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Abstract

Cigarette smoking remains the leading cause of preventable death in the United States. Traditional 

in-clinic cessation interventions may fail to intervene and interrupt the rapid progression to relapse 

that typically occurs following a quit attempt. The ability to detect actual smoking behavior in 

real-time is a measurement challenge for health behavior research and intervention. The successful 

detection of real-time smoking through mobile health (mHealth) methodology has substantial 

implications for developing highly efficacious treatment interventions. The current study was 

aimed at further developing and testing the ability of inertial sensors to detect cigarette smoking 

arm movements among smokers. The current study involved four smokers who smoked six 

cigarettes each in a laboratory-based assessment. Participants were outfitted with four inertial 

body movement sensors on the arms, which were used to detect smoking events at two levels: the 

puff level and the cigarette level. Two different algorithms (Support Vector Machines (SVM) and 

Edge-Detection based learning) were trained to detect the features of arm movement sequences 

transmitted by the sensors that corresponded with each level. The results showed that performance 

of the SVM algorithm at the cigarette level exceeded detection at the individual puff level, with 

low rates of false positive puff detection. The current study is the second in a line of programmatic 

research demonstrating the proof-of-concept for sensor-based tracking of smoking, based on 

movements of the arm and wrist. This study demonstrates efficacy in a real-world clinical 

inpatient setting and is the first to provide a detection rate against direct observation, enabling 

calculation of true and false positive rates. The study results indicate that the approach performs 
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very well with some participants, whereas some challenges remain with participants who generate 

more frequent non-smoking movements near the face. Future work may allow for tracking 

smoking in real-world environments, which would facilitate developing more effective, just-in-

time smoking cessation interventions.
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1. Introduction

Cigarette smoking remains the number one cause of preventable morbidity and mortality in 

the United States [1]. Each year, one third to one half of smokers attempt to quit at least 

once [2]; however, approximately 70% of quit attempts fail [3]. Research suggests that an 

overwhelming majority of smokers (95%) who “slip” (i.e., lapse, which could involve 

smoking only a few puffs from a cigarette) during a quit attempt eventually relapse (i.e., 

return to pre-quit smoking levels; [4,5]). There is a clear need for more research to 

understand why individuals continue to smoke, why they have difficulty quitting, what leads 

to a lapse or relapse, and what helps smokers maintain abstinence.

A number of methods are used to estimate smoking status in research and treatment 

methods, such as: (1) self-reports of smoking status at specific time points [6]; (2) self-

reports of smoking in the natural environment at the time that each cigarette is smoked (e.g., 

ecological momentary assessment; [7]; (3) expired breath carbon monoxide (CO; [8,9]); and 

(4) metabolites of nicotine found in the urine, saliva, and blood plasma of smokers, such as 

cotinine [8,10,11]. All of these techniques suffer from limitations in accurately detecting 

smoking status and patterns of use, which may contribute to the deficits in existing smoking 

cessation interventions. Although self-reports of smoking are an acceptable method for 

determining smoking status in many contexts [6], they can suffer from issues such as recall 

bias [7] and falsification [12] (e.g., incentive-based interventions, pregnant women). 

Ecological momentary assessment (EMA) is intended to collect information about 

individual smoking events as they occur in the natural environment; however, EMA suffers 

from the same potential limitations that exist for other self-report measures described above 

and requires high levels of participant compliance. Objective, biochemical measures 

indicating smoking also suffer from limitations. CO is complicated by the fact that it has a 

short half-life and must therefore be collected frequently to capture smoking events [8]. CO 

can also be elevated by other sources (e.g., marijuana, car exhaust, second-hand smoke). 

Tobacco metabolites, such as cotinine, have much longer half-lives than CO, but this can 

also be problematic because it can be difficult to distinguish recent from past smoking. Also, 

some metabolites are unable to differentiate nicotine obtained from non-smoking sources 

(e.g., nicotine replacement therapy, smokeless tobacco, etc.). Furthermore, biochemical 

measures of abstinence do not capture individual smoking events, instead they provide a 

summary of smoking, and occasionally fail to identify very low levels of smoking [8].

No single measure of smoking status in the natural environment is likely to be 100% 

accurate. Nevertheless, new efforts to track smoking in real-time are important on their own 
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and in some cases may be combined with existing methods to improve detection and 

overcome barriers. One solution to the limitations of current methods of assessing smoking 

status, and in capturing a lapse or relapse when it occurs, is to use a remote monitoring 

system capable of detecting cigarette smoking, even if only a few puffs of a cigarette are 

taken in the natural environment. Remotely monitoring health behavior and outcomes is an 

emerging area within the mobile health (mHealth) field [13]. MHealth is a developing area 

of innovation, research, and dissemination that incorporates mobile technology, such as 

mobile devices, health-related applications (apps) for mobile platforms, remote monitoring, 

body sensors, etc. [14]. The goal of this work is to improve health-related research, 

treatment delivery and fidelity, frequency of data collection, dissemination, just-in-time 

interventions, respondent burden and cost-effectiveness. This area is particularly exciting for 

smokers, as many treatment interventions are not successful and smokers progress from 

lapse to relapse very quickly, all of which could be improved with mobile technology.

