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Abstract: Diabetic retinopathy (DR) is the most common cause of blindness in people under the
age of 65. Unfortunately, the current screening process for DR restricts the population that can be
evaluated and the disease goes undetected until irreversible damage occurs. Herein, we aimed
to evaluate homocysteine (Hcy) as a biomarker for DR screening. Hcy levels were measured by
enzyme-linked immuno sorbent assay (ELISA) and immunolocalization methods in the serum,
vitreous and retina of diabetic patients as well as in serum and retina of different animal models of
DM representing type 1 diabetes (streptozotocin (STZ) mice, Akita mice and STZ rats) and db/db
mice which exhibit features of human type 2 diabetes. Our results revealed increased Hcy levels
in the serum, vitreous and retina of diabetic patients and experimental animal models of diabetes.
Moreover, optical coherence tomography (OCT) and fluorescein angiography (FA) were used to
evaluate the retinal changes in mice eyes after Hcy-intravitreal injection into normal wild-type (WT)
and diabetic (STZ) mice. Hcy induced changes in mice retina which were aggravated under diabetic
conditions. In conclusion, our data reported Hcy as a strong candidate for use as a biomarker in DR
screening. Targeting the clearance of Hcy could also be a future therapeutic target for DR.
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1. Introduction

Diabetic retinopathy (DR) is one of the most substantial microvascular complications of diabetes
mellitus (DM), and is the most common cause of blindness in people under the age of 65 [1].
Unfortunately, DR can go undetected and not even noticed until irreversible damage and blindness
has occurred [2]. DR is caused by damage to the blood vessels, resulting in retinal ischemia and
increased permeability. New blood vessel formation (neovascularization) and diabetic macular edema
(DME) are common characteristics for the disease [3]. Currently, retinopathy can only be diagnosed
by a qualified specialist, either via direct proper examination of the eye or the examination of images
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captured by appropriate health care staff, which is costly and therefore restricts the population that
can be effectively screened. An easily available, reliable screening biomarker of diabetic retinopathy
would be of great benefit in identifying the population in need of further assessment and treatment [4].
Our research highlights homocysteine (Hcy) as a biomarker for DR that shows possibilities as a screening
marker to detect early diabetic retinopathy or even to detect patients at an increased risk of DR at the time
of diagnosis of diabetes. In addition, targeting Hcy clearance could be a future therapeutic target for DR.

Hcy is a sulfur-containing amino acid that is formed entirely upon the demethylation of
the essential amino acid methionine, which is found principally in red meat and dairy products.
Hcy is nutritionally controlled and metabolized through two pathways: The remethylation and
trans-sulfuration pathways. Vitamins B6, B12 and folic acid (folate) serve as cofactors in Hcy
metabolism. To accomplish normal metabolism of Hcy, the body requires adequate amounts of
folic acid, vitamin B12 and vitamin B6, and due to the absence of these cofactors, Hcy can easily
accumulate to harmful levels [5]. Normally, the human body is able to get rid of excess Hcy via the
transsulfuration pathway, by which Hcy is converted to cystathionine by cystathionine β-synthase
(CBS) enzyme by converting it into an antioxidant glutathione. The normal total plasma content of
Hcy varies from 3–15 µM, and elevated plasma levels are termed hyperhomocysteinemia (HHcy).
The ranges of Hcy elevated levels have been referred to as mild (16–30 µM), moderate (31–100 µM),
or severe (>100 µM). High levels of Hcy in the blood have been reported to be an independent risk
factor for heart disease as well as associated with kidney and brain disease [6–8].

Recently, elevated Hcy level has gained special consideration in relation to DR in several clinical
studies, suggesting an association between elevated serum Hcy levels and the risk of DR [9–17].
There is an association between HHcy and diabetes-induced microangiopathies (diabetic nephropathy,
retinopathy and macular edema) [18–21]. Studies suggested a strong relationship between elevated
Hcy levels and DR. However, the exact role of HHcy in the development of DR is not clearly
elucidated. There is clear evidence that Hcy induces the death of retinal ganglion cells in vitro [22]
and in vivo [23]. Furthermore, vasculopathies linked to HHcy include endothelial dysfunction, vessel
wall malformations, loss of extracellular matrix collagen, and disruption of the blood–brain barrier
(BBB) in rodents and humans [24]. Impaired endothelial cell function has been also reported in vitro
and in vivo in HHcy [25]. Moreover, our previous work reported a direct impact of excess Hcy on
the blood–retinal barrier (BRB), induced retinal ischemia and neovascularization, increased vascular
endothelial growth factor (VEGF) level in retina [26–28], activation of endoplasmic reticulum (ER)
stress [29], activation of oxidative stress [30] and induced epigenetic modifications [31].

