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Abstract

Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and
neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented
epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to
retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate.
Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations
of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green
opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin.
Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch
clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light.
The response was an inward current instead of the typical outward current. These data suggest that photosensitive
photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate
immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major
advance toward eventual cell-based therapy for retinal degenerative diseases.
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Introduction

The possibility of redirecting cell differentiation by overexpres-

sion of genes was suggested by Weintraub with the identification of

the ‘‘master gene,’’ MyoD [1]. The process was thought to involve

reversion to a less differentiated state, a kind of de-differentiation,

before the new cell type is formed. Another process has since been

introduced, the concept of ‘‘direct conversion’’ or ‘‘direct

reprogramming’’ without de-differentiation. This process is

thought to be direct lineage switching [2] rather than lineage

switching back to a branch point and out again in a different

direction. ‘‘Direct conversion’’ has been shown in beta-cells,

cardiomyocytes and neurons: A specific combination of three

transcription factors (Ngn3, Pdx1 and MafA) reprogram differen-

tiated pancreatic exocrine cells in adult mice into cells that closely

resemble beta cells [3]; a combination of three factors (Gata4,

Tbx5 and Baf60c) induces non-cardiac mesoderm to differentiate

directly into contractile cardiomyocytes [4]; and a combination of

three factors (Ascl1, Brn2 and Myt1l) converts mouse fibroblasts

into functional neurons [5]. In this study, we employed the strategy

of ‘‘direct reprogramming’’ to generate retinal photoreceptor cells

from human somatic cells.

Several retinal diseases, including retinitis pigmentosa, age-

related macular degeneration and cone dystrophy, lead to loss of

vision due to loss of photoreceptors and retinal pigment epithelium

(RPE). Gene therapy has been implicated for Leber’s congenital

amaurosis [6]. Another promising therapeutic strategy is to

transplant functional photoreceptor cells and retinal pigment

epithelial cells. Sheets of human fetal neural retina with retinal

pigment epithelium [7] and ES cell-derived photoreceptors [8]

have been implicated for use as sources for photoreceptor cells.

And human ES cell-derived RPE has recently been implicated to

patients with macular degeneration [9]. However, the use of

human embryos faces ethical controversies that prevent the

widespread applications of human fetal tissues and human ES

cells. A way to circumvent these issues is to induce photoreceptor-

specific phenotypes by direct reprogramming of somatic cells of

the patients. During vertebrate eye development, the inner layer of

the optic cup differentiates into the neural retina and iris-

pigmented epithelium (IPE). This common developmental origin

led us to test whether iris cells could transdifferentiate to retinal
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neurons and thus be a candidate source of cells for transplantation.

We here define the combinations of transcription factors that

induce light responsive photoreceptor-like cells in humans.

Results

Cultivation of iris-derived cells
The iris pieces were cut into smaller pieces and served as

explants culture. Cells derived from the iris pieces are designated

as ‘‘iris cells’’. Iris pigment epithelial cells (IPE cells) were isolated

from iris tissues using dispase and trypsin. Residual iris pieces after

removal of IPE were cut into smaller pieces and served as explant

culture. Outgrowing cells from the explant cultures were

designated as ‘‘iris-stromal (IS) cells’’ (Fig. 1A). Ciliary epithelial

cells were isolated from pars plana and pars plicata in the same

manner as IPE cells. We then performed Southern blot analysis

and nucleotide sequencing to investigate whether the RB gene was

deleted or mutated, because some irreversibly de-identified iris-

derived cells were from the patients with retinoblastoma. Southern

blot analysis revealed that the RB gene was not deleted or

rearranged in any of the iris-derived cells examined (Fig. S1).

Sequencing analysis revealed that cDNAs of the RB gene did not

have deletions or mutations at the nucleotide level.

Cultured iris cells show phenotypes of retinal glia and
progenitor

Iris cells were immunocytochemically positive for glial cell- and

neural stem cell-markers (Fig. 1A, 1B). RT-PCR analysis revealed

that these cells expressed markers for glial cells and neural stem

cells, indicating that the iris has common features with the retinal

glia (Fig. 1C). After neural induction with the B27 medium,

rhodopsin was not induced (Fig. 1C). After retinal induction with

the R1 medium, green/red opsin was up-regulated significantly

but blue opsin and rhodopsin were not up-regulated (Fig. 1D).

Iris cells are induced into a rod- or cone-specific
phenotype by defined transcription factors

We selected six genes, SIX3, PAX6, RX, CRX, NRL, and

NEUROD, as candidate factors that may contribute to induce

photoreceptor-specific phenotypes in iris cells, on the basis that

such factors play pivotal roles in the development of photorecep-

tors. Iris cells were transfected with these genes and were

examined for inducible expression of photoreceptor-specific genes

in those cells. Transduction of a single gene for SIX3, PAX6, RX,

CRX, NRL, or NEUROD induced neither rod- nor cone-specific

phenotypes in iris cells, but the six genes together up-regulated

blue opsin and rhodopsin (Fig. S2). To determine which of the six

candidates were critical, we tested the effect of withdrawal of

individual factors from the pool of transduced candidate genes on

expression of the opsin genes. We identified two genes, NEUROD

and CRX, which were essential for photoreceptor induction;

individual withdrawal of NEUROD resulted in loss of expression of

rhodopsin and withdrawal of CRX resulted in loss of blue opsin.