There are systems that have been used to detect individual puffs. For example, the Clinical 

Research Support Systems (CReSS) Pocket device (Borgwaldt KC, Inc., Richmond, VA, 

USA) has been used in the laboratory to capture individual puff characteristics (i.e., puff 

volume, inter-puff-interval, etc.) when a cigarette is inserted into the device and smoked 

through a special mouthpiece. Although the CReSS Pocket device has been used in 

naturalistic settings with smokers [15], it is large and obtrusive, and still relies on the 

participant to smoke their cigarette through the device. Therefore, CReSS has not been 

implemented consistently as a way to monitor smoking in the natural environment. A 

monitoring system that is less obtrusive and allows for more naturalistic smoking would be 

ideal for detecting smoking events in the smoker’s natural environment. A second system, 

mPuff, measures respiration patterns through chest expansion (detected through a chest 

strap) to identify smoking events. This system can be worn in the field and directly transmits 

information to a mobile device [16], though its testing and detection capabilities are still 

being refined and to date no published record of its performance in relation to direct 

observation exists. A third system, PACT [17,18], uses sensors at the wrist and chest, and 

has similar algorithmic and hardware features to mPuff, however currently published reports 

only reflect its performance with respect to electromagnetic interference in the field; limited 

information about its performance with respect to concomitant measurement of smoking 

events is available.

Though remote monitoring systems for the detection of smoking hold great promise for 

smoking research and treatment, there are several notable concerns in the development and 

feasibility of remote monitoring technology. One of the most important requirements of a 

tool used to detect physical activities, such as smoking movements, is that the device itself 

should not change the nature of the activity [19]. Weight, size, cables attached to the device 

for data transmission, and where and how the device is placed on the participant’s body can 

directly affect the participant’s freedom of movement. Although there are many electronic 

devices to capture kinematic data from participants, many of them are heavy, and require 

cables and additional equipment to transfer data from the sensors, thus diminishing the goal 

of devices being unobtrusive.
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Joint work between the University of Rhode Island and Rutgers University has recently led 

to a prototype technology that uses inertial sensors (accelerometers, electrogoniometers and 

similar hardware) for measuring smoking events. Inertial sensors are small devices that can 

be used to track movements. They can be applied to limbs of the body and generate raw 

measurements reflecting tri-axial accelerations, angular velocities, and the relationships to 

one another. A unique set of algorithms has been developed that combine these signals into 

a movement detection system [20]. When this technology was initially developed, non-

smoking participants were outfitted with small, lightweight body sensors on the arm and 

wrist, and they mimicked smoking movements. The signals were then sent wirelessly to a 

handheld computer, such as a smartphone or tablet, where they were processed to detect 

sham smoking events. Although this methodology overcomes a number of the concerns 

outlined above, and initial development and validation of the devices and algorithms was 

promising, actual smoking behavior has never been tested with this system. Therefore, the 

purpose of the current study was to further validate and formalize the procedure for training 

the algorithm to differentiate smoking events from non-smoking events with actual smokers 

in a laboratory setting. The current study also aimed to determine the minimum number and 

location of kinematic sensors needed to detect smoking events, as well as compare detection 

accuracy of two different algorithms at identifying smoking events.

2. Method

2.1. Participants

Smokers (n = 6) were recruited from unrelated, on-going or recently completed studies at the 

Behavioral Pharmacology Research Unit (BPRU) at Johns Hopkins University School of 

Medicine, where one co-author (EAM) held an appointment. To qualify for the study, 

participants had to be between the ages of 18–100, report smoking at least 10 cigarettes per 

day, provide a breath CO sample of >10 parts per million (ppm; piCO+ Smokerlyzer, 

Bedfont Scientific Ltd., Maidstone, Kent, UK), report smoking for >5 years, and be literate 

in English. Qualifying participants provided informed consent prior to engaging in study 

activities. All procedures were approved by the Institutional Review Board at Johns Hopkins 

University School of Medicine.

2.2. Equipment

Shimmer™ kinematic sensors [21] were used for collecting linear acceleration (with 

accelerometers) and angular rate (with gyroscopes) values at 50 Hz, capturing arm 

movements made by the participant during the session. This information was transmitted 

wirelessly to a destination node connected to an android tablet. The kinematic sensors had a 

tri-axial accelerometer MMA7260Q made by Freescale and were capable of sensing 

accelerations ranging from ±1.5 g, ±2 g, and ±6 g, where g = 9.81 m/s2. Linear acceleration 

output of the accelerometer is the vector addition of gravity and acceleration of the sensor 

due to motion. There was also a 3-axis gyroscope board with a full range of ±500 degrees/s. 

For the first three participants, four sensors were placed on the arm as shown in Figure 1. 

