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Lessons learned from the eMERGE Network: balancing genomics in
discovery and practice

eMERGE Consortium*
Summary
The Electronic Medical Records and Genomics (eMERGE) Network, established in 2007, is a consortium of academic and integrated

health systems conducting discovery and implementation research in translational genomics. Here, we outline the history of the

network, highlight major impacts and lessons learned, and present the tools and resources developed for large-scale genomic analyses

and translation into a clinical setting. The network developed methods to extract phenotypes from the electronic medical record to

perform genome-wide and phenome-wide association studies. Recruited cohorts were clinically sequenced off a custom panel for tar-

geted sequencing of variants and monogenic disease risks and returned to participants to investigate the impact of return of genomic

results. After generating a 105,000 participant-imputed genome-wide association study (GWAS) dataset for discovery, the network

enrolled and sequenced 24,998 participants. Integration of these results into the medical record and the effects of results on participants

provided key lessons to the field. These learned lessons inform genetic research in diverse populations and provide insights into the clin-

ical impact of return and implementation of genomic medicine using the electronic medical record. The lessons produced by the

eMERGE Network can be utilized by other consortia as translational genomic medicine research evolves.
The utilization of electronic medical record (EMR) data for clinical

research has been an integral component of translational science

over the last 15 years.1,2 The ability to pair clinical data with bio-

bank samples and conduct large-scale genome-wide association

studies (GWASs) has paved the way for translational research to

provide insights into diabetes,3 cataracts,4 cardiovascular disease,5

and obesity,6 among many others.7,8 The Electronic Medical Re-

cords and Genomics (eMERGE) Network has pioneered discovery

research methods using longitudinal EMR data linked to genotyp-

ing and sequence data9–13 across diverse geographical, racial, and

age distributions. To date, the network has produced a merged,

imputed, multi-sample genotyping file representing data from

105,000 participants recruited across three phases14–16 to investi-

gate genetic associations with disease phenotypes.16–18 In later

phases, the scope of the network expanded to include the clinical

applications of genetics. Diverse sites, including pediatric and adult

academic medical centers, integrated health systems, and commu-

nity-based clinics, have sequenced clinically relevant portions of

the genome and returned actionable results using the EMR. This di-

versity provided a natural experiment to study differences and

aggregate lessons learned for delivering both sequencing and phar-

macogenomic data to diverse populations. As a result, the network

has contributed to research in clinical genomics,14,15 pharmacoge-

nomics,19 phenotyping of clinically relevant diseases,20 clinical

annotation,21 return of results (RoRs),22 and assessment of clinical

outcomes.23 The network’s work on establishingmethods for trans-

mitting genetic test results from laboratories into heterogeneous

health care provider organizations and into clinical practice has

helped the network activities span discovery and patient care.24

This paper describes how the network was structured to achieve

clinical implementation and ongoing discovery-based research

and provides an overview of developed tools, lessons learned,

and resources available to other researchers.

The initial goals of the eMERGE Network established the

methods for developing and validating electronic pheno-
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typing algorithms across multiple sites and medical record

systems. The network also created a pipeline for combining

GWAS data from 18,663 participants across five sites to

create an imputed, multi-sample file for discovery

research.13,15 The PheWAS (phenome-wide association

scan) method was originally developed by Denny et al.25

for conducting disease-gene associations using billing co-

des to automatically categorize over 700 disease pheno-

types. The PheWAS Catalog was launched in 2013 and

cited over 300 times,26 making it one of the most highly

utilized tools developed by the network. In August 2011,

the second phase of eMERGE began with the goal of

advancing translational efforts. This was achieved by

incorporating available genotyping data with electronic

phenotyping and privacy protection methods into clinical

research and ongoing clinical care. While eMERGE I

focused on discovery in phenotyping and genomics,

eMERGE II shifted to returning clinically relevant findings

as sites recruited, sequenced, and returned results from the

targeted Pharmacogenomics Research Network sequence

platform (PGRNseq).27 These data combined variant infor-

mation with drug interactions, which led to the develop-

ment of Sequence and Phenotype Integration Exchange

(SPHINX), a web-based portal for exploring data for hy-

pothesis generation, especially around drug response im-

plications of genetic variation across the eMERGE

Network.28 This component of eMERGE II enabled the

network to develop processes for the RoRs and EMR inte-

gration and to assemble a diverse set of participants, of

which approximately 20% was non-European ancestry.

