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Abstract

Background/Objectives—Childbearing is associated with a disproportionate accumulation of 

visceral fat and an increased risk of metabolic disease. However, it is unknown whether the 

visceral fat accretion associated with pregnancy modifies a woman’s risk for metabolic disease. 

The purpose of this study was to test whether the association between abdominal fat and insulin 

sensitivity differs by parity status in healthy overweight women.

Subjects/ Methods—Intra-abdominal adipose tissue (IAAT) via CT, body composition by 

DXA, insulin sensitivity via intravenous glucose tolerance test and minimal model (SI), HOMA-

IR, and cardiorespiratory fitness (VO2max) were assessed in 212 non-diabetic, premenopausal, 

overweight non-Hispanic white and African American women.

Results—Nulliparous women (n=98) were younger, had less IAAT and higher VO2max, but 

similar SI, HOMA-IR, and leg fat, compared to parous (n=114). In nulliparous women, IAAT was 

negatively associated with SI, controlling for age, race, and body fat mass (r=−0.40, p<0.001), but 

this relationship was attenuated in parous women (r=−0.15, p=0.16). In multiple linear regression 

analysis, leg fat and IAAT were significant predictors of SI in nulliparous, but not parous women.

Conclusions—Results suggest that greater IAAT in parous women does not lead to greater 

insulin resistance; rather, transient insulin resistance during pregnancy may encourage intra-

abdominal fat accumulation that is metabolically benign. This underscores the need to consider 

parity when assessing cardiometabolic risk.
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Introduction

Obesity, and particularly visceral or intra-abdominal adipose tissue (IAAT) deposition, is 

strongly related to metabolic disease. Numerous studies have linked insulin resistance and 

diabetes with the accumulation of fat in the visceral compartment (1) and in other ectopic 

sites, such as the skeletal muscle and liver (2, 3). In contrast, leg adipose tissue is positively 

associated with metabolic health (4).

Abdominal fat accumulation is influenced by parity. Parous women have significantly more 

intra-abdominal adipose tissue than nulliparous women (5), with each child increasing IAAT 

by approximately 10 cm2 after adjusting for physical activity, race, and fat gain (6). These 

and other studies imply that having children may result in a higher risk of diabetes (7), 

cardiovascular disease (8), and metabolic syndrome (9), but it remains unknown whether the 

additional IAAT accumulation that has been observed in pregnancy can explain future 

insulin resistance.

Thus, this study was conducted to examine the relationships among body fat distribution, 

insulin sensitivity, and parity status. If the negative association between IAAT accumulation 

and insulin sensitivity persists in parous versus nulliparous women, then increased 

abdominal fat may explain, at least in part, the increased risk of diabetes and metabolic 

syndrome in parous women. This study tests whether the association between fat distribution 

and insulin sensitivity is similar in parous versus nulliparous non-diabetic, overweight, 

premenopausal women.

METHODS

The data presented here are baseline measures from a weight loss study; the main outcomes 

have been published (10–12). Based on previously published data (1), we determined that a 

sample size of 155 subjects is sufficient to achieve a 90% power level with a significance of 

0.05 for a multiple regression model with five predictor variables (SAS Studio 3.5).

Subjects were 203 sedentary (no exercise training during the prior year), overweight (BMI > 

27 and < 30 kg/m2) women between the ages of 20–44 years with no history of diabetes. All 

were tested after a 4-week weight stabilization period during which the subjects were 

weighed 3 times/week with food provided during the last 2 weeks. Food was provided (20–

22% fat, 20–22% protein, and 56–58% carbohydrate) by the General Clinical Research 

Center (GCRC) Kitchen. Women were admitted to the GCRC 2 days prior to all testing to 

ensure that physical activity and diet were standardized. After spending the night in the 

GCRC, testing was completed in the morning in a fasted state. The study was approved by 

the University of Alabama at Birmingham Institutional Review Board and informed consent 

was obtained from all subjects.

Cardiorespiratory fitness

A maximal modified Bruce protocol was used to determine VO2max as previously described 

(13). Heart rate was measured using a POLAR Vantage XL heart rate monitor (Gays Mills, 

WI, USA). Oxygen uptake and carbon dioxide production were measured continuously 
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using a MAX-II metabolic cart (Physiodyne Instrument Corporation, Quogue, NY). Gas 

analyzers were calibrated with certified gases of known concentrations. Standard criteria for 

heart rate (heart rate within 10 beats/min of estimated maximum), respiratory exchange ratio 

(RER above 1.2), and plateauing were used to ensure achievement of VO2max. The 

coefficient of variation for repeat measures of VO2max is less than 3% in our lab.