Based on the results of the first three participants, it was concluded that placing one 

kinematic sensor on the elbow and one on the wrist was adequate. Consequently, for 

Participants 4–6, two sensors were placed on each arm (rather than just the smoking arm as 
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before). According to this placement, +x axis of the sensor coordinate frame was towards 

the fingers of the participant, +y was aimed at the left side of the arm and +z was pointing 

out from the outside of the arm. A digital video camera, manufactured by Canon (Model 

FS300) was used in all sessions to record smoking events and to validate the results 

generated by the kinematic sensors. Based on video recordings, smoking and non-smoking 

labels were identified by human observers. Training labels for algorithms were randomly 

chosen over smoking and non-smoking labels by the algorithms.

2.3. Procedure

Study procedures were conducted at the Johns Hopkins Bayview Medical Center at the 

BPRU research facilities. Participants enrolled in the study completed a demographic and 

psychosocial history questionnaire and the Fagerström Test for Nicotine Dependence 

(FTND; [22]). The laboratory smoking session lasted for 3.5 hours and required one visit for 

each study participant. When participants first arrived to the lab, they were outfitted with 

four kinematic sensors using a velcro strap over their clothing (as shown in Figure 1) and 

then smoked the first of six cigarettes of their preferred brand. We encouraged participants 

to sit near a ventilation fan while smoking; however, they were not required to sit in one 

position while smoking or between cigarettes (i.e., they could engage in other activities 

simultaneously such as reading magazines and talking on the phone). We wanted their 

smoking environment to resemble their natural environment as much as possible, but in a 

controlled way at this stage in the research so that we could closely monitor their behavior 

via video camera. We also required a minimum 20-min inter-cigarette-interval to allow 

participants time to engage in non-smoking activities during the session for comparison 

(e.g., reading, talking on the phone, playing cards, eating, walking around). Details of the 

activities and movements that participants engaged in are described more in Section 3.4.

At the end of the session, participants completed an Acceptability Questionnaire that asked 

about the tolerability of wearing the kinematic sensors during the session. The session was 

videotaped so that the data collected from the sensors could be compared to that which was 

directly observed in the video, which has not previously been done. Six participants 

completed all study procedures. Two of the six participants smoked cigarettes from the 

CReSS Pocket topography device (Borgwaldt KC, Inc., Richmond, VA, USA) to obtain 

specific puffing characteristics, such as puff volume, duration, etc. Use of this device 

substantially modified the way in which participants moved their arm and wrist while 

smoking each cigarette, as detected by the kinematic sensors, therefore, participants using 

the CReSS Portable device were excluded from the present analyses. Data are only 

described for the four participants who smoked naturally during the laboratory session.

2.4. Algorithms

The best way to characterize arm movements specific to smoking was to identify the 

sequence of puff movement (SPM) durations. One instance of an SPM was defined as an 

upward hand movement with the cigarette towards the mouth, placing the cigarette in the 

mouth and inhaling, which was then followed by a downward hand movement. Since linear 

acceleration is the vector addition of gravity, plus acceleration due to movement, the 

acceleration data collected during an SPM characterized both movement (upward or 
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downward) and gravity vector (during inhalation). To detect the occurrence of an SPM, as 

well as the time in-between puffs (i.e., inter-puff-interval) from the raw data collected from 

the kinematic sensors, two approaches were developed. The first approach employed a 

supervised learning method based on Support Vector Machines (SVMs). The second 

approach was based on edge detection in de-noised linear acceleration data.

After the algorithms in both approaches detected a series of SPMs, the whole cigarette 

smoking events were identified by grouping consecutive SPMs. If the time difference 

between two consecutive SPM events was large (i.e., >10 min), they were separated into 

different cigarette smoking events. Otherwise, they were grouped into the same smoking 

event. Finally, cigarette smoking events that had lower SPM counts than the minimum count 

parameter, which was set to 2, were discarded.

2.4.1. SVM-Based Approach—There has been considerable research on activity 

recognition using kinematic sensor data with different approaches such as decision trees 

[23], Bayes classifiers [24] and neural networks [25]. These studies have focused on 

ambulation posture and activities, such as bicycling. Notably, there is a difference between 

an activity and a movement that comprises an activity. Smoking a cigarette is an activity 

whereas taking an individual puff from a cigarette is a movement. Our previous work [20] 

focused on movement classification using the SVM-based approach. Shortly after the 

experiment detailed by Varkey and colleagues, another study using devices to track smoking 

was conducted, however, it relied on a different approach [18].

SVM is one of the most widely used algorithms, particularly for the purposes of recognizing 

patterns in the data, as well as for classifying text and conducting regression analyses. The 

basic SVM approach takes a set of data and predicts, for each given input, which of two 

possible classes form the output, making it a non-probabilistic binary linear classifier.

Given a set of training examples (e.g., combinations of statistical features extracted from 

raw kinematic sensor data), each marked as belonging to one of two categories (for the 

present case the categories were smoking versus not smoking), the SVM training algorithm 

assigns the novel input into one or the other category. Because this algorithm was trained 

with examples prior to being ready for classification, this approach is a type of supervised 

learning algorithm. The training examples comprised the features (e.g., mean value, 

maximum values, etc.) that were calculated over a portion (window) of kinematic data. By 

moving this window over the kinematic data and running the classifier, the algorithm tried to 

detect SPMs. A block diagram illustrating this training and detection with the SVM 

approach is shown in Figure 2.