2. Experimental Section

2.1. Animals

All animal procedures followed the Association for Research in Vision and Ophthalmology
(ARVO) Statement for Use of Animals in Ophthalmic and Vision Research policies and were
accomplished in accordance with the Institute for Animal Care and Use Committee and Augusta
University policies (IACUC Approval for Protocol 2014-0683) C57Black6 mice, Akita mice and
Sprague–Dawley (SD) rats were obtained from Jackson Laboratories). Type 2 diabetic mice (db/db)
were also obtained from Jackson Laboratories and bred according to the Jackson Laboratory
recommendations (BKS.Cg-Dock7m+/+Leprdb/J). All animals were group-housed, subjected to the
standard 12-hour light/12-hour dark cycle, provided with food and water ad libitum and kept at a
temperature range of 22–24 ◦C. Genotypes were confirmed according to the Jackson Animal Laboratory
genotyping protocols specific to each genotype.

2.2. STZ Injections

Six to eight-week old C57BL/6 mice and Sprague–Dawley (SD) rats were injected intraperitoneally
(IP) with streptozotocin (STZ) at 50 mg/kg to induce diabetes. Mice were injected with STZ for three
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consecutive days, while SD rats received a single IP dose (animals were fasted for 4 h prior to injection).
The mice and rats were evaluated 3 days after the STZ injection series to determine if they were
sufficiently diabetic. A blood glucose concentration that exceeded 300 mg/dL was considered diabetic.

2.3. Measurement of Homocysteine Level

The concentration of Hcy in the blood and retinas of humans and different animal models of
diabetes, representing type 1 and type 2 diabetes (STZ-treated mice, db/db mice and STZ-treated
rats)—was determined using an Hcy Enzyme Linked Immunosorbent Assay (ELISA) kit from Cell
Bio Labs Inc (STA-670) (San Diego, CA, USA). Human vitreous samples were a generous gift from Dr.
Gregory I. Liou, Department of Ophthalmology, and Augusta University. Samples were derived from
donors (Georgia Eye Bank, Atlanta, GA, USA). The selection criteria included an age >50 years old,
with donors being either insulin-requiring diabetes (with DR) or normal control and no life-support
measures. The eyes were enucleated an average of 6.71 ± 0.84 h after death. Postmortem eye specimens
were utilized for vitreous collection by aspiration [32]. The patient’s blood samples were provided
by Dr. Margaret M. DeAngelis and IRB was approved by the University of Utah. The collected
retinas were rinsed with 1×phosphate-buffered saline (PBS), homogenized in 1× PBS and kept at
−20 ◦C overnight. To break the cell membranes, two freeze–thaw cycles were performed, and then
the homogenates were centrifuged for 5 min at 5000× g at 4◦C. The supernatant was separated and
assayed immediately according to the protocol provided with the kit. The blood samples collected
were allowed to clot in serum separator tubes (SST) for a minimum of 2 h at room temperature prior to
centrifugation at 1000× g for 15 min. The serum was collected and immediately assayed according to
the protocol provided with the kit. The readings were taken at 450 nm using an ELISA plate reader.

2.4. Measurement of Cystathionine Beta-Synthase(CBS)Enzyme Level

The concentration of CBS in the serum from human patients with and without diabetes and
from diabetic mice was determined using a CBS ELISA assay kit from My BioSource (MBS700623)
(San Diego, CA, USA). Blood samples were allowed to clot in serum separator tubes (SST) for a
minimum of 2 h at room temperature prior to centrifugation at 1000× g for 15 min. The serum was
collected and immediately assayed according to the protocol provided with the kit.

2.5. Optical Coherence Tomography (OCT) and Fluorescein Angiography (FA)

OCT and FA imaging were used to evaluate the retinal vasculature in living mice according to our
published methods [28,31]. Briefly, 2% isoflurane was used to anesthetize mice and 1% tropicamide
eye drop was used to dilate their pupils. The anesthetized mice were then individually placed on the
imaging platform of the Phoenix Micron III retinal imaging microscope accompanied with an OCT
imaging device (Phoenix Research Laboratories, Pleasanton, CA, USA). Then, Genteal gel was applied
liberally to keep the eye moist during imaging. For FA, 10% fluorescein sodium (Apollo Ophthalmics,
Newport Beach, CA, USA) was injected to the mice (IP, 10 to 20 µL), and fluorescent images were
rapidly captured for ~5 min. Indistinct vascular borders progressing to diffusely hazy fluorescence
was considered as fluorescein leakage.