Then, we tested the combination of only two genes, CRX and

NEUROD (Fig. 2A, 2B). The combination of CRX and NEUROD

induced rod photoreceptor specific genes including rhodopsin and

other phototransduction genes. After transduction of CRX and

NEUROD, immunostaining showed that 38% of total cells were

rhodopsin-positive cells (3,750 cells) (Fig. 2C, Fig. S3). However,

this combination did not induce the red opsin gene. Addition of

RX to the combination of CRX and NEUROD augmented blue

opsin expression (Fig. 2B). After transduction with CRX, RX and

NEUROD, rhodopsin-positive, blue opsin-positive and green/red

opsin-positive cells were 29% (per 954 cells), 37% (per 235 cells)

and 25% (per 193 cells) of total cells, respectively, by immuno-

staining. Hybrid photoreceptor cells were also detected by double-

staining immunocytochemistry (Fig. S4). We then investigated

combinations of transcription factors that induce specific types of

photoreceptor cells. A combinational approach showed that

combination of CRX and RX was sufficient to induce green/red

opsin and other cone-specific genes (Fig. 2D, Fig. S2). PAX6(+5a)

did not influence cone-related gene induction (Fig. 2E). Expression

levels of rhodopsin and blue opsin reached a maximum level by

one week after gene transduction and remained unchanged up to 3

weeks. Expression of green/red opsin reached a maximum level 3

days after gene transduction (Fig. 2F). Expression levels of opsin-

and phototransduction-related genes were quantitated (Fig. 2G).

NEUROD significantly decreased expression of the cone-specific

genes, i.e. genes for green opsin and cone channel B3 (CNGB3) in

human iris cells (p,0.005). On the other hand, it was clearly

demonstrated that expression of rhodopsin and S-antigen, which

are specifically expressed in rod photoreceptors, were much higher

in CRX, RX and NEUROD-infected cells than in CRX and RX-

infected cells (rhodopsin, p,0.05; S-antigen, p,0.005, Welch’s t-

test). Ultrastructural analysis revealed a cilia-associated structure,

i.e. centriole, surrounded by mitochondria (Fig. S5).

Inhibition of factors by small interfering RNA (siRNA)
We performed RT-PCR to investigate if the transgenes

continued to be expressed in the generated retinal cells (Fig. 2H,

Table S1). The exogenous factors (transgenes) were clearly

detected in induced retinal cells. Interestingly, the corresponding

endogenous genes intiated expression in the induced retinal cells,

similar to what is found in iPS cells. We then suppressed the CRX

and NEUROD genes by siRNA (Fig. S6) to investigate the

involvement of the genes in photoreceptor differentiation.

Expression of the photoreceptor-specific/associated genes (blue

opsin, s-antigen and recoverin) decreased significantly in siCRX

and siNEUROD-transfected cells, compared to cells treated with

control siRNA, suggesting that CRX and NEUROD are necessary

for photoreceptor conversion.

Derivation of photoreceptor-like cells from IPE and IS
cells

To investigate photoreceptor cell differentiation from other cell

types, we isolated IPE and IS cells from iris tissues. Both cell types

began to express opsin genes after transduction of CRX, RX and

NEUROD genes (Fig. 3A, 3B). To determine if IPE and IS cells

originated from neural ectoderm and neural crest cells, we

investigated expression of neural crest marker genes. IPE and IS

expressed these neural crest markers at high levels (Fig. 3C). These

findings indicate that IS cells derived from neural crest cells, as

well as IPE cells, could differentiate into photoreceptor-like cells.

We also isolated ciliary epithelial cells from pars plicata and pars

plana (Fig. 1A, 3D). Ciliary epithelial cells from pars plicata

expressed rhodopsin, blue opsin, and green/red opsin at a high

level after transduction with three genes (CRX, RX and NEUROD)

or all six genes together (Fig. 3E). Retina-derived Müller glial cells

expressed opsin genes after transduction of all genes (Fig. 3F).

Induced photoreceptor-like cells are photoresponsive in
vitro

Light stimulation was applied to CRX, RX and NEUROD-

infected human iris-derived cells because these infected cells

showed the most photoreceptor-like phenotypes by RT-PCR and

immunocytochemistry. Both blue and green light stimulation

produced inward current (Fig. 4A, 4B). Inward current continued

Factors Determining Human Photoreceptor Cell Fate
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to flow after the offset of light stimulation but only four cells

showed partial or complete recovery within 60 sec after the

cessation of light stimuli (n = 9), presumably reflecting the limited

expression or absence of inactivation machinery. Inward current

to blue light stimulation was observed in three out of four cells and

inward current to green light stimulation was observed in six out of

six cells. Light stimulation to non-infected control cells (blue, n = 2;

green, n = 2) did not produce any inward current. These results

indicate that the combination of CRX, RX and NEUROD

transforms human iris-derived cells into photoresponsive photore-

ceptor-like cells in vitro, although the typical outward current of

photoreceptor cells could not be detected. Since the light-induced

inward current seemed to be mediated by melanopsin-associated

phototransduction, we investigated expression of melanopsin by

Figure 1. Retinal glia- and retinal progenitor-like phenotypes in iris cells. (A) Scheme of cell sources in the iris and ciliary body. (B)
Immunocytochemical analysis of iris cells. Iris cells are immunocytochemically positive for glial cell marker (GFAP), and neural stem cell markers
(Nestin (green), Sox2 (yellow) and N-Cadherin (green)). Nuclei were stained with DAPI (blue) with vimentin, nestin and N-cadherin. (C) Expression of
neuron-related genes after neural induction. RT-PCR analysis indicates that iris cells expressed glial cell markers (GFAP, CRALBP and glutamine
synthetase), and neural stem cell markers (Nestin, Musashi-1 and Pax6). By the ‘‘hanging-drop’’ method coupled with the B27 medium, rhodopsin was
not induced. In this illustration, ‘‘Induced’’ indicates ‘‘cells at an induced state by the hanging-drop method coupled with the B27 medium’’ and
‘‘Retina’’ indicates retina-derived cells at passage 3. (D) Expression of the opsin genes after retinal induction. In this illustration, ‘‘w/o’’ indicates iris-
stromal cells without any induction. ‘‘IPE’’ and ‘‘IS’’ indicate ‘‘iris pigment epithelial cells’’ and ‘‘iris-stromal cells’’, respectively, that were induced by
exogeneously added chemicals and growth factors as indicated. By retinal induction with the R1 medium, green/red opsin was up-regulated
significantly in iris-stromal cells, but blue opsin or rhodopsin was not up-regulated.
doi:10.1371/journal.pone.0035611.g001