The specific elements of our SVM approach were as follows. Let q(t) denote the raw 

accelerometer and gyroscope values at time t and Q(t) is a p-dimensional vector that is 

composed of the features extracted from the q(t) in time interval between t and t + w. The w 

represents the window size, which is a parameter of our algorithm. Therefore, every time 

interval during a session can be represented as a point p dimensional space and each of those 

points belong to one of the classes (smoking or not smoking). In SVMs, the objective is to 
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find a (p-1) dimensional hyperplane that separates the classes. A hyperplane can be defined 

as,

(1)

where x is the vector to be recognized, a is the normal vector to the hyperplane and b is the 

offset from the origin of the space. Therefore, the purpose of the training in SVM is to find a 
and b.

Based on past experience in activity and movement classification with SVM [18,20], radial 

basis function kernel was used to tune the SVM parameters and the cumulative 

misclassification ratio was used as an index; this is the ratio of total misclassification of 

movements to total activity time. We calculated mean, standard deviation, maximum, 

minimum, peak to peak, root mean square and correlations between axes of the data within 

the window to generate features.

The window-based algorithm that was used was composed of two windows, a main window 

and a small window. Although the main window and small window had the same window 

size (w), the small classification window was shifted by w/2 within the main window two 

times. Four different window sizes (5, 10, 15 and 20 s) were evaluated and the best results 

were observed with the 10-s window size, based on the Receiver Operator Characteristic 

(ROC) analyses reported in Section 3.3. For each shift of the small classification window the 

confidence was calculated. Therefore, the recognized movement fell within the classification 

of the window resulting in the best confidence.

2.4.2. Edge-Detection-Based Approach—With this approach, the raw data were first 

preprocessed to eliminate noise and gravity components. To filter noise, an equiripple FIR 

lowpass filter was used at 1 Hz. This filter was not used in the SVM approach because SVM 

does not draw on raw data but rather uses statistical features (e.g., mean, min and max) from 

raw data that are less sensitive to noise. We assumed that gravity components between 

consequent samples were the same. Although, the previous acceleration sample has both 

gravity and the acceleration-due-to-motion components, subtraction of the previous sample 

from the current sample is an approximation to gravity elimination. Next, a basic edge-

detection algorithm was applied. A kinematic sensor that is in motion will produce 

increasing or decreasing acceleration values over time. A fixed sensor, on the other hand, 

will produce a constant acceleration (due to gravity) plus random noise (due to measurement 

errors). The basic edge detection algorithm defined significant increases and decreases as 

edges. Every rising or falling edge of the filtered signal corresponded to a hand movement. 

Finally, upward and downward hand movements were utilized to model an SPM. To model 

SPM, minimum and maximum SPM duration parameters were defined by observing the 

SPM durations from video recordings. When the time difference between the participant’s 

upward and downward hand movement coupled together was lower than the minimum SPM 

duration, or higher than the maximum SPM duration, that movement was assumed to be a 

false (impossible) event and it was not included.
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Since edge-detection-based methods detect significant increases/decreases in kinematic 

sensor data, the classification output of the method, Y(t), was 1 (representing an upward or 

downward arm movement) if the difference of consequent kinematic sensor data samples, t, 

were greater than a certain threshold, th. Otherwise, the edge-detection-method output was 0 

(shows that the algorithm did not detect an upward/downward movement). Therefore,

(2)

Since the signal was already filtered, only a difference that was greater than th was detected 

between concurrent samples due to movements. Although edge-detection method could 

generate too many 1 s for small values of th (detecting very small movements), the 

algorithm’s performance depended on a correct choice for the value of th, based on 

minimum and maximum SPM duration. As with the SVM-based approach, selection of 

these parameters were based on Receiver Operator Characteristic (ROC) analyses (described 

in Section 3.3). The accuracy of the algorithm came from its ability to filter erratic 

movements (e.g., playing with hair). In order for an erratic movement to be counted as an 

SPM, it needed to be similar not only in amplitude, direction, and duration but it also needed 

to occur for longer than the minimum SPM duration.

2.5. Detecting Puff and SPM Durations

To identify puff and SPM durations using the kinematic sensors, first we examined different 

sensor combinations to determine the best locations on the arm, as well as the minimum 

number of sensors that would be needed to detect such movements. We also investigated 

different values for two training parameters, with 10 different feature extraction methods for 

the SVM-based-approach, and 21 different thresholds for the edge-detection-based 

approach. Next we chose the best configuration, which was comprised of the feature set, 

sensor combination, and training parameter or threshold value, and the minimum and 

maximum SPM duration that produced the best performance, to use in further analyses (e.g., 

to determine puff and cigarette levels).

Determining the best combination involved using a Receiver Operator Characteristic (ROC) 

analysis, with direct observation serving as the Ground Truth for determining when each 

cigarette was smoked during the session (verified by the video recordings). The ROC curve 

is a graphical plot illustrating the performance of a binary classifier system as its 

discrimination threshold varies. It was created by plotting the fraction of true positives out of 

all positives from the ground truth (TPR = true positive rate) vs. the fraction of false 

positives out of all negatives from the ground truth (FPR = false positive rate), at various 

threshold settings.