2.6. Immunofluorescent Assessment of Hcy Level

Retinal cryosections were prepared according to our previously published method [28,30]. First,
the retinal sections were fixed with 4% paraformaldehyde. The fixation was followed by washing with
PBS–Triton X-100, blocking with Power Block (BioGenex, Fremont, CA, USA), and then incubation with
an anti-homocysteine antibody (Catalog number; ab5512 rabbit polyclonal, Chemicon International
Inc., Temecula, CA, USA) at 37 ◦C for 3 h or at 4 ◦C overnight. The sections were subsequently washed
with PBS–Triton X-100 three times. Then, the sections were incubated with the appropriate secondary
antibody at 37 ◦C for 1 h. Sections were then washed with PBS–Triton X-100 and Fluoroshield with
DAPI (4’6-diamidino-2-phenylindole) was applied, followed by the placement of a coverslip (Sigma
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Aldrich F6057, Saint Louis, MO, USA) to label the nuclei. Thereafter, sections were examined and
images were captured using fluorescent microscopy (Carl Zeiss, Göttingen, Germany).

2.7. Statistical Analysis

The results are expressed as mean ± standard deviation SD. The assessment of differences among
experimental groups was performed using the two-tailed t test or one-way analysis of variance
(ANOVA). Detection of statistical differences by ANOVA was followed by a post hoc Tukey’s test to
determine which groups differed. Statistical significance was considered at a confidence level of p < 0.05.

3. Results

3.1. Elevated Hcy Levels in Serum, Vitreous and Retina of Diabetic Patients and Experimental Diabetic Animals

To evaluate Hcy as a potential biomarker for the development of retinal complications in diabetes,
we tested changes in Hcy level in the blood and retina of experimental models of type1and type 2
diabetes (STZ mice and rats and db/db mice, respectively). Our results showed increased Hcy levels in
the blood and retina of diabetic animals compared to corresponding non-diabetic controls. In humans,
the serum and vitreous levels of Hcy were significantly increased in diabetic patients compared to
non-diabetic controls, suggesting that elevated Hcy levels might represent a risk factor for development
of DR (Figure 1).
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Figure 1. Assessment of Hcy level by enzyme-linked immuno sorbent assay (ELISA). (A) Blood and
(B) retina of streptozotocin (STZ)-injected mice showed a significant increase in Hcy level compared
to the wild-type (WT) group (* p < 0.05, ** p < 0.01). (C) Blood and (D) retina of genetically obese
leptin receptor-deficient mice (db/db) showed a significant increase in Hcy level compared to the WT
group (* p < 0.05). (E) Blood and (F) retina of STZ-injected rats showed a significant increase in Hcy level
compared to the WT group (* p < 0.05, *** p < 0.001). (G) Blood and (H) vitreous of diabetic patients showed
a significant increase in Hcy level compared to the control non-diabetic group (*** p < 0.001, * p < 0.05).

3.2. Hcy Immunolocalization in the Retina of Diabetic Patients and Experimental Diabetic Animals

In order to identify Hcy expression in the retina of diabetic patients, we performed Hcy
immunostaining in frozen sections from human diabetic retina. Our results showed both marked
immunoflourescent and immunohistochemical staining of Hcy in diabetic human retinal sections
(Figure 2a). Further, we performed Hcy immunofluorescence in various experimental models of
type1and type 2 diabetes. STZ-injected mice and rats as well as Akita mice were used as experimental
models of type 1 diabetes. However, db/db mice were used as an experimental model of type 2
diabetes. Immunoflourescent staining showed an increased expression of Hcy in retinal sections from
various diabetic animals compared to the corresponding WT non-diabetic controls (Figure 2b).
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Figure 2. Immunolocalization of Hcy in diabetic retina. (a) Immunoflourescent staining (top panel)
of retinal cryosections from diabetic patients (green fluorescence detects Hcy and 4’6-diamidino-
2-phenylindole (DAPI) (blue) detects nuclei). Immunohistochemical detection (bottom panel) of Hcy
(brown) in retinal cryosections from diabetic patients (yellow arrows). (b) Immunoflourescent staining
of retinal cryosections from wild-type (WT) mice (upper left panel), STZ-injected mice (upper middle
panel), db/db mice (upper right panel), Akita mice (lower left panel), WT rats (lower middle panel) and
STZ-injected rats (lower right panel). Green fluorescence detects Hcy and DAPI (blue) detects nuclei.