Phase III of the eMERGE Network had four aims: (1)

sequence and assess variants in targeted clinically relevant
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Figure 1. Timeline and impact of the eMERGE Network
The network has produced 68 clinical phenotypes validated across multiple electronic medical record systems, launched tools focused
on the reuse of genomic data, created multiple iterations of a large GWAS imputed dataset culminating with 105,108 participants, and
sequenced and returned results off a PGRNseq and eMERGEseq custom sequencing platform.
genes in approximately 25,000 participants; (2) assess the

phenotypic associations of these variants; (3) integrate

clinical reports of actionable genetic variants into EMRs

for clinical care; and (4) create community resources.

Two sequencing centers joined the network of ten clinical

sites (Figure S1), which developed, implemented, and re-

turned results from a network-specific sequencing panel,

eMERGEseq, for use in clinical care.21 As the network tran-

sitioned from discovery-based research to implementation,

protocols focused on sequencing and return of clinically

relevant findings were developed.29 The accomplishments

of eMERGE over the past decade (Figure 1) along with the

transition to RoRs over the last several years has allowed

the network, which has focused on genomic research and

pragmatic interventions, to facilitate the integration of

research findings into real-world clinical settings (Figure 2).
Approach and methodology

Achieving network goals through milestone-driven work-

groups

During eMERGE phase III, seven workgroups with specific

goals and milestones were developed.

1. Clinical annotation: create consistent approaches for

gene and variant interpretation across the eMERGE

sequencing centers and clinical sites and support

contributions to public knowledge bases;

2. EMR integration: integrate the clinical and genomic

results data produced during phase III into electronic

records at the clinical sites;

3. Genomics: identify best practices and facilitate ana-

lyses of common and rare variant data in previous

and current phases of eMERGE;

4. Pharmacogenomics: coordinate and promote phar-

macogenomic discovery and implementation work
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across eMERGE utilizing previous and current phar-

macogenetic (PGx) data;

5. Phenotyping: advance the science of phenotype

development, including case, control, and cohort

definition, and the development and implementa-

tion of 25 new disease phenotypes and incorporate

natural language processing (NLP);

6. Outcomes: develop cross-site outcomes assessment

to track implementation and impact of eMERGE III

sequencing and assess the impact on health care uti-

lization and outcomes of importance for participants

and their families; and

7. RoRs and ethical, legal, and social implications:

develop best practices for the return of actionable

variants and measure the impact this return has on

participants, families, health care providers, and

health care systems.
Data sharing, utilization, and the evolution of data security

The notions of privacy and security are critical to support-

ing genome-based research and clinical care. When

eMERGE began, it established protocols for collecting

and sharing de-identified data within the network to facil-

itate investigations and ensure equity of access. These

guidelines have become a critical element of success of

the eMERGE Network. While many of the participants

consented to participate in the study and community

consultation was performed,9 the process was refined as

participants shifted from passive contributors of speci-

mens and data in phase I to recipients of clinically action-

able information in phasees II and III.22 At the same time,

eMERGE aimed to support the NIH’s goal of making data

from genome-based investigations publicly available. It

was understood that the uniqueness of certain types of

data utilized by eMERGE made records vulnerable to



Figure 2. eMERGE impacts on clinical care and discovery
The eMERGE Network began by focusing on discovery-based
research (white hexagons) before moving into clinical utility-
based research (gray hexagons) in phase III. Discovery-based
research remains a foundation of the network, contributing to
the broad knowledgebase of clinical genomics, which, in turn,
can be utilized to inform standards of clinical care and precision
medicine in non-research settings. The image describes the main
workgroup topics focused on during the third phase and how
the network approached both clinical- and discovery-based
science.
privacy intrusions, particularly through ‘‘re-identification’’