Next, the focus was on SPM level analysis where the methods were evaluated by comparing 

the results with the Ground Truth in terms of the number of puffs taken, detected SPMs, and 

duration of SPMs for each participant. Duration between SPMs and inter-puff durations 

were also examined. A second analysis was then deployed at the level of the cigarette. By 

combining consecutive SPMs, we identified when a cigarette was smoked. Similar to the 
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SPM level analysis, the performance of methods were evaluated by comparing the number 

of cigarettes actually smoked (all participants smoked a total of 6 cigarettes), as well as the 

duration of time taken to smoke each cigarette, based on Ground Truth compared to that 

detected by the algorithms. All ground truths were based on observing the video recordings 

from each participant’s session.

To assess agreement between the ground truth for number of puffs for each cigarette and the 

duration of time it took to smoke each cigarette, independent observer ratings were 

compared based on review of participant session videos. Inter-observer agreement (IOA) for 

puffs and duration of each cigarette was calculated by dividing the smaller number by the 

larger number and multiplying by 100 to obtain a percentage agreement. Agreement 

percentages were then averaged for each cigarette smoked.

3. Results

3.1. Participants

Individual participant demographics, past, and current smoking characteristics are shown in 

Table 1. On average, study participants (n = 6) were 40.3 (SD = 10.2) years old. The 

majority of participants were male (83%) and White (83%). Participants smoked an average 

of 19.6 (SD = 6.0) cigarettes per day, and had been smoking regularly for an average of 20.3 

(SD = 7.5) years. Nicotine dependence scores, determined via the FTND, averaged 5.2 (SD 

= 1.9), and prior to their laboratory session, participant breath CO samples averaged 13.7 

ppm (SD = 5.3). Generally, participants were moderate to heavy smokers with a substantial 

history of smoking.

3.2. Smoking Characteristics

Two participants smoked cigarettes from the CReSS Pocket smoking topography device, 

and were excluded from the the following analyses because the CReSS device changed wrist 

and arm movements detected by the kinematic sensors. Smoking characterstics, as directly 

observed and calculated via the video-recordings, are shown in Table 2. Across six 

cigarettes, participants averaged 9.2 (SD = 3.9; Range = 4–21) puffs per cigarette. This 

average does not include the initial puff that was used to facilitate lighting the cigarette. 

Participants paused for approximately 42-s between individual puffs (SD = 21.3; Range = 

13–110-s) and spent approximately 367-s (SD = 79; Range = 224–506-s) smoking each 

cigarette during the laboratory session. Agreement ratings from two independent observers 

were 92.8% and 94.3% for puffs per cigarette and duration to smoke a cigarette, 

respectively. For the remainder of the smoking measures, each participant is described 

separately.

3.3. ROC Analyses

Figure 3a, b show the ROC curves for the SVM-based approach and edge-detection-based 

methods for Participant 1, respectively. The best configurations used in cigarette and SPM 

level analyses are indicated by the circled point on the figure. The best configuration had a 

high TPR (>0.95) and a low FPR (<0.07) for both of the algorithms. This high TPR and low 

FPR leads to success in SPM level analysis. Participant 4 (Figure 3c, d) also had the best 
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configuration for the SVM-based approach and showed a high TPR (>0.9) and an 

intermediate FPR (<0.2). On the other hand, the best configuration for the edge-based 

algorithm resulted in lower performance for TPR (>0.6) and FPR (~0.2). It should be noted, 

however, that the SPM durations detected by the edge-detection-based approach were 

similar to Ground Truth identified in the video. Figure 3e, f show the ROC curves for 

Participant 5. The best configuration for both SVM-based and edge-detection-based 

approaches resulted in intermediate TPR (~0.7) and FPR (~0.2). Finally, Participant 6 

(Figure 3g, h) showed the best configurations for both methods and had FPR around 0.2, the 

edge-detection-based algorithm produced a higher TPR (>0.95) then the SVM-based 

approach (>0.6).

3.4. Puff Duration and SPMs

Figure 4 shows the Puff and SPM durations of each participant based on the video 

recordings. SPM durations are expected to be longer than puff durations as they capture the 

entire arm movement of the puff (raising the hand to the mouth, inhalation, and then 

lowering the hand). Participant 1 (Figure 4a) had SPMs averaging 6-s (Range = 4–8-s), and 

displayed longer and less variable puff durations, relative to the other participants. 

Participant 4 (Figure 4b) displayed short SPM durations averaging 3-s (Range = 2–8-s), with 

intermediate variations across SPM durations. Additionally, during the video Participant 4 

was seen talking and reading magazines. Although he did not engage in many erratic or 

unidentifiable actions, he did use his smoking hand to support his head at times. Participant 

5 (Figure 4c) had average SPM durations of 6-s (Range = 2–16-s), showing greater range 

than the other participants. Additionally, during the video the participant was seen engaging 

in other activities (e.g., reading, taking notes) and performed more erratic and difficult to 

classify movements, such as scratching her head and playing with her hair. Finally, 

Participant 6 (Figure 4d) had an average SPM duration of 4-s (Range 3–8-s). His SPM 

characteristics were similar to Participant 4 but based on the video observation, he also 

performed a number of erratic and difficult to classify actions (e.g., scratching head).