Factors Determining Human Photoreceptor Cell Fate
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Figure 2. Induction of rod- or cone-specific phenotypes in human iris cells by the defined transcription factors. (A) Protocol to induce
rod- or cone-specific phenotypes in human iris cells by the defined transcription factors. (B) Expression of rod-specific genes in iris cells after
transduction of the combination of CRX and NEUROD or the combination of CRX, RX, and NEUROD. The combination of only two genes, CRX and
NEUROD induced expression of rhodopsin, i.e. rod-photoreceptor specific opsin. Addition of RX to CRX and NEUROD enhanced blue opsin expression.
‘‘w/o’’: cultured iris-derived cells without gene transfer as a negative control; ‘‘Retina’’: human retinal tissue as a positive control. (C)
Immunocytochemistry using antibodies to blue opsin (green), green/red opsin (green), rhodopsin (green or red) and recoverin (green). Nuclei were
stained with DAPI (blue). Experiments were performed at two weeks after infection. ‘‘Blue’’: blue opsin; ‘‘Green’’: green/red opsin; ‘‘Rhod’’: rhodopsin;
‘‘Rec’’: recoverin. Scale bars represent 10 mm in the upper left panel and 50 mm in the other panels. (D) Transduction of cone-specific genes in iris
cells. Cone-specific phenotypes were induced by the transcription factors, i.e., the combination of CRX and RX. The combination of CRX and RX
induced other cone-specific genes in addition to the blue opsin, green opsin and red opsin genes. (E) Effect of PAX6 (+5a) on expression of opsin
genes. ‘‘Retina’’: human retinal tissue as a positive control; ‘‘w/o’’: cultured iris-derived cells without gene transfer as a negative control; ‘‘GFP’’:
cultured iris-derived cells after transduction of GFP genes as another negative control. (F) Time course of gene expression after transduction of RX,
CRX and NEUROD. Expression of the rhodopsin and blue opsin genes increased one week after transduction and then remained unchanged at a later
stage. Expression of the green/red opsin gene reached a maximum level three days after infection. Each independent experiment was performed in
duplicate as shown in the panel. (G) Quantitative RT-PCR results for rhodopsin, blue opsin, green opsin, PDE6b, recoverin, S-antigen, PDE6c, cone
channel A3, cone channel B3 and arrestin3 (ARR3). Vertical axis indicates expression levels of each gene (%) in the indicated cells, relative to human
retinal tissues. *p,0.05 and **p,0.005 (Welch’s t-test). (H) RT-PCR analysis of the exogenous and endogenous genes in induced retinal cells.
Expression of the CRX, NEUROD and RX genes in the iris cells and transgene-induced cells was analyzed by RT-PCR, using the exogenous and
endogenous gene-specific primers (Table S1). Human retina served a control for the endogenous genes. Equal amounts of RNAs were examined by
expression of the G3PDH gene.
doi:10.1371/journal.pone.0035611.g002
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RT-PCR and immunocytochemistry. CRX, RX and NEUROD-

infected iris-derived cells expressed melanopsin (Fig. 4C, 4D),

suggesting a larger contribution of melanopsin-associated inward

current.

Discussion

This is the first report that functional photosensitive photore-

ceptor-like cells can be induced from human somatic cells. The

present study shows that rod- and cone-photoreceptor-specific

phenotypes were induced by transduction of a combination of

CRX, RX and NEUROD genes, and that those cells responded to

light electrophysiologically. In the retina, rod- and cone-

photoreceptors convert light information to electrical signals that

are relayed to the brain through several interneurons. In the

present study, a combination of CRX, RX and NEUROD induced

all of the opsin genes: blue opsin, green/red opsin and rhodopsin

(Table S2). On the other hand, a combination of CRX and RX

induced only cone-specific opsin, and additional transduction of

NEUROD up-regulated rod-specific opsin and rod-specific photo-

transduction related genes.

Rod photoreceptor generation from iris cells required NEUROD

in our study. NeuroD is a regulator of both rod photoreceptors

[10,11] and cone photoreceptors [12] during mouse development.

NeuroD overexpression increases amacrine cells and rod photo-

receptors, reduces bipolar cells, and inhibits formation of Müller

glia. It has been known since the early 1960s that there is a defined

sequence in formation of retinal neurons, which is largely

conserved across vertebrates: Cone photoreceptors are generated

during early stages of development, and most rod photoreceptors

are generated in the latter half of the period of retinogenesis [13].

Similarly, cone photoreceptors are generated at the early stages

during ES cell differentiation and rod photoreceptors are

generated at a later stage. The present study and these previous

reports suggest that NeuroD may work downstream to regulate the

development of rod-photoreceptors. NeuroD generally functions

in a cell cycle-specific manner, and promotes cell cycle exit [11].

Rod formation may thus be mediated via cessation of cell cycle by

NeuroD at the later stage.