attacks, including demographics, and DNA. As such, orga-

nizations making genomic data available began following

the practice of sharing aggregate summary statistics about

the underlying records, a policy adopted by the Database

of Genotypes and Phenotypes (dbGaP), where eMERGE

data would eventually be made accessible. However, just

as eMERGE was beginning, it was shown that data shared

in such a manner could also be subject to probabilistic

inference attacks that would reveal the presence of a partic-

ipant in the cohort and, thus, expose phenotypic informa-

tion associated with the cohort (e.g., if the cohort was

composed solely of participants diagnosed with a cardio-

logical disorder).30 Thus, it was initially decided that all

participant-level, as well as summary, data to be shared

outside of the network would only be done so in a

controlled fashion. All data sharing requests would be sub-

ject to review and all recipients would be required to enter

into a data use agreement (DUA; see Web resources), with

institutional signoff, which included a prohibition on re-

identification attempts and secure data storage. The DUA

allowed data sharing between parties while allowing for

specific site’s institutional review board (IRB)-approved

protocol to inform the transfer. This DUA has allowed

the rapid onboarding of 9 affiliates, 5 collaborators, and

18 sites over the history of the network, including the

Clinical Sequencing Evidence-Generating Research

(CSER), Implementing Genomics in Practice (IGNITE),

Population Architecture Using Genomics and Epidemi-

ology (PAGE) Consortium, Clinical Pharmacogenetics
Human
Implementation Consortium (CPIC), All of Us Research

Program (AoURP), the Analysis, Visualization, and Infor-

matics Lab-space (AnVIL), the US Food and Drug Adminis-

tration, and the Michigan Imputation Server group. Still,

given the need to make data accessible to the public

more broadly, the program developed various privacy

protection methodologies. These included approaches for

de-identification in natural language clinical notes,31 ag-

gregation of clinical codes to support discovery,32 and

game theory-based risk assessment strategies to determine

when genomic and phenotype data could be made public

through resources like SPHINX.33

Although the datasets were centralized, the analyses,

research ideas, and discovery were independently led by

the eMERGE sites. An essential component of the

network’s success was the ability to share data and collab-

oratively work on projects across multiple institutions.

Well-defined policies regarding data utilization, trans-

parent communications across the steering committee

and the entire network, along with the DUA, led to the suc-

cess of eMERGE over the years. The network’s ‘‘Publication

Policy,’’ to which all members requesting access to network

data adhere, requires members collaborating with investi-

gators from other sites or utilizing data from other sites,

to submit a ‘‘manuscript concept sheet’’ (MCS; see Web re-

sources). These sheets capture the scope, data requested,

timeline, and goals of the proposed project. The MCS is re-

viewed by the steering committee and participants from

sites can request involvement in the analysis and publica-

tion. Discussions regarding overlap with previously pro-

posed projects and clarification of scope occur during

this time period, and modifications are made as necessary.

The publications across the network are tracked centrally

at the Coordinating Center. Citation counts for publica-

tions are tracked quarterly using Zotero reference software

via Google Scholar.

Development of the eMERGE aggregate genomic datasets

To compile the GWAS Haplotype Reference Consortium

(HRC)-imputed array (N z 105,108), the eMERGE

Network included 83 genotype array batches comprising

105,108 participants from 12 contributing medical center

sites in the final version of this phase III effort. The con-

sented participants have indexed medical records linked

to these genotype results for GWAS and PheWAS.14 The

PGRNseq targeted capture sequencing panel (N ¼ 9,010)

was developed by the Pharmacogenomics Research

Network (PGRN) as a tool to enable PGx discovery and im-

plementation in large cohorts and includes 84 genes, rep-

resenting all SNPs present on commercial PGx genotyping

platforms at the time (Affy DMETþ, Illumina ADME) and

additional genes (exons and untranslated regions [UTRs])

nominated by PGRN for their associations to PGx

phenotypes.25,26,34 Development of the eMERGEseq panel

targeted capture sequencing panels across N ¼ 24,956 par-

ticipants has also been described.21 The variants from these

two datasets (eMERGEseq and PGRNseq) are available in
Genetics and Genomics Advances 2, 100018, January 14, 2021 3



summary format by frequency in SPHINX. All three data-

sets are also available in dbGaP (GWAS: phs001584.v1.p1;

PGRNseq: phs000906; and eMERGEseq: phs001616).

To facilitate use of the eMERGEseq and PGRNseq data-

sets, the network upgraded the SPHINX tool28 during

phase III. The eMERGEseq data (N ¼ 24,956) were added

to SPHINX, which previously housed the PGRNseq (N ¼
9,010) dataset. The tool was reconfigured to include dy-

namic data updates from DrugBank, the GWAS Catalog,

linkage to dbSNP, and PharmGKB annotation resources.