For Participant 1, Figure 5 shows that the number of puffs and SPMs reported by the 

algorithms closely matched. Table 3 indicates that the edge-detection-based approach 

correctly detected 45 of 57 puffs (i.e., true positives) and only resulted in two puffs that did 

not actually occur (i.e., false positives). Additionally, Figure 5 shows SPM durations from 

the edge-based algorithm were close to Ground Truth. It should be noted that the SVM-

based method could only produce a fixed SPM duration, because granularity was restricted 

by the duration of the 10-s window chosen, which was a training parameter. Due to this 

restriction, the SVM-based algorithm could only generate 10-s SPM durations. Figure 5 

shows that the number of SPMs, SPM duration, and inter-SPM intervals were well detected 

for Participant 1. For Participant 4, Figure 5 shows that as the duration of SPMs became 

shorter, the number of missed SPMs increased. Figure 5 also shows that for Participant 4 the 

number of puffs detected by both algorithms were less than the values of the Ground Truth. 

Table 3 shows that the SVM-based and edge-detection-based approaches captured 22 and 20 

of the 95 puffs correctly, whereas the algorithms identified 53 and 16 puffs that did not 

occur (i.e., false positives), respectively. For Participant 5, although the SPM level analyses 

in Figure 5 show that both the SVM-based and the edge-detection-based approaches resulted 
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in a similar number of SPM’s against the Ground Truth, a high number of false positives is 

shown in Table 3 which explains the reason for the intermediate TPR and FPR. Finally for 

Participant 6, again SPM level analyses show that both approaches resulted in a similar 

number of SPM’s against the Ground Truth, Table 3 shows a higher number of false 

positives than true positives.

3.5. Cigarette-Level Analyses

Because cigarette events were contracted from consecutive SPM events that were detected 

by the algorithms, cigarette level analyses depended on SPM level analyses. In other words, 

if the algorithms produced low performance on the SPM level analysis (e.g., did not detect 

an SPM), then it was not possible to construct the occurrence of a cigarette either.

Figure 7 shows results from the SVM-based and edge-based-detection approaches for 

number of cigarettes detected, as well as the duration taken to smoke a cigarette. Both the 

SVM-based and edge-detection-based approaches correctly identified all six cigarette 

smoking events for Participant 1. Table 4 also indicates that for Participant 1 all cigarettes 

that were observed in the video were also identified by the algorithms (i.e., true positives). 

Based on Figure 7, there was a small time difference (less than 1 min) in the average 

duration detected per cigarette. When smoking events were investigated at the cigarette level 

for Participant 4, the number of cigarettes was correctly detected by both algorithms (Figure 

7 and Table 4). For Participant 5, there were a high number of false positives at the SPM 

level, which led to an overestimation of the number of cigarettes smoked, regardless of the 

algorithm used. Finally, for Participant 6, Figure 7 shows that the edge-detection-based 

approach identified six cigarette smoking events, all of which were true positives (also see 

Table 4).

Figure 8 shows the time during the session when each cigarette was smoked based on the 

Ground Truth and algorithm detection. Based on review of the detailed cigarette timings 

shown for Participant 1 (Figure 8a), and comparing this to what was seen in the video, the 

slight difference observed occurred due to non-smoking arm movements that were 

consistently present with each cigarette smoked (i.e., picking up a lighter when initiating 

each cigarette smoking event). For Participant 4 (Figure 8b), the differences between the 

cigarette durations were primarily a result of differences across measures during the third 

and fourth cigarette with the SVM-based method, and the differences across measures for 

the fourth and sixth cigarettes with the edge-detection-based method. Observations made in 

the video showed that the errors were again due to arm movements that resembled taking a 

puff from a cigarette, such as head scratching before and after the cigarette was smoked. For 

Participant 5 (Figure 8c), the edge-detection-based approach became less accurate as the 

participant started to engage in other, non-smoking and difficult to classify activities. The 

SVM-based approach performed better under these circumstances than the edge-detection-

based approach. Finally, for Participant 6 (Figure 8d), cigarette durations detected by the 

edge-detection-based method were more consistent with those observed in the video than the 

durations detected by the SVM-based approach. The SVM-based approach detected five 

cigarette smoking events, one of which was a false positive. This performance error with the 
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SVM-based method was due to poor performance at the level of detecting individual SPMs. 

Cigarette events for Participant 6 were detected from both methods.