It has been hypothesized that retinal stem cells can be found in

the ciliary body [14], postnatal retina, and the iris [15]. Pure

populations of IPE cells isolated from rat and chicken irises were

shown to demonstrate ‘‘stemness’’ [16]. A portion of purely

isolated IPE cells of rodents, especially nestin-positive IPE cells,

differentiated into multiple neuronal cell types, pan-neural

marker- expressing cell types and retina-specific cell types without

Figure 3. Induction of opsin genes in human iris-derived cells, ciliary epithelial cells and retina-derived cells by the retroviral
infection of all the 6 genes and genes for RX, CRX and NEUROD. (A) RT-PCR analysis for genes of MAP2, rhodopsin, blue opsin and G3PDH in
two kinds of iris cells after gene transfer of all the six genes. All six genes were infected into two kinds of iris cells: IPE and stromal cells derived from
the peripheral iris, and purely isolated IPE cells. In both cell types, rhodopsin and blue opsin genes were up-regulated. ‘‘w/o’’: cultured iris-derived
cells without gene transfer as a negative control. (B) Expression of the rhodopsin and blue opsin genes started two weeks after infection. ‘‘IS’’, ‘‘IPE’’
and ‘‘Iris (central)’’ indicate ‘‘iris-stromal cells’’, ‘‘iris pigment epithelial cells’’, and ‘‘central iris cells’’, respectively. ‘‘IS (GFP)’’ is ‘‘iris-stromal cells infected
with the GFP gene’’. In all kinds of iris cells, transduction of the three genes, that are RX, CRX and NEUROD, enhanced expression of rhodopsin, blue
opsin and green/red opsin. (C) RT-PCR analysis for genes for genes of neural crest-related markers in two kinds of iris-derived cells: iris stromal cells
and iris pigmented epithelial cells. (D) Phase-contrast photomicrograph of ciliary epithelial cells from pars plana (left) and pars plicata (right). (E) RT-
PCR analysis for genes of rhodopsin, blue opsin, green/red opsin and G3PDH in human ciliary epithelium (pars plicata and pars plana) after gene
transfer of either all the six genes (SIX3, PAX6, RX, CRX, NEUROD, NRL) or three genes (CRX, RX and NEUROD). (F) RT-PCR analysis for the MAP2,
rhodopsin, blue opsin, GFAP and G3PDH genes in retina-derived cells after transfer of all six genes. ‘‘w/o’’: Retina-derived cells without gene transfer
21 days after the start of cultivation. Genes for MAP2, rhodopsin, and blue opsin started to be expressed after the gene transfer.
doi:10.1371/journal.pone.0035611.g003
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genetic manipulation. On the other hand, it has been shown that

retinal stem cells are not present in the human iris [17,18]. The

present study demonstrates that human iris cells expressed stem

cell markers such as nestin, N-cadherin, Sox2, Musashi-1 and

Pax6. Expression of stem cell markers in iris cells may be

attributed to the cell source, i.e. cells from infants. However,

photoreceptor cell differentiation with exogenously added chem-

icals and growth factors was limited; that is, only green/red opsin

was induced (Fig. 1). Other experimental evidence has also

suggested the limitation in mammals without genetic manipula-

tion. Progenitor cells from the mammalian iris, pars plana, and

ciliary body do not show a convincing immunoreactivity for

rhodopsin, phosducin, recoverin, PKC, or RPE65 [19], but are

induced into photoreceptor progeny with retinal transcription

factors [20,21]. We first indicate that human IS cells that originate

from neural crest (Fig. 3C), as well as IPE cells, differentiate into

photoreceptor-like cells. Derivation of photoreceptor-like cells can

be attributed to transgene-dependent differentiation of retinal

progenitors that exist in the iris.

Our data show that induced photoreceptor-like cells have rod-

and cone-signaling-pathways by RT-PCR and immunocytochem-

istry. In addition, expression of melanopsin was also detected in

these cells. Photostimulation of the rod-or cone-pathway produces

hyperpolarizing responses, while activation of the melanopsin-

pathway produces depolarizing responses [22,23,24,25,26]. Mel-

anopsin is intrinsically expressed in iris cells of the human (Fig. 4C),

mouse [27] and Xenopus [24]. Melanopsin signaling has recently

been reported to exist in both the iris and retina in mammals [27].

However, photostimulation did not produce any response in non-

transfected human iris cells, suggesting the absence of photo-

transduction machineries per se. The light-induced depolarizing

responses in infected cells indicate that phototransduction

machinery for melanopsin-pathway was induced in infected cells.

This is different from the results of infected monkey and rodent iris

cells, where photostimulation produced hyperpolarizing responses

Figure 4. Electrophysiological analysis of the induced photoreceptor-like cells. (A) Recording electrode patched onto infected cells. (B)
Responses to blue light (upper panels) or green light (lower panels) in infected cells (red) and non-infected cells (black). The light onset for
transfected cells and non-transfected cells had the same timing. The square under the current trace is a timing and duration of light stimulation for
transfected cells. The longer light stimulation was given to non-infected cells to rule out any possible artifact. Holding potential was 240 mV. Larger
baseline noise in the infected cells probably reflects the channel activities. (C) RT-PCR analysis for genes of melanopsin, rhodopsin, blue opsin and
G3PDH in iris cells after gene transfer. Cells were infected with retroviruses carrying the genes for GFP, PAX6 (+5a) (Pax6), CRX & RX (C&R), CRX &
NEUROD (C&ND) and CRX & RX & NEUROD (C&R&ND). ‘‘Human retina’’: human retinal tissue, as a positive control. (D) Immunocytochemistry for
melanopsin in iris-derived cells after transduction of CRX, RX and NEUROD. Nuclei were stained with DAPI (blue).
doi:10.1371/journal.pone.0035611.g004

Factors Determining Human Photoreceptor Cell Fate
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[20]. Our data demonstrate that transduction of three transcrip-

tional factors strongly induces expression of blue opsin, which

suggests a potential to produce hyperpolarizing responses. One

plausible reason for the differences is that numbers of expressed

phototransduction machineries for rod-or cone-pathways are not

enough in those cells, e.g. outer segments were not observed at an

ultrastructural level. Although the reason for depolarization in

transfected cells cannot be fully explained so far, it is likely that

melanopsin-associated photoresponses may overcome cone- or

rod- mediated photoresponses.