The importation of DrugBank annotations into SPHINX al-

lowed for updates to drug-gene-pathway interactions to be

maintained in a dynamic fashion. This ensured relevant

updates to drug compound name information were

captured and interactions to the variants detected in genes

were displayed, providing a critical element for the study of

PGx interactions. The addition of the GWAS Catalog anno-

tations linked variants that were shown to have pheno-

typic association to the published peer reviewed literature,

allow investigators to quickly reference previous findings

for a given variant. The linkage to dbSNP provided an in-

dexing service to document and standardize the naming,

genomic mapping, population frequency, and discovery

history of genetic variation. Similarly, PharmGKB linkage

added literature references to the PGx variant evidence.

These additions allow SPHINX to maintain current infor-

mation tied to variants in the eMERGEseq and PGRNseq

datasets, creating a dynamic resource for pharmacoge-

nomic and genetic discovery.

Discovery research in the eMERGE Network

As eMERGE transitioned from genotyping to sequencing,

investigations utilizing eMERGE datasets began to incor-

porate rare variation along with common variation in their

analyses. The network compiled 157,480 samples across 13

sites and 6 datasets (Table S1). The GWAS, PGRNseq, and

eMERGEseq datasets were harmonized at the Coordinating

Center to produce research files for network utilization.

The array data were imputed and merged at each phase,

and the latest effort utilized the Michigan Imputation

Server and HRC version 1.1, thus allowing the aggregation

of data from 105,108 eMERGE participants for�40million

variants, both common and rare.14 Figure S2 and Table 1

illustrate the evolution of enrollment and ancestry enrich-

ment in eMERGE through all three phases. Themain group

consisted of European ancestry, African ancestry was the

second largest ancestral group, and there was an enrich-

ment of Hispanic eMERGE participants in phase II. This da-

taset served as the backbone of discovery efforts in

eMERGE. These genetic data were combined with pheno-

typic data across the sites. Over the three phases, the

network developed and validated 68 clinical phenotyping

algorithms (Table S2). Case control status was centrally

collected at the Coordinating Center in addition to annu-

ally refreshed commonly used variables (BMI, ICD, CPT,

Phecodes, statin medications, and lipid and autoimmune

labs; Table S3) linked to age at the event. These data were
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also linked to the genomic datasets. The Columbia Univer-

sity site led the effort in leveraging the Observational Med-

ical Outcomes Partnership (OMOP) Common Data Model

(CDM) to implement shared phenotypes.20 This effort

demonstrated the effectiveness of using data standards to

minimize the work needed to implement phenotypes

across the network and promote scalability.20 The harmo-

nization and centralization of both EMR and genetic data

at the Coordinating Center allowed for the rapid transfer

of data to investigators across the network, freeing the sites

from the burden of re-pulling and harmonizing the same

data for every new research proposal. This dataset also

qualifies eMERGE for the International HundredKþ Co-

horts Consortium (IHCC), which is a global effort to aggre-

gate data for translational research.

These large datasets enabled 685 publications focused on

discovery and clinical utility (Figure S3) to date. In the

latter half of phase II, the network moved into sequencing

for the clinical return of actionable genetic variation with

the PGRNseq dataset. With these changes, the data foot-

print became larger and decisions on when to disseminate

research datasets to the network and investigators influ-

enced the timing of discovery. The rich datasets produced

required significant time and effort to compile and main-

tain. A major lesson learned by the eMERGE Network

was the need for outlining the analyses and product goals

prior to compiling a large dataset, including phenotypic re-

quirements and hard cut-offs for data processing. Time and

resources were required when cohorts were altered and

large research datasets were recompiled, therefore groups

must clearly lay out objectives and realistic timelines for

data generation, quality control, and downstream investi-

gations. Analysis and computation costs are significant in

large datasets, and this should be considered when hosting

and analyzing data, especially as the footprint of genomic

data grow with new technological and software advances.
The evolution of clinical return in eMERGE III

The network’s focus on implementing genetic testing in a

clinical setting produced successes but also identified chal-

lenges. One challenge that arose was that each site had a

unique study design, cohort population, IRB regulations,

and protocols, including how, when, and which results

were returned. These differences were driven by study

design as well as local IRB regulations. Described in detail

by Fossey et al.,22 IRBs vary in requirements, processes,

and views toward RoRs from genomic sequencing. Sites

encountered many real-world issues during the RoR pro-

cess, including:

1. Delays in expected timelines for RoRs;

2. Changes in participant contact information;

3. Engagement of participants;

4. Death of participants prior to RoRs;

5. Previous genetic testing influencing whether partici-

pants were interested in the eMERGE results; and
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Table 1. Breakdown of eMERGE dataset diversity

eMERGEseqN ¼ 24,956 GWAS N ¼ 105,108 PGRNseq N ¼ 9,010

Self-identified racial category

African American 3,914 (16%) 15,836 (15%) 1,209 (13%)

Hawaiian/Pacific Islander 54 (0.2%) 23 (0.02%) 6 (0.1%)

Am Indian/Alaskan 79 (0.3%) 170 (0.2%) 26 (0.3%)

Asian American 1,578 (6%) 1,246 (1%) 135 (2%)

European 17,691 (71%) 79,764 (76%) 6,065 (67%)

Missing/unknown 1640 (7%) 8069 (8%) 1,569 (17%)

Self-identified ethnicity category

Hispanic/Latino 1,506 (6%) 5,217 (5%) 413 (5%)

Not Hispanic/Latino 22,551 (90%) 93,425 (89%) 7,313 (81%)

Missing/unknown 899 (4%) 6,466 (6%) 1,284 (14%)

Self-reported ancestry counts and percent of participants in the network-wide genomic datasets. Race and ethnicity are captured independently and represented
separately.
6. Pediatric sites’ participants turning 18 years of age

before RoRs requiring re-consent as an adult.

Several sites had to amend their IRB protocols during the

study to facilitate RoRs when participants were unable to

be contacted. The major lesson learned from this work

was that the RoR process is dependent on institutional cul-

ture, priorities, and local IRB regulations. However, in the

absence of prior data on RoRs on a large network scale,

this flexibility in the study design allowed sites more

freedom to explore different approaches for RoRs across

different medical settings and enable the network to learn

from the complexities of return across multiple institu-

tional settings. The diversity of approaches resulted in a

natural experiment that is being explored using

implementation science frameworks. This will result in

publications that should inform others interested in imple-

menting genomics in clinical care. These lessons will

strengthen future research RoR efforts and, in future

studies, a single central IRB could standardize the processes

and allow the network to create larger, more robust stan-

dard guidelines for practice.

Another focus was measuring the impact of the RoRs on

clinical outcomes. The network determined which

outcome measures to collect, deployed data collection

forms, and collected data 6- and 12-months post return

for network-wide analyses. Due to the short time frame

of the project, the network focused on ‘‘process outcomes’’

that examined the specific steps in a process that had evi-

dence supporting associations with a particular health

outcome (e.g., a lipid test ordered after the return of a result

in a gene associated with familial hypercholesterolemia) as

well as ‘‘intermediate outcomes,’’ which are biomarkers

associated with a given outcome (e.g., LDL cholesterol

level). The outcomes forms were compared to the indepen-

dently developed outcomes from the ClinGen Actionabil-

ity working group and showed concordance, suggesting
Human
that common outcomes could be identified for genetic dis-

eases and interventions.23 If common outcomes are used

across studies, evidence can accumulate more quickly. Dur-

ing development of the forms, it became clear that imple-

mentation guides for a given disease were necessary as

there were multiple study personnel abstracting data ele-

ments from the EMR across the 10 sites. Eleven guides

were developed for the abstractors, ensuring consistent

data entry for downstream analyses. Final analyses of the

clinical outcomes are still pending as sites finalize data

collection across their cohorts prior to the completion of

phase III.

Integrating results into the EMR was a critical compo-

nent of eMERGE. Several challenges were encountered as

the network harmonized integration and sites placed re-

sults into the EMR. Some medical centers transitioned to

new medical record systems during the project, including

large infrastructure changes during the Group Health

Cooperative transition to Kaiser Permanente in 2017.

Compliance regulations differed across states regarding

data usage and return. Creating a standard for data flow be-

tween sequencing centers and sites is key to integrating

genomic test results into the EMR.24 This pipeline differed

depending on site regulations, study design, and require-

ments. The network continued to inform the genetic

Health IT standards by developing a Fast Healthcare Inter-

operability Resources (FHIR) profile that codifies all of the

combined experience learned during the return and inte-

gration of genetic information into the EMR (see Web

resources).