3.6. Sensor Acceptability

Following laboratory procedures, participants completed a brief acceptability questionnaire 

on various aspects of the sensors. Using a 100-point visual analog scale, participants (n = 6) 

rated the sensors as comfortable to wear (mean = 77, SD = 29) and acceptable to wear for 

extended periods outside of the laboratory (mean = 70, SD = 33). Participants also 

responded that they would be likely to wear the sensors outside of the laboratory (mean = 

76, SD = 26). Five out of six participants felt that the sensors may be able to help them quit 

smoking, if they received feedback during a quit attempt. Finally, all six participants said 

they would wear the sensors for extended periods outside of the laboratory if they thought it 

might help them to quit smoking.

4. Discussion

Our overall goal in this pilot study was to test the feasibility of a novel smoking detection 

system based on unique smoking-related arm movements. This study was a critical step in 

the development of a sensor-based system for detecting smoking in more natural settings. 

Although this study was conducted in a controlled laboratory environment, participants were 

free to move around and engage in other behavior at the same time that they were smoking 

(e.g., reading magazines, talking on the phone, playing cards, etc.), which brings this 

program of research closer to testing in the less-controlled natural environment. Although, 

participants were asked to sit near a vent, we believe algorithms will work when the 

participants are walking and smoking if the training set is properly chosen. This study was 

also an important step in the process by helping identify how different hand gestures, head, 

and upper body movements, affected the performance of the algorithms. Finally, this study 

helped determine the ideal sensor configuration and algorithmic approaches for further 

testing in more naturalistic and outpatient settings, a logical next step in this program of 

research.

The system performed remarkably well with respect to identifying when a whole cigarette 

was smoked. Results for identifying individual puffs were more variable and depended on 

characteristic movement patterns across individual subjects, as well as the algorithmic 

approach that was being used. We are confident that in the future, with further testing and 

refinement, this novel sensor-based movement detection system for identifying smoking 

events will yield useful information for researchers and clinicians. Smoking research, as 

well smoking cessation treatment development and implementation, could benefit from 

systems that monitor smoking events in the natural environment. Studies utilizing remote 

monitoring methods would alleviate a great deal of burden placed on participants and 

research staff, while also potentially improving the accuracy of the data and outcomes 

because objective measures of individual smoking events could be detected, as opposed to 

self-reports or more global biochemical measures that are currently relied upon today. Of 

course, there is still a great need to increase the fidelity and efficacy of sensor-based systems 

[26]. The current study is a step in this direction by rigorously testing a monitoring system in 

the laboratory.
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Specific consideration of each algorithm’s performance is important to guide future work. 

Based on the results of each individual participant, both of the algorithm detection methods 

(Edge-based and SVM-based) performed well (66%–100% and 83%–100%, respectively) 

with regard to the cigarette level analysis. The performance of the edge-detection-based 

algorithm at the cigarette level may be more promising. With the edge-detection-based 

algorithm, there were false positives only for Participant 5. Additionally, the SVM approach 

was also less accurate in detecting individual puffs. The SVM approach detected 17%–29% 

of puffs, and the false positive count was as low as 32 (median false positive = 44). On the 

other hand, the Edge-detection-based approach was more effective at detecting puffs than 

the SVM-based method, detecting 7%–79% of puffs, with a false positive count as low as 2 

(median false positive = 22).

Performance at the cigarette level was very good with all but Participant 5. This participant 

engaged in a number of non-smoking activities, such as reading or speaking, during the 

smoking period which caused a greater degree of variability in the inter-puff durations (see 

Figure 5). This greater variability caused the algorithms to group puffs into separate shorter 

duration puff groups. The shorter puff groups affected not only the overall cigarette 

duration, but also the cigarette count. The shorter puff groups also led the algorithms to 

detect a greater number of cigarettes than really occurred at times, i.e., resulting in false 

positives. Another possibility is that the shorter puff groups may not have contained enough 

puffs to comprise a full cigarette, thereby decreasing the number of cigarettes detected, 

resulting in a higher occurrence of false negatives. Overcoming these problems entails 

training the algorithms to detect smoking events at the level of the cigarette, as opposed to 

the level of the puff by developing cigarette construction parameters. Namely, it will be 

important to train the algorithms to identify the time difference between consecutive SPMs 

and identify the minimum number of SPMs needed to construct a cigarette. Future studies 

should focus on continuing to refine the two algorithmic approaches to best capture SPM 

and puff durations such that they can accurately distinguish between cigarette smoking arm 

movements from non-smoking arm movements, especially in situations where the smoker 

engages in a number of erratic arm-movements that resemble SPMs. Below is a more 

detailed account of our future plans for our sensor configuration and the algorithms, 

followed by a short summary of potential applications of this approach to smoking research 

and smoking cessation intervention.

4.1. Suitability of Sensor Configuration

Participants 1–3 were outfitted with four kinematic sensors. When conducting the ROC 

analyses to determine the best configurations, it was discovered that only the elbow2 and 

wrist sensors were needed to adequately to characterize the movement, because the elbow 1 

sensor produced similar data with the wrist sensor, and the shoulder sensor produced similar 

data with the elbow2 sensor. Based on these results, only two sensors were used for the 

remaining participants (4–6), one on the elbow and one on the wrist. The SVM-based-

approach performed best when the data from both sensors were used, whereas the edge-

detection-based-approach only required the wrist sensor. This finding is important as fewer 

sensors may increase the comfort and acceptance of wearing these sensors outside of the 

laboratory. Acceptability questionnaires showed that participants found the sensors to be 
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comfortable and were enthusiatic about wearing them outside of the laboratory if there was 

the potential for them to help with a quit attempt. It should be noted that the current devices, 

hardware, velcro straps, etc. are a prototype of this sensor technology, and will become 

smaller, lighter, and even less invasive through future iterations.