In addition to revealing insights into retinal transdifferentiation,

this study describes the development of a novel experimental

approach to genetic retinal diseases that may be relevant for beta

cells, cardiomyocytes, and neurons [3,4,5]. Optimal donor cells for

retinal transplantation are post-mitotic photoreceptor precursors

but not mature photoreceptors [28]. Immature photoreceptors

generated from ES cells or iPS cells in vitro differentiate through

transplantation into the mouse retina [29,30]. In this aspect, the

induced retinal cells shown here may be suitable for future cell-

based therapy since they are not fully differentiated. Together, the

finding contributes substantially to an advance toward cell-based

therapy for retinal genetic diseases.

Materials and Methods

Preparation of tissue and cell culture
Cells were obtained from donors at ages of 10 months, 1 year 8

months and 3 years. Iris tissues were excised from surgical

specimens as a therapy for retinoblastoma with the approval of the

Ethics Committee of the National Institute for Child and Health

Development (NCCHD), Tokyo. The ethics committee of the

NCCHD specifically approved this study (approval number,

#156). Signed informed consent was obtained from the parents

of the donors, and the surgical specimens were irreversibly de-

identified. All experiments handling human cells and tissues were

performed in line with the Tenets of the Declaration of Helsinki.

The iris was freed from the ciliary body. The iris kept away from

a tumor and invasion of retinoblastoma cells were not detected by

a pathologist’s examination. The iris pieces were cut into smaller

pieces and were subjected to explant-culture in the growth

medium [Dulbecco’s modified Eagle’s medium (DMEM)/Nutrient

mixture F12 (1:1) supplemented with 10% fetal bovine serum,

insulin-transferrin-selenium, and MEM-NEAA (GIBCO)]. Cells

derived from the iris pieces were designated as ‘‘iris cells’’. ‘‘IPE

cells’’ were isolated from iris tissues using dispase and trypsin. ‘‘Iris

cells’’ without ‘‘IPE cells’’ were designated as ‘‘iris-stromal (IS)

cells’’ (Fig. 1A). Ciliary epithelial cells were isolated from pars

plana and pars plicata in the same manner as IPE cells. Retinal

pieces were cut into smaller pieces and were subjected to explant-

culture in the same growth medium as iris cells. Second-passage

cells were used for all the experiments.

Sequencing of the RB gene
Total RNA was isolated from iris-derived cells of the three

donors used in this study. An aliquot of total RNA was reverse

transcribed into cDNA. The full-length of RB gene was amplified

with Go-Taq polymerase (Promega) using the cDNA. Direct

sequencing was performed with a BigDyeH Terminator Cycle

Sequencing Kit (Applied Biosystems, Foster City, CA). Sequencing

reaction products were run on an automated capillary sequencer

(Applied Biosystems 3130xl Genetic Analyzer; Applied Biosys-

tems).

Hanging drop method
Droplets, each of which included 1000 cells in 20 ml of culture

medium, were formed on the inverted underside of a single Petri

dish cover. The inverted bottom was then set on the top and the

entire assembled Petri dish was re-inverted to its normal

orientation. The drops of cell suspension were then hanging in

the interior of the dish from the inner surface of the cover. The

dishes were carefully placed into a 37uC incubator in an

atmosphere of 5% CO2. Aggregates of cells were allowed to form

in the drops for 24 h. Formed aggregates were then transferred to

a Poly-D-lysine/laminin-coated 6-well tissue-culture plate (Becton

Dickinson) (4 aggregates per well).

Plasmid construction
Full length of transcription factors SIX3 [31], PAX6 [32], RX

[33], CRX [34], NRL [35,36] and NEUROD [10], were amplified

from cDNAs prepared from total RNA of adult human retina

(Clontech, CA, USA) by PCR, and cloned into the XmnI-EcoRV

sites of pENTR11 (Invitrogen). Each vector contains one

transcription factor and a mixture of vectors was used.

Preparation and infection of recombinant retrovirus
The resulting pENTR11-transcription factors were recombined

with pMXs-DEST by use of LR recombination reaction as

instructed by the manufacturer (Invitrogen). pMXs was a gift from

Dr. Kitamura (Tokyo University) and was modified into pMXs-

DEST in our laboratory [37]. The retroviral DNAs were then

transfected into 293FT cells and three days later the media were

collected and concentrated. The iris-derived cells were prepared

on laminin-coated six-well dishes or four-well chamber slides and

maintained for one day. The cells were infected with above-

mentioned media containing retroviral vector particles with 8 mg/

ml of polybrene for 5 h at 37uC. After retroviral infection, the

media were replaced with the DMEM/F12/B27 medium

supplemented with 20 ng/ml bFGF, 40 ng/ml EGF, fibronectin,

and 1% FBS. The retrovirus-infected cells were cultured for up to

21 days. We transfected retroviral eGFP under the same

conditions to measure efficiency of infection. The frequency of

eGFP-positive cells was 90–94% of all cells at 48 h after infection.