The ability to utilize and integrate these data for both

research and in clinical settings and to learn from the het-

erogeneity of the network is critical. Overarching lessons

learned during phase III (Table 2) showcase an adaptable,

cohesive network that has moved beyond genomic discov-

ery to leading research into clinical implementation and

the return of genomic results. As eMERGE continues to
Genetics and Genomics Advances 2, 100018, January 14, 2021 5



Table 2. Overarching lessons learned from the eMERGE Network

Focus Lessons Learned Tools

Genomic
discovery14,15,26,28

d defined data freezes with
specifications regarding
diversity, phenotypic data,
discovery, and implementation
goals are critical to
maximize resources
d centrally collected and
aligned genetic and EMR
data maximize output and
relieve repeated site efforts

SPHINX;
PheWAS
Catalog

Electronic
clinical
phenotyping20

d implementation and
review of complex
clinical algorithms using
local experts maximizes
phenotype accuracy
d clearly define processes
for phenotype creation,
validation and implementation,
using standard vocabularies
and common data models
increase portability

PheKB

Pharmaco-
genomics19,28

d shared variant knowledge
base with access to
structured data, and
knowledge is necessary
for implementation
d provider education,
customization of clinical
reports, and ongoing
education is critical for
provider utilization
d technical requirements
and approaches for PGx
integration differs from highly
penetrant genetic results
d SNP coverage in targeted
panels should be sufficient
for interpreting the full
range and types of variants
for clinical return of a
given gene (e.g.CYP2D6)

SPHINX;
CDS_KB

Clinical
sequencing21

d centralized sequencing
allows for harmonization
across large networks
d with multiple sequencing
centers, consistency in
panel validation,
variant interpretations,
reclassifications, and
discrepancies is essential

Return of
results (RoR)22

d flexibility in study design
allows exploration of different
approaches for RoR
d institutional culture and
IRB regulations influence
the RoR process
d a single IRB and
centralized protocol
may enhance consistency
and data harmonization

MyResults

Integration
into EMR24

d a standard for data flow is
essential for returning genomic
test results across sites
d eMERGE-informed
national FHIR profiles
are needed to support
genomic return
d transitions to new EMR
systems can delay and alter
site integration plans

CDS_KB;
DocUBuild

Table 2. Continued

Focus Lessons Learned Tools

Clinical
outcomes23

d implementation guides
for EHR abstraction
ensure consistency across
personnel and sites
d focusing on process
and intermediate outcomes
allows for outcomes
analysis in studies with
short term follow up

Lessons broken down by phase III workgroup, with relevant resources available.
SPHINX (Sequence & Phenotype Integration Exchange) links sequencing data
to drug associations, GWAS variants, and ancestry. PheWAS Catalog functions
as a platform for analysis of phenotypes against single gene variants. PheKB
(Phenotype KnowledgeBase. Collaborative) is an environment to build and
validate electronic phenotypic algorithms. CDS_KB (Clinical Decision Support
KnowledgeBase) catalogs and shares clinical decision support implementation
artifacts. MyResults provides education targeted to the public and information
about genetic test results and disease risks. DocUBuild is a web application for
creating and sharing information resources for electronic medical record sys-
tems.
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evolve, the network will utilize its experience with large da-

tasets, innovative researchmethods, communications, and

integration into clinical settings to push forward genomic

discovery and clinical implementation

Advancing translational genomic research

The eMERGE Network has developed several methods on

the secondary use of EMR data for the discovery of geno-

type-phenotype associations.1,2,9–13 The network’s success

in enabling discovery methods and findings was depen-

dent on a coordinated workgroup infrastructure, a large

and diverse genomic dataset, centralized data use agree-

ments, adherence to policies that governed data security

and privacy, and informed investigator collaboration on

network publications. The lessons learned from the

network (Table 2) span discovery-based research and im-

plementation of the clinical return of genetic variations

associated with clinical disease phenotypes. Clearly

defined data freezes and centrally collected commonly

used EMR variables maximized data availability and mini-

mized duplicative efforts across study teams. Variability in

site protocols allowed for the ability to determine how

different approaches alter participant experiences and to

integrate genomic data into their clinical outcomes.