Body composition and fat distribution

Total and regional body composition, including total fat mass, percent body fat, leg fat mass, 

and lean body mass were measured by dual-energy X-ray absorptiometry (Prodigy; Lunar 

Radiation, Madison, WI). The scans were analyzed with the use of ADULT software, 

version 1.33 (Lunar Radiation). Intra-abdominal adipose tissue (IAAT) was analyzed by 

computed tomography scanning (CT) (14, 15) with a HiLight/Advantage Scanner (General 

Electric, Milwaukee, WI) located in the UAB Department of Radiology. Subjects were 

scanned in the supine position with arms stretched above their heads. A 5 mm scan at the 

level of the umbilicus (approximately the L4–L5 intervertebral space) was taken. Scans were 

analyzed for cross-sectional area (cm2) of adipose tissue using the density contour program 

with Hounsfield units for adipose tissue set at −190 to −30. All scans were analyzed by the 

same individual. The coefficient of variation for repeat cross-section analysis of scans 

among 40 subjects in our laboratory is <2% (14).

Insulin sensitivity

Insulin sensitivity was assessed on an in-patient basis in the GCRC after an overnight fast 

with an insulin-modified, frequently-sampled intravenous glucose tolerance test (IVGTT). 

Flexible intravenous catheters were placed in the antecubital spaces of both arms. Three, 2.0 

ml blood samples were taken over a 20-min period for determination of basal glucose and 

insulin (the average of the values was used for basal "fasting" concentrations). At time "0", 

glucose (50% dextrose; 11.4 g/m2) was administered intravenously. Insulin (0.02 U/kg, 

Humulin, Eli Lilly and Co., Indianapolis) was injected at 20 min post glucose injection. 

Blood samples (2.0 ml) were then collected at the following times (min) relative to glucose 

administration: 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, 20, 21, 22, 24, 26, 28, 30, 35, 40, 45, 50, 55, 

60, 70, 80, 100, 120, 140, 180.

Analyses were conducted in the Core Laboratory of the University of Alabama at 

Birmingham General Clinical Research Center and Clinical Nutrition Research Center. 

Glucose was measured using an Ektachem DT II System (Johnson and Johnson Clinical 

Diagnostics, Rochester, NY). In the Core laboratory, this analysis has a mean intra-assay CV 

of 0.61%, and a mean inter-assay CV of 2.56%. Insulin was assayed in duplicate 100 μl 

aliquots using double-antibody radioimmunoassay (Linco Research Inc., St. Charles, MO, 

Cat #HI-14K). In the Core laboratory, this assay has a sensitivity of 3.35 μIU/ml, a mean 

intra-assay CV of 3.49%, and a mean inter-assay CV of 5.57%.

Sera were stored at −85°C until analyzed. Glucose and insulin values were entered into the 

MINMOD computer program (ver. 3, © Richard N. Bergman) for determination of the 

insulin sensitivity index (SI) (16). The acute insulin response to glucose (AIRg) was 

calculated as the incremental insulin area-under-the-curve from minutes 0–10 following 
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glucose injection using the trapezoidal method. HOMA was calculated using the following 

equation: [fasting glucose (mg/dl) * fasting insulin (uIU/ml)]/405.

Statistics

Data were analyzed using SPSS version 20. After testing variables for normality, SI was log-

transformed to normalize the distribution of this variable. ANOVA was employed to detect 

differences in means from groups created by self-reported parity status. Equality of 

variances was confirmed using Levene’s test. Relationships among fat distribution measures 

and SI were tested through partial correlations controlled for age, race, and total body fat 

mass. Multiple linear regression analysis was used to identify significant predictors of SI 

within each group, with IAAT, race, age, leg fat mass, and VO2max as independent variables.

RESULTS

Nulliparous women (n=89) were younger, had less IAAT, and higher cardiorespiratory 

fitness (VO2max), but showed no difference in SI, HOMA-IR, or leg fat, when compared to 

parous women (n=114) (Table 1 and Figure 1).