Reverse transcriptase-PCR
Total RNA was isolated with an RNeasy Plus mini-kitH

(Qiagen, Maryland, USA) or a PicoPureTM RNA Isolation Kit

(Arcturus Bioscience, CA, USA) according to the manufacturer’s

instructions. An aliquot of total RNA was reverse transcribed using

an oligo(dT) primer. The design of PCR primer sets is shown in

Table 1.

Quantitative RT-PCR
The cDNA templates were amplified (ABI7900HT Sequence

Detection System) using the Platinum Quantitative PCR Super-

Mix-UDG with ROX (11743-100, Invitrogen). Fluorescence was

monitored during every PCR cycle at the annealing step. The

authenticity and size of the PCR products were confirmed using a

melting curve analysis (using software provided by Applied

Biosystems) and a gel analysis. mRNA levels were normalized

using G3PDH as a housekeeping gene. The design of PCR primer

sets is shown in Table 2.

Immunocytochemistry
Immunocytochemical analysis was performed as previously

described [38]. As a methodological control, the primary antibody

was omitted. The primary and secondary antibodies used were as
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follows: blue opsin (rabbit polyclonal, H-40, Santa Cruz), green/red

opsin (goat polyclonal, C-19, Santa Cruz), rhodopsin (goat

polyclonal, I-17, Santa Cruz), N-Cadherin (rabbit polyclonal,

Abcam), GFAP (rabbit polyclonal, DAKO), NSE (mouse monoclo-

nal, VI-H14, DAKO), Vimentin (mouse monoclonal, V9, DAKO),

Nestin (mouse monoclonal, clone196908, R&D), Sox2 (rabbit

polyclonal, ab15830, Abcam), melanopsin (goat polyclonal, C-16,

Santa Cruz), recoverin (mouse monoclonal, 6A55CD6, Santa Cruz).

Light stimulation
A high pressure UV lamp (USH-102D, Ushio) was used as a

light source. Diffuse, unpolarized blue and green lights were

generated through bandpass filters attached with the fluorescent

emission system (BX-FLA, Olympus, Tokyo, Japan). Wavelength

of light for stimulation was 460–490 nm for blue and 520–550 nm

for green. Duration and timing of light stimulation was monitored

by a photodiode (TPS708, Toshiba). Light intensity was calibrated

by a light meter (LI-COR, LI-250) that was placed at the focal

plane on the stage. To maximize a chance for photoisomelization

of photopigment, we applied a strong light to the cell. Light

intensity used for stimulation was 390 W/m2 for blue and

4810 W/m2 for green.

Electrophysiology
To activate the phototransduction cascade, 11-cis retinal (a gift

from the vision research community, the National Eye Institute,

National Institutes of Health) was added to the culture medium of

the human iris-derived cells to a concentration of 50 mM with

Table 1. Primer sequences for RT-PCR.

Gene name Forward Reverse

Pax6 59 – GTAGTTTCAGCACCAGTGTCTACC – 39 59 – GGCTGACTGTTCATGTGTGTCT – 39

Rhodopsin 59 – CAACTACATCCTGCTCAACCTAGC – 39 59 – GTGTAGTAGTCGATTCCACACGAG – 39

Glutamine synthetase 59 – GACCCTAACAAGCTGGTGTTATGT – 39 59 – ATGTACTTCAGACCATTCTCCTCC – 39

CRALBP 59 – GTCCTCTCTAGTCGGGACAAGTATG – 39 59 – CTGGTAGAAACCAGAAAGGTCATC – 39

Recoverin 59 – AGAGCATCTACGCCAAGTTCTTCC – 39 59 – GCAGAATTTCCTTATTGGCCAGTGTC – 39

Peripherin 59 – GTACCTGGCTATCTGTGTTCTCTTC – 39 59 – GTCGTAACTGTAGTGTGCTGAGTTG – 39

Blue opsin 59 – GCGCTACATTGTCATCTGTAAGCC – 39 59 – GAAGGAATGGTGACAAGCCGTAAG – 39

Green/Red 59 – GTGCAGTCTTACATGATTGTCCTC – 39 59 – AGATAACGGGGTTGTAGATAGTGG – 39

Green 59 – GTGATGGTCCTGGCATTC – 39 59 – GAGGACACAGATGAGACCTCCGTT – 39

Red 59 – GTGATGATCTTTGCGTAC – 39 59 – GAGGACACAGATGAGACCTCCGTT – 39

Transducin-a2-chain 59 – ATTACAGACCCTGAGTACCTCCCTA – 39 59 – GAGGTCCTTCTTGTTGAGAAAGAG – 39

Cone channel A3 (CNGA3) 59 – GTCCTGTATGTCTTGGATGTGC – 39 59 – GAATCAATCTTGGCCTGGAACTCTG – 39

Transducin 59 – CATCGAGACGCAGTTCTCCT – 39 59 – AGTAGCGGTGGTTGCAGATG – 39

Phosducin 59 – TCAAAGGAACGAGTCAGCAG – 39 59 – CTGCTGCAAGGCATGTTAAA – 39

PDE6b 59 – CAGTGATGAACACCGACACC – 39 59 – ATTTGACCAGGTCCAGTTCG – 39

PDE6c 59 – CTGAGGTGGCCTCTAGGTTG – 39 59 – GCTGGTGTGATGAAGCCTTAG – 39

Rhodopsin kinase (GRK1) 59 – GGACTGGTTCCTGGACTTCA – 39 59 – AAGCCAGGGTTCTCCTCATT – 39

S-antigen 59 – GGTGTTGTCCTGGTTGATCC – 39 59 – TCAGCGTCTTGGTCAAAGTG – 39

Arrestin3 (ARR3) 59 – GGTGTTGTCCTGGTTGATCC – 39 59 – GTCACAGAACAGGGCAGGTT – 39

Retinol dehydrogenase 12
(RDH12)