Harmonization of protocols and data flows helped

improve sample sizes, data integration, and collection

across the network. The network’s transition to clinical

implementation27,34 leveraged the variety of strategies

devised by sites for returning results to participants and

integrating results into diverse EMR systems24 using

accepted standards (Rasmussen et al., 2017, AMIA, confer-

ence). As genomic research moves from independent

studies to large networks and consortiums, such as

CSER, PAGE, AoURP, and IGNITE, these lessons maximize

genomic and EMR data utilization from large biobanks to

push forward research in clinical and translational geno-

mics. Collaborations between these networks are key as

research moves forward.
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The overarching goal of eMERGE has been to advance

genomic medicine. To this end, the network has estab-

lished multiple tools and resources available to external re-

searchers, spanning the fields of genomic discovery, EMR

integration, participant engagement, and education (Table

2). To date, eMERGE publications have been referenced

over 40,000 times (Figure S3), impacting the field of trans-

lational genomic medicine. Collaborations with external

groups have helped shape the practice of other networks,

clinical research, and genetic medicine.

Though the research conducted over the last several years

has led to many lessons learned, there are several limita-

tions associated with the approach the network undertook.

Based on the network’s experience with developing clinical

algorithms, even with restrictions imposed, false positives

and lowpositive predictive values canbe an issue, especially

when incorporating complex variables and techniques like

NLP.Maximizingpredictive values for electronic phenotyp-

ing of diseases and outcomes will be critical as the genomic

research evolves. The requirements to house, compute, and

make large genomic datasets available to the network have

increased over time—the data footprint of over 80 TBs pre-

sents continued challenges to store and make data acces-

sible to the research community. Calculations on datasets

of �100,000 participants are computationally intensive

and require computational capacity beyond that available

to many researchers. As the field moves from local servers

to cloud-based platforms for data storage, egress fees and

computational costs should be considered to make these

data accessible and usable by all investigators. Finally, as

sites implemented different protocols, ascertainment bias

during enrollment at certain sites restricted downstream

analyses on penetrance and clinical outcomes. Sample

size was reduced for certain populations and disease pheno-

types due to differences in site protocols, and utilizing a sin-

gle protocol in future work may increase power and allow

for the investigationof clinical diseaseswith lowprevalence

in general populations.

Moving into the next round of eMERGE, the network is

focusing on genomic risk assessments and PRS. Overall risk

for many common diseases is complex, and elements of

family history, a person’s age, and prior health data need

to be assessed in parallel with genomic data to provide ac-

curate risk scores.35 Additionally, the impact of genomic

risk can be modified over the lifespan. Age, medications,

and lifestyle changes have been shown to interact with

the genetic risk of a disease phenotype.36 The population

from which a risk algorithm is determined should be

considered when disseminating risk to participants.37 To

achieve a European ancestry level of performance of PRS

in non-European ancestry groups, ancestry-specific

GWAS and PRS derived from large and diverse cohorts

and statistical modeling are crucial. Recent work by the

network demonstrated lower hazard ratios in genome-

wide PRS for coronary heart disease in African ancestry

compared to European ancestry or LatinX ethnicity.38

The network datasets contain approximately 15% ances-
Human
trally diverse participants (Table 1; Figure S2), which may

limit the applicability of genetic findings in more diverse

populations. In the next phase of the network, the goal

is to increase the diversity of underrepresented popula-

tions, with targeted recruitment aimed at over 50% non-

European ancestry. The lessons from enrollment and

RoRs to diverse populations, even limited, will inform

our next phase as we continue to strive for amore represen-

tative population. As genomic medicine evolves,

increasing this diversity is critical, and the next steps for

the network include enrollment of populations underrep-

resented in research.

Balancing collaborative discovery-based research with

implementing genomic technology and results into clin-

ical settings across multiple sites and phases has been

one of the greatest achievements of the network. The rapid

access to data and collaborators affords network investiga-

tors the power to test relevant hypotheses and observe rare

associations on a large scale. Network data are accessible to

external researchers through dbGaP as well as through

direct collaboration with the network. As the field of ge-

netic medicine evolves, the network will continue to adapt

to new techniques and standards, leading the research in

prediction of risk of disease, methods to implement risk

prediction on a larger scale, including integration of find-

ings into medical records, and evaluating the impact of

RoR information to participants and providers.
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