IAAT was strongly and inversely associated with SI in nulliparous women, but not in parous 

women (Figure 2A). These relationships remained robust whether the analyses were 

controlled for total body fat mass, leg fat mass, and/or VO2max.

Leg fat was positively associated with SI in both parous and nulliparous women, when 

controlled for age, race, and total body fat mass. This relationship is illustrated in Figure 2B. 

Leg fat was inversely associated with IAAT in parous (r= −0.363, p< .001), and tended to be 

associated in nulliparous (r= −0.203, p=.051), women (not shown).

Multiple linear regression analyses indicated that IAAT, age, leg fat, race, and 

cardiorespiratory fitness were all independent predictors of SI in nulliparous women. In 

parous women, however, race was the only one of these predictors that achieved significance 

(Table 2).

DISCUSSION

The primary finding of this study was that parity decreases if not eliminates the relationship 

between fat distribution and insulin sensitivity/resistance. Although IAAT is often thought to 

“cause” insulin resistance, our data show that insulin sensitivity did not differ with parity 

status, despite higher IAAT in parous women. Importantly, the expected inverse relationship 

between IAAT and insulin sensitivity was observed in nulliparous but not parous women. 

This demonstration of dissociation implies that higher levels of IAAT may not necessarily 

impact insulin resistance as strongly in parous as in nulliparous women. We also observed 

that the “protective” effect of leg fat decreased with parity, despite no difference in leg fat or 

insulin sensitivity/resistance between parity status. Thus, the commonly observed 

associations among fat distribution and insulin sensitivity/resistance may indicate co-

occurring epi-phenomena, or may reflect the ability of insulin sensitivity/resistance to 

regulate fat patterning.
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In our data, IAAT was associated with SI in nulliparous but not in parous women. The cause 

of the dissociation of IAAT from SI after pregnancy is unclear. One theory we propose is 

that insulin sensitivity leads to peripheral fat accretion, whereas insulin resistance 

encourages visceral fat accumulation. As women develop transient insulin resistance during 

pregnancy (17), gestational weight gain leads to deposition of IAAT. After pregnancy, 

insulin sensitivity returns, however epigenetic programming results in maintenance of IAAT 

stores.

Leg fat is considered a metabolically benign adipose depot; i.e., it is not associated with 

adverse health consequences. In fact, clinical research studies (4) and epidemiological 

observation (18, 19) have both shown that greater leg fat is associated with more favorable 

health outcomes. Leg fat is characterized by a low free fatty acid flux. Thus it is possible that 

leg fat protects the system from excessive exposure to free fatty acids, which can promote 

insulin resistance (20). However, an alternative explanation is that metabolically healthy, 

insulin sensitive individuals are prone to depositing fat in the leg area. In contrast, because 

leg fat accrual is regulated by insulin, insulin resistant individuals are less able to deposit fat 

in the leg area. These relationships support the concept that fat is partitioned based on 

underlying endocrine factors that direct lipid storage to one depot vs the other. Thus, fat 

pattern (intra-abdominal vs leg) is a marker for insulin sensitivity/resistance.

When looking at the association between leg fat and insulin sensitivity, greater leg fat was 

associated, as expected, with higher SI in nulliparous women. However in parous women, 

leg fat was not associated with insulin sensitivity. Thus, parity essentially eliminated the 

association of leg fat with insulin sensitivity. It is important to note that neither leg fat mass 

nor SI differed with parity; only the association amongst variables differed. Although we do 

not know the basis for this dissociation, it is possible that the metabolic properties of leg fat 

are altered following parity, perhaps due to exposure to the high concentrations of 

reproductive hormones during pregnancy.

Transient insulin resistance develops over the course of a normal pregnancy. Estrogen, 

progesterone, and human placental growth hormone (hPGH) (21) increase steadily 

throughout pregnancy and are thought to be responsible for alterations in both insulin 

sensitivity (17) and beta cell activity (22). Additionally, increased estrogen levels also have 

been associated with subcutaneous fat deposition in mice (23). Therefore, increased estrogen 

levels may explain the reduced association between leg fat deposition and insulin sensitivity 

in this cohort of women. Moreover, human placental lactogen (hPL) activity is affected by 

circulating levels of serum glucose and its function, at least in part, is to promote lipolysis 

(24). This hormone is elevated in response to hypoglycemic states and inhibited in 

hyperglycemic environments, and therefore may have a contributing role in adipose storage 

during a state of insulin resistance. How these hormones, and others, influence body fat 

distribution in obese women during pregnancy is uncertain.