3.3. Down Regulation of CBS in the Serum of Diabetic Patients and Experimental Diabetic Animals

Cystathionine beta-synthase (CBS) catalyzes the first step in Hcy clearance through the
transsulfuration pathway by converting Hcy and serine to cystathionine and water. To determine
whether changes in CBS levels are associated with altered Hcy levels in diabetes, we tested the CBS
level in the serum of diabetic patients and experimental diabetic animals. Our data demonstrated
significantly lower levels of CBS in diabetic subjects compared to non-diabetic control (Figure 3).
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Figure 3. Assessment of cystathionine beta-synthase (CBS) level by ELISA. (A) Serum samples from
diabetic patients demonstrated a significant decrease in CBS level compared to the control non-diabetic
group (*** p < 0.001). (B) STZ-injected mice, (C) db/db mice and (D) Akita mice demonstrated a
significant decrease in blood CBS level compared to corresponding control groups (* p < 0.05).
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3.4. Optical Coherence Tomography (OCT) and Fluorescein Angiography (FA)

To confirm the link between Hcy and microvascular dysfunction in diabetic retina, OCT and
FA were performed in WT and diabetic mice injected intravitreally with Hcy. Consistent with our
previous publications [26–28,31], in the current study, OCT examination showed alterations in retinal
vasculature with neovascularization in both inner (white arrows) and outer retina (yellow arrows),
and disrupted retinal morphology, such as sub-retinal fluid accumulation, separation of the retinal
pigmented epithelial layer, and thickening of the basal laminar membrane and the choroid, suggesting
neovascularization. Also, STZ-injected mice demonstrated decreased vessel integrity and an impaired
blood–retinal barrier (BRB), indicated by increased fluorescein leakage as well as disrupted retinal
morphology, when compared to the WT mice. Furthermore, to evaluate the changes of the combined
effect of elevated Hcy and diabetes on the retina, STZ-treated mice given intravitreal injections of Hcy
were subjected to FA and OCT. Hcy-injected diabetic mice showed more deleterious effects on the
retinal architecture, decreased vessel integrity and more impairment of the BRB.FA showed increased
fluorescein leakage with focal spots of hyperfluorescence, and OCT results showed more distortion in
retinal morphology and BRB integrity and neovascularization compared to Hcy-injected and diabetic
mice alone (Figure 4).
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Figure 4. Retinal Fluorescein Angiography (FA) and Optical Coherence Tomography (OCT) assessment
of wild-type (WT) mice, Hcy-intravitreal injected mice, STZ-injected mice and Hcy+STZ injected
mice (8–10 weeks diabetic). FA demonstrated well-formed vessels in WT mice. FA for Hcy-injected
mice showed hyperfluorescence, indicating vascular leakage. Similarly, the FA of STZ-injected mice
showed decreased vessel integrity and a disrupted blood–retinal barrier (BRB), indicated by increased
fluorescein leakage (pale green haziness). However, the FA of Hcy injected STZ- mice showed focal
spots of hyperfluorescence, indicating more significant vascular leakage (A). OCT examination showed
a typical normal architecture of retinal layers in WT mice, but a disruption of retinal morphology
in Hcy-injected mice (white and yellow arrows). These changes were also observed in the OCT of
STZ-injected mice. However, the OCT of Hcy+STZ injected mice demonstrated marked structural
alteration with sub-retinal fluid leakage and neovascularization in both the inner retina (white arrows)
and outer retina (yellow arrows) (B).

4. Discussion

This study was conducted to highlight Hcy as a marker and may be a future therapeutic target
for DR. Recently, the association between Hcy and (DM) has gained increasing attention. Many
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studies reported increased levels of Hcy in the plasma of type 1 diabetes mellitus (T1DM) patients
compared to non-diabetic controls [33,34]. It was also reported in a meta-analysis study that plasma
Hcy concentrations in T1DM patients without any complications were normal compared with healthy
people. However, plasma Hcy concentrations showed significant elevations only in T1DM patients
with DR compared with T1DM patients without any complications [12], suggesting that increased Hcy
levels during DM contributes to the development of retinopathy. In contrast, some studies reported
no significant difference in Hcy levels between T1DM and non-diabetic patients [35], yet patients
with proliferative retinopathy display significantly higher values of Hcy than those without [21].
Hcy level was also reported to be more elevated in type 2 diabetes mellitus (T2 DM) patients than
controls [36–40]. On the other hand, some studies refuted the link between HHcy and incidence of
retinopathy in diabetic patients [40,41]. Indeed, it was reported that T1DM patients had lower levels
of Hcy and global DNA methylation [42]. A recent study reported that elevated Hcy levels were
associated with an increased risk of DR, especially in T2DM patients [43].

