JR. 2015. Recurrence due to relapse or reinfection
with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort
with a high HIV infection prevalence and active follow-up. Journal of Infectious Diseases 211:1154–1163.
DOI: https://doi.org/10.1093/infdis/jiu574, PMID: 25336729

Lee et al. eLife 2020;9:e53245. DOI: https://doi.org/10.7554/eLife.53245 13 of 15

Research article Epidemiology and Global Health

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA549270
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA549270
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA549270
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/srep08365
http://www.ncbi.nlm.nih.gov/pubmed/25666585
https://doi.org/10.1128/JCM.00486-15
https://doi.org/10.1128/JCM.00486-15
http://www.ncbi.nlm.nih.gov/pubmed/25972414
https://doi.org/10.1016/S2213-2600(13)70231-5
http://www.ncbi.nlm.nih.gov/pubmed/24461758
https://doi.org/10.1093/molbev/mst028
https://doi.org/10.1093/molbev/mst028
http://www.ncbi.nlm.nih.gov/pubmed/23408797
https://doi.org/10.4161/fly.19695
http://www.ncbi.nlm.nih.gov/pubmed/22728672
https://doi.org/10.1128/JCM.00666-18
https://doi.org/10.1128/JCM.00666-18
http://www.ncbi.nlm.nih.gov/pubmed/29848567
https://doi.org/10.1093/infdis/jiu574
http://www.ncbi.nlm.nih.gov/pubmed/25336729
https://doi.org/10.7554/eLife.53245


Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies.
Bioinformatics 29:1072–1075. DOI: https://doi.org/10.1093/bioinformatics/btt086, PMID: 23422339

Guthrie JL, Strudwick L, Roberts B, Allen M, McFadzen J, Roth D, Jorgensen D, Rodrigues M, Tang P, Hanley B,
Johnston J, Cook VJ, Gardy JL. 2019. Whole genome sequencing for improved understanding of
Mycobacterium tuberculosis transmission in a remote circumpolar region. Epidemiology and Infection 147:
e188. DOI: https://doi.org/10.1017/S0950268819000670, PMID: 31364521

Inuit Tapiriit Kanatami. 2018. Inuit Tuberculosis Elimination Framework: Inuit Tapiriit Kanatami.
Kline SE, Hedemark LL, Davies SF. 1995. Outbreak of tuberculosis among regular patrons of a neighborhood
bar. New England Journal of Medicine 333:222–227. DOI: https://doi.org/10.1056/NEJM199507273330404,
PMID: 7791838

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read
assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722–736. DOI: https://doi.
org/10.1101/gr.215087.116, PMID: 28298431

Lee RS, Radomski N, Proulx JF, Levade I, Shapiro BJ, McIntosh F, Soualhine H, Menzies D, Behr MA. 2015a.
Population genomics of Mycobacterium tuberculosis in the inuit. PNAS 112:13609–13614. DOI: https://doi.org/
10.1073/pnas.1507071112, PMID: 26483462

Lee RS, Radomski N, Proulx JF, Manry J, McIntosh F, Desjardins F, Soualhine H, Domenech P, Reed MB, Menzies
D, Behr MA. 2015b. Reemergence and amplification of tuberculosis in the canadian arctic. Journal of Infectious
Diseases 211:1905–1914. DOI: https://doi.org/10.1093/infdis/jiv011, PMID: 25576599

Lee RS, Proulx JF, Menzies D, Behr MA. 2016. Progression to tuberculosis disease increases with multiple
exposures. European Respiratory Journal 48:1682–1689. DOI: https://doi.org/10.1183/13993003.00893-2016,
PMID: 27824599

Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of
phylogenetic and other trees. Nucleic Acids Research 44:W242–W245. DOI: https://doi.org/10.1093/nar/
gkw290, PMID: 27095192

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome
Project Data Processing Subgroup. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics
25:2078–2079. DOI: https://doi.org/10.1093/bioinformatics/btp352, PMID: 19505943

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. https://arxiv.
org/abs/1303.3997.

Liu Q, Via LE, Luo T, Liang L, Liu X, Wu S, Shen Q, Wei W, Ruan X, Yuan X, Zhang G, Barry CE, Gao Q. 2015.
Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to
treatment. Scientific Reports 5:17507. DOI: https://doi.org/10.1038/srep17507, PMID: 26620446

Martin MA, Lee RS, Cowley LA, Gardy JL, Hanage WP. 2018. Within-host Mycobacterium tuberculosis diversity
and its utility for inferences of transmission. Microbial Genomics 4. DOI: https://doi.org/10.1099/mgen.0.
000217, PMID: 30303479

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly
M, DePristo MA. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Research 20:1297–1303. DOI: https://doi.org/10.1101/gr.107524.110,
PMID: 20644199

Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, Farhat MR, Guthrie JL, Laukens K, Miotto
P, Ofori-Anyinam B, Dreyer V, Supply P, Suresh A, Utpatel C, van Soolingen D, Zhou Y, Ashton PM, Brites D,
Cabibbe AM, et al. 2019. Whole genome sequencing of Mycobacterium tuberculosis: current standards and
open issues. Nature Reviews Microbiology 17:533–545. DOI: https://doi.org/10.1038/s41579-019-0214-5,
PMID: 31209399
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