The limitations of this study should be considered. This study is cross-sectional and does not 

necessarily capture the changes that occur during pregnancy. Additionally, the time span 

since gestation is inconsistent among these women. It is possible that IAAT accumulation 

and its relationship with insulin sensitivity change over the course of time since gestation. 
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The SI index reflects both insulin-stimulated glucose uptake and insulin inhibition of hepatic 

glucose production. Since SI is a “whole body” index, it is difficult to interpret. One 

consideration is that the relative contributions by muscle and liver may differ among the sub-

groups in this study. Furthermore, this study included both African American and non-

Hispanic white women; racial differences have been reported among the relationships 

involving fat distribution and insulin sensitivity/resistance (2). As seen in the regression 

models, our data showed an influence of race on SI and therefore may be an important 

consideration, especially in parous women. While beyond the scope of the current project, 

racial differences in these relationships should be examined in future studies.

In conclusion, the relationships among fat distribution measures and insulin sensitivity/

resistance in women vary as a result of reproductive history. Greater IAAT in parous women 

was not associated with lower SI, and the “protective” effect of leg fat was less apparent in 

parous women. Therefore, if childbearing is indeed associated with a higher risk of 

cardiometabolic disease, it may not be due to metabolic impairment caused by excess 

visceral fat. On the contrary, we propose that the increased accretion of visceral fat 

associated with pregnancy is due to transient insulin resistance, which becomes resolved 

shortly post-partum. This underscores the need to consider parity when assessing 

cardiometabolic risk.
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Figure 1. 
Abdominal and leg fat accumulation in overweight nulliparous and parous women.

Solid bars represent intra-abdominal adipose tissue (IAAT) in nulliparous (N=98) and parous 

(N=104) women. Striped bars represent leg fat mass. ***Indicates mean difference between 

parous and nulliparous women at p<0.001.
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Figure 2. 
A and B. Correlations between intra-abdominal adipose tissue (IAAT) or leg fat (as residuals 

controlled for age, race, and body fat) and insulin sensitivity index (Log 10 SI) in parous vs. 

nulliparous women. Trend lines are displayed for significant relationships only. Nulliparous 

women (NP) are indicated with open shapes and significant relationships illustrated with 

dashed lines. Parous women are indicated with filled shapes and solid lines. Two-tailed level 

of significance indicated with *p<0.05, **p<0.01, or ***p<0.001.
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Table 1

Characteristics of study population by parity status.

Parous Nulliparous

N 114 98

Race (AA/ NHW) 58/56 50/48

Age (years) 36.4 ± 5.1 31.3 ± 6.4*

BMI 27.5 ± 4.7 27.3 ± 5.1

# Children 1.8 ± 0.7 0.0 ± 0.0*

Lean Mass (kg) 43.5 ± 4.2 43.5 ± 4.3

SI(x10−4min−1(µU/ml)) 3.2 ± 2.2 3.0 ± 1.4

HOMA-IR 2.6 ± 0.9 2.4 ± 0.8

VO2max (ml/kg.min) 27.7 ± 3.6 29.5 ± 4.0*

IAAT (cm2) 85.4 ± 30.3 69.6 ± 31.4*

SAT (cm2) 333.4 ± 79.3 331.2 ± 99.8

Leg tissue (kg) 27.4 ± 3.5 27.3 ± 3.6

Leg fat (kg) 13.4 ± 2.5 13.2 ± 2.7

% Body Fat 43.6 ± 3.6 43.0 ± 4.2

Glucose (mg/dl) 88.0 ± 6.3 86.7 ± 6.7

Insulin (µU/ml) 11.7 ± 3.9 11.3 ± 3.4

Data are reported as mean ± standard deviation, unless otherwise indicated.

*
Indicates mean difference at p< 0.01.

AA, African American; NHW, non-Hispanic white; BMI, body mass index; S<sub>I</sub>, insulin sensitivity index; HOMA-IR, homeostasis 
model assessment of insulin resistance; VO<sub>2max</sub>, maximal oxygen consumption; IAAT, intra-abdominal adipose tissue; SAT, 
subcutaneous abdominal adipose tissue.
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