Therefore, the current study aimed to solve this controversy by confirming what has been reported
in human studies and also measured Hcy levels in different animal models of DM representing T1DM
(STZ mice, Akita mice and STZ rats) and T2 DM (db/db mice). Our study showed a significant increase
in Hcy levels in both human and different animal models of diabetes. There are many causes that
have been suggested for increased Hcy levels, such as the deficiency of vitamin cofactors needed for
Hcy metabolism, such as folic acid and vitamin B12 [44–47], or the deficiency of any of the enzymes
involved the remethylation [48] or transsulfuration [49] pathways of the Hcy metabolism. Our study
showed that the differences in the serum and retinal levels of Hcy were statistically significant between
the control and diabetic groups in both humans and animals. In addition, our study showed a
significant reduction of the CBS enzyme level, which is a key enzyme needed for Hcy clearance
via the transsulfuration pathway, in both human and animal models of DR. Ratnam et al.reported
that insulin plays a role in regulating Hcy metabolism, and impaired insulin levels in diseases such
as diabetes may influence Hcy metabolism by regulating the hepatic transsulfuration pathway [50].
Diabetic nephropathy is a common microvascular complication of diabetes and could play a role
in elevated Hcy levels due to chronic kidney insufficiency and impaired Hcy clearance. However,
a recent clinical study was conducted on 163 normo-albuminuric patients with T1DM and normal renal
function to examine whether there is an independent relationship between plasma total homocysteine
(tHcy) and retinopathy in normo-albuminuric T1DM patients with normal estimated glomerular
filtration rate (eGFR). The study suggested that tHcy is independently associated with retinopathy
in normo-albuminuric T1DM with normal eGFR [17]. Furthermore, another large study of European
type 1 diabetic patients stated that increased concentrations of tHcy were independently related to
macro-albuminuria, renal function and hypertension [51].

Moreover, various studies reported the mechanism of action of Hcy leading to retinal
neurodegeneration using different animal models. Hcy has been reported to induce apoptosis in
retinal ganglion cells and induced ganglion cell loss via the dysregulation of mitochondrial dynamics
in vivo and in vitro [52–54]. The activation of N-methyl D-aspartate (NMDA) receptors has been
also suggested as a possible mechanism of HHcy-induced retinal ganglion cell death during DR in
several studies [54–59]. Other studies suggested that HHcy exerts its toxic effect via the activation of
inflammatory and oxidative stress mechanisms leading to the activation of mitogen-activated protein
kinases (MAPK), macrophage infiltration and enhanced pro-inflammatory cytokines production [60].
Moreover, HHcy elicits oxidative stress and decreases nitric oxide’s bioactivity, leading ultimately to
vascular dysfunction [61]. Our previous work demonstrated that HHcy caused dysfunction of the
BRB, disrupts retinal pigment epithelial structure and function, activates oxidative and endoplasmic
reticulum stresses and induces retinal neovascularization and epigenetic modifications [27–31].
The current study found that HHcy caused similar structural changes to what has been reported
in our previous publications [27,28,31] when injected intravitreally in mice retina, and these changes
were more deleterious when Hcy was injected in diabetic mice, suggesting the involvement of Hcy in
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the pathogenesis of diabetes-induced retinal damage. This was consistent with what has been reported
by Srivastav et al.—That Hcy level was correlated with the decrease in the thickness of the retinal
nerve fiber layer in diabetic patients—and suggested a correlation between increased serum levels of
Hcy and an increased severity of retinopathy [11].

5. Conclusions

The current study is innovative in suggesting a correlation between elevated levels of Hcy in
serum and in retina and DR in both diabetic human and animal models of diabetes. Furthermore,
our results suggest an association between increased serum levels of Hcy and an increased severity
of retinopathy. Therefore, Hcy could be a useful diagnostic marker for screening to predict the
incidence and severity of retinal damage in diabetic patients. In addition, enhancing Hcy clearance
via pharmacological or genetic manipulations could be a future preventive/therapeutic strategy in
targeting diabetic retinopathy.
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