59– CTTCTCCCCCTTTGTCAAGA – 39 59 – CTTTAGGGTTGGCCTTCTCC – 39

GFAP 59– GATCAACTCACCGCCAACAG – 39 59 – GGACGCCATTGCCTCATACTG – 39

Nurr1 59– TTTCTGCCTTCTCCTGCATT – 39 59 – GTGGCACCAAGTCTTCCAAT – 39

Nestin 59 – AGAGGGGAATTCCTGGAG – 39 59 – CTGAGGACCAGGACTCTCTA – 39

NF-M 59 – TGAGCTACACGTTGGACTCG – 39 59 – TCTCCGCCTCAATCTCCTTA – 39

Sox-2 59 – CACAACTCGGAGATCAGCAA – 39 59 – GTTCATGTGCGCGTAACTGT – 39

MAP-2 59 – GGATTCTGGCAGCAGTTCTC – 39 59 – TCCTTGCAGACACCTCCTCT – 39

Musashi1 59 – CGAGCTTACAGCCATTCCTC – 39 59 – ACTCGTGGTCCTCAGTCAGC – 39

Tyrosine hydroxylase 59 – GTCCCGAGCTGTGAAGGTGTTTGA – 39 59 – ATTGTCTTCCCGGTAGCCGCTGAA – 39

Twist 59 – GTCCGCAGTCTTACGAGGAG – 39 59 – GCTTGAGGGTCTGAATCTTGCT – 39

Snail 59 – AATCGGAAGCCTAACTACAGCG – 39 59 – GTCCCAGATGAGCATTGGCA – 39

Slug 59 – AAGCATTTCAACGCCTCCAAA – 39 59 – AGGATCTCTGGTTGTGGTATGAC – 39

Sox9 59 – AGACAGCCCCCTATCGACTTC – 39 59 – TGCTGCTTGGACATCCACAC – 39

P75NTR 59 – CCTACGGCTACTACCAGGATG – 39 59 – CACACGGTGTTCTGCTTGTC – 39

Melanopsin 59 – CTTCACCAGTAGCCTCTATAAGCAG – 39 59 – CCCTGAAGATGAAGATGTAGCAGT – 39

G3PDH 59 – GCTCAGACACCATGGGGAAGGT – 39 59 – GTGGTGCAGGAGGCATTGCTGA – 39

doi:10.1371/journal.pone.0035611.t001
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0.2% ethanol as a vehicle, approximately 2 h prior to the electrical

recording. The cells were kept at 37uC in the dark and were

transferred to a recording chamber filled with Leibovitz’s L-15

medium (Gibco) and mounted on the microscope stage (BX51WI;

Olympus, Tokyo, Japan) under dim red light. Individual cells were

visualized under an infrared light monitoring system. Electrical

recordings were made in the whole-cell patch-clamp configura-

tion. Patch pipettes were pulled from borosilicate glass (Hilgenberg

GmbH, Marsfeld, Germany) using a two-stage electrode puller

(PP-83; Narishige, Tokyo, Japan). The composition of the intra-

pipette solution was (in mM) KCl, 135; CaCl2, 0.5; HEPES, 5;

EGTA, 5; ATP-2Na, 5; GTP-3Na, 1; and pH was adjusted to 7.3

with KOH. The resistance of patch pipettes was 12–15 MV when

filled with an intra-pipette solution. An Ag-AgCl pellet submerged

in a NaCl well and connected to a recording chamber via a

150 mM NaCl agar-bridge was used as a reference electrode. The

membrane current was recorded with a patch-clamp amplifier

(Axopatch-200B; Axon Instruments, Foster City, CA, USA), low-

pass filtered with a cutoff frequency of 500 Hz, and digitized at

1 kHz through a DigiData 1322A Interface using pCLAMP

software (version 8.0, Axon Instruments).

To assess whether a recorded cell had any response to light or

not, we used the following criteria:

Iphoto~Istim{Ibase

Where Ibase was an average of holding current for 1 s just before

light stimulation and Istim was an average of holding current for 1 s

just before the cessation of light stimulation. When Iphoto was

larger than the two times of standard deviation of Ibase, Iphoto was

judged as a real response to light stimulation.

Supporting Information

Figure S1 Southern blot analysis. A. Genomic DNA was

isolated using the DNeasy kit (Qiagen). Genomic DNA (500 ng)

was digested with BamHI restriction enzyme, separated via 0.8%

agarose gel electrophoresis, and transferred to Hybond-N

membranes (GE Healthcare). The membrane was then fixed

under UV irradiation. The full-length RB gene probe was labeled

by the AlkPhos Direct Labelling Reagent (GE Healthcare) and

hybridized to the blot and detected using CDP-Star detection

reagent (GE Healthcare). Lane 1: iris-derived cells (EY1420), lane

2: iris-derived cells (EY1406), lane 3: iris-derived cells (EY1408),

lane 4: menstrual blood-derived cells (control), lane 5: endome-

trium-derived cells (control). B. Ethidium bromide stain of the

BamHI-digested genomic DNA after electrophoresis.

