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ABSTRACT Serratia marcescens is an opportunistic human pathogen that is known
to cause hospital-acquired respiratory and urinary tract infections. Here, we an-
nounce the complete genome sequence and the features of S. marcescens phage
Serbin.

Serratia marcescens is a Gram-negative rod-shaped bacterium present in abundance
in the environment, and infections by this bacterium are often hospital acquired

and localized to the respiratory, urinary, and gastrointestinal tracts (1–3). The study of
S. marcescens phages may help control S. marcescens in hospital settings.

Phage Serbin was isolated using an S. marcescens strain from a pond water sample
collected from College Station, Texas. Nutrient broth or agar (Difco) was used to culture
the host bacteria and for phage enrichment at 37°C with aeration. Phage isolation and
propagation were conducted by the soft agar overlay method (4). Phage genomic
DNA was prepared using a modified Promega Wizard DNA cleanup kit protocol as
described previously (5). Pooled indexed DNA libraries were prepared using the Illu-
mina TruSeq Nano low-throughput (LT) kit, and a sequence was obtained with the
Illumina MiSeq platform using the MiSeq v2 500-cycle reagent kit following the manufac-
turer’s instructions, producing 538,626 paired-end reads (250-bp read length) for the
index containing the phage genome. The quality of the reads was checked in FastQC
0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and reads were
trimmed with FastX Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download
.html) and assembled in SPAdes 3.5.0 (6). The assembled genome was closed by PCR
using primers (5=-CCCGACCGTTAAGACTGATTAC-3= and 5=-CACCGAAGAGCACAAGA
AGA-3=) facing away from the center of the assembled contig and by Sanger sequenc-
ing of the resulting product, with the contig sequence manually corrected to match
the resulting Sanger sequencing read. Protein-coding genes were predicted using
GLIMMER 3.0 (7) and MetaGeneAnnotator 1.0 (8) and corrected manually if needed. The
tRNA genes were predicted using ARAGORN 2.36 (9). Protein functions were predicted
by comparing predicted protein sequences to the NCBI nonredundant (nr) database
using BLASTp 2.2.28 (10), and conserved domains were analyzed using InterProScan
5.15-54.0 (11). All analyses were performed under default settings using the CPT
Galaxy (12) and Web Apollo (13) interfaces (https://cpt.tamu.edu).

Serbin has a 42,882-bp genome assembled with 1,968.4-fold coverage. There were
69 protein-coding genes identified, with only 25 having predictable functions. The
genome has a GC content of 51.6% and a coding density of 96.6%. Using the
progressiveMAUVE algorithm (version 2.4.0) (14), Serbin shows little recognizable DNA
sequence similarity to any other phage in the NCBI nucleotide database. At the protein
level, phage Serbin is related to a distinct Escherichia coli phage group reported
previously, which includes the representative E. coli phage 9g (GenBank accession
no. NC_024146) (15) and the more recently described four E. coli phages (16)
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JenP2 (accession no. KP719133), JenP1 (accession no. KP719132), JenK1 (accession no.
KP719134), and CAjan (accession no. KP064094). As determined by a BLASTp search
(expect [E] value of �10�3), Serbin shares 22 similar proteins with these groups of E. coli
phages, but Serbin does not have the identifiable gene cluster encoding queuosine
synthesis, which is a feature shared by the phages 9g, JenP2, JenP1, JenK1, and CAjan
(15, 16). Three DNA biosynthesis genes, namely thymidylate kinase, thymidylate syn-
thase, and cytidine deaminase, were found close to one another in a set. These three
genes are involved with the metabolism of nucleotides, specifically that of thymidine
and cytidine (17, 18). A lysis cassette was identified, with genes coding for a holin,
endolysin (N-acetylmuramidase), and a partially embedded i-spanin/o-spanin motif.

Data availability. The genome sequence of phage Serbin was deposited under

GenBank accession no. MK608336. The associated BioProject, SRA, and BioSample
accession numbers are PRJNA222858, SRR8788533, and SAMN11260686, respectively.
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