(DOC)

Figure S2 RT-PCR analysis for genes of MAP2, rhodop-
sin, blue opsin, green/red opsin and G3PDH in iris-
derived cells after gene transduction of several tran-
scription factors. As negative controls, data of iris tissue and

cultured iris-derived cells without gene transduction (w/o) are

shown. We selected six genes, SIX3, PAX6, RX, CRX, NRL, and

NEUROD, as candidate factors that may contribute to induce

photoreceptor-specific phenotypes in iris cells. SIX3, PAX6, RX,

CRX, NRL, and NEUROD are indicated as S, P, R, C, NR and

ND, respectively. Left panel: Transduction of each single gene of

SIX3, PAX6, RX, CRX, NRL, or NEUROD. Right panel:

Transduction of all six genes and 5 genes. To determine which of

the six candidates are critical, we examined the effect of

withdrawal of individual factors from the pool of the candidate

genes on expression of the opsin genes. As a result, individual

withdrawal of NEUROD resulted in loss of expression of

rhodopsin and withdrawal of CRX resulted in loss of blue opsin.

(DOC)

Figure S3 Immunocytochemistry using antibodies to
rhodopsin (left panels), blue opsin (middle panels) and
green/red opsin (right panels) on the cultured iris cells
without gene infection (upper panels) and frozen sections
of human retina (lower panels). Human iris cells without gene

infection (upper panels) and the macular area of human retina

(lower panels) served negative and positive controls, respectively, for

Fig. 2C. The primary antibodies used were as follows: rhodopsin

(goat polyclonal, I-17, Santa Cruz), blue opsin (goat polyclonal, P-

13, Santa Cruz), and green/red opsin (goat polyclonal, C-19, Santa

Cruz). The secondary antibody used was rabbit polyclonal to goat

IgG conjugated with FITC. Nuclei were stained with DAPI. The

photoreceptor layer in the retina is positive for rhodopsin, blue opsin

and green/red opsin (lower panels from left to right).

(DOC)

Figure S4 Immunocytochemistry using antibodies to
blue opsin (red) and rhodopsin (green). Double-stained

immunocytochemistry was performed, by using 2 primary

antibodies (mouse monoclonal Ab to rhodopsin and rabbit

polyclonal Ab to blue opsin) and 2 secondary antibodies (goat

Table 2. Primer sequences for qRT-PCR.

Gene name Forward Reverse

Recoverin 59 – TTCAAGGAGTACGTCATCGCC – 39 59 – GATGGTCCCGTTACCGTCC – 39

S-arrestin 59 – GGACAAATCGGTGACCATCTAC – 39 59 – ACAGGAGGATACACCTGGACC – 39

Phosphodiesterase 6B 59 – ACGTGTGGTCTGTGCTGATG – 39 59 – CTTGCCGTGGAGGATGTAGTC – 39

Rhodopsin 59 – CACCTCTCTGCATGGATACTTCG – 39 59 – ATGGGCTTACACACCACCAC – 39

Blue opsin 59 – TAGCAGGTCTGGTTACAGGATG – 39 59 – GAGACGCCAATACCAATGGTC – 39

Green opsin 59 – CATCCGCAGGACAGCTATGAG – 39 59 – GTAAGCACAGTGGGTTCGTTTCCC – 39

Phosphodiesterase 6C 59 – AGGCTTCATCACACCAGCTAC – 39 59 – TGAAACTGTCGCTCAACATCTG – 39

Cone channel A3 59 – GGACTCTTTTCCTGATCGTTTCC – 39 59 – GCTGGTGTTAGTGTTGCATTTG – 39

Cone channel B3 59 – CTCCTGTGGCTCTTGCTTGTC – 39 59 – GCGGTTTGATATGGGAAGACGA – 39

Arrestin3 59 – GCACAAGCTAGGGGACAATG – 39 59 – CCAGCCGCACATAGTCTCTC – 39

G3PDH 59 – GCTCAGACACCATGGGGAAGGT – 39 59 – GTGGTGCAGGAGGCATTGCTGA – 39

doi:10.1371/journal.pone.0035611.t002
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anti-mouse polyclonal FITC-labeled Ab and goat anti-rabbit

polyclonal rhodamine-labeled Ab). Nuclei were stained with DAPI

(blue). Experiments were performed at two weeks after infection.

Scale bar represents 50 mm in the rightmost panel.

(DOC)

Figure S5 Electron-microscopic observation. Cells were

initially fixed in PBS containing 2.5% glutaraldehyde for 24 h, and

were embedded in epoxy resin. Ultrathin sections were double-

stained with uranyl acetate and lead citrate, and were viewed

under a JEM-1200EX transmission electron microscope (JEOL,

Ltd.). After transduction of the RX, CRX, and NEUROD genes

into human cultured iris cells, a cilia-associated structure, i.e.

centriole (arrow head) surrounded by mitochondria (arrows), was

detected.

(DOC)

Figure S6 Quantitative analysis of photoreceptor-spe-
cific/associated genes expression (blue opsin, s-antigen
and recoverin). Individual RNA expression levels were

normalized by respective G3PDH expression levels. Vertical axis

is relative expression levels of each gene in the siCRX &

siNEUROD-transfected cells versus negative control siRNA-

transfected cells (%, the mean of relative expression levels of two

experiments). siRNA transfection. The cells at 7 days after

transduction of the CRX, RX, and NEUROD genes in 6 well

plates were transfected with siRNA using Lipofectamine RNAi-

MAX Reagent (Invitrogen) according to the protocols recom-

mended by the manufacturer. The cells were harvested 48 h after

transfection and analyzed by quantitative RT-PCR. Stealth

RNAiTM siRNA Duplex Oligoribonucleotides (siCRX and

siNEUROD1, Invitrogen) were used as siRNAs to the CRX and

NEUROD genes, and StealthTM RNAi Negative Control

Duplexes (Invitrogen) were used as control siRNA.

(DOC)

Table S1 Primer sequences for exogenous/endogenous
expression of transcription factors.

(DOC)

Table S2 Opsin expression by combination of tran-
scription factors.

(DOC)
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