4.2. Future Algorithmic Challenges

Central to our project became the experimental contrasts of two algorithms, SVM-based and 

Edge-detection-based. Given this, we discuss key considerations in light of this comparison 

in some detail.

The video observations revealed that there was individual variability across participants with 

regard to non-smoking arm movements, which led to differences in the performance of the 

algorithms across participants and measures, primarily when it came to detecting SPM and 

puff durations. For example, the slow and distinct movements of Participant 1 enabled both 

the SVM-based and the edge-detection-based approaches to achieve excellent detection 

abilities that outperformed the detection abilities of the two approaches when applied to the 

other participants. Also, as puff durations became shorter, it became more difficult to 

distinguish puff events from other arm movements, such as head scratching. For example, 

Participant 5 exhibited shorter puffs, as well as more erratic non-smoking arm movements, 

and this resulted in poorer performance for puff detection even for the SVM-based 

approach, which trains itself to capture participant specific smoking patterns. Because these 

erratic, non-smoking arm movements were not repetitive, they were incorrrectly counted as 

puffs. Therefore, these false positive puff detections presented a problem when attempting to 

identify smoking events at the SPM level, but not at the cigarette level, regardless of the 

algorithm used.

Finally, as mentioned earlier, cigarette level performance depended in part on SPM level 

results. It can be difficult to distinguish puff arm movements from non-puff arm movements 

(e.g., those that involve touching the head, such as scratching) while the participant is 

smoking. Nonetheless, although some of the false positive SPMs are currently unavoidable, 

the whole cigarette recognition remains quite high. Improvements in SPM level would 

contribute to an improved cigarette level performance. This would be an important 

advancement, as cigarette count tends to be the parameter of greatest interest. Improvements 

at the puff recognition level are important for detection, but these improvements would need 

to be motivated largely by scientific interests in more specific puffing characteristics, such 

as puff volume and duration, which have been shown to quantify toxin exposure [27]. Also, 

this level of detection would allow for real-time interventions that could target puffing 

instances rather than entire cigarette recognition, because sometimes just taking a few puffs 

from a cigarette (i.e., a lapse) can result in a full blown relapse, and detecting such lapses 

early would allow interventions to be delivered immediately when they are needed. In light 

of these considerations, we believe that the following future work is critical to continued 

improvement of our approach. We are also working on inferential techniques [13] and 

research designs [19] for the study of smoking movement in clinical trials, as our 

technology-based work progresses.

Raiff et al. Page 14

Electronics (Basel). Author manuscript; available in PMC 2014 December 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4.2.1. SVM-Based Approach—The input to the SVM classifier (i.e., the feature set 

extracted from the raw data) played a critical role in performance of this approach. Future 

work will be aimed at finding additional features that best characterize the movements (e.g., 

those that capture the time correlation between different sensor measurements in raw data 

from one sensor and across multiple sensors). In the current study the accuracy of the SPM 

duration reported by the SVM-based approach was dependent on the size of the 

aforementioned window used for classification (e.g., 10-s). Future work should further 

refine the model to extract the exact SPM durations and, therefore, the puff durations.

4.2.2. Edge-Detection-Based Approach—After the basic edge-detection algorithm 

recognized upward and downward hand movements, a candidate set of SPMs was identified. 

However, this set had to be cleaned automatically by the algorithm to eliminate false alarms 

(e.g., if there was too much/too little time that elapsed between the upward and downward 

movement) and to obtain actual SPMs. In the current study, parameters to automatically 

remove false positives (i.e., minimum and maximum SPM duration and minimum SPM 

count) from the candidate set were based on logic alone. Further elimination of these false 

positives would improve the robustness of the system. Future plans involve developing a 

machine-learning-based model, which incorporates knowledge of average, maximum, and 

minimum SPM as well as inter-puff durations (specific to each participant) to eliminate 

outliers.

Apart from the improvements that can be implemented in the aforementioned approaches, 

adding another decision method on top of these approaches might also improve the results 

significantly. These types of decision methods are called “ensemble learning” methods in 

machine learning [28]. In ensemble learning, multiple hypotheses from different methods 

“vote” in some fashion to obtain better predictive performance than could be obtained from 

any of the constituent methods. Using the current analysis as an example, we could run both 

SVM-based and edge-detection based methods, then get their prediction for a kinematic 

sensor output for a specific time interval as well as their confidence in the result. Finally, an 

ensemble learning method choses the best output in real time. The critical part of this 

approach is determining confidence for SVM-based and edge-detection-based methods.

4.3. Summary

The current study provides a systematic replication of our initial proof-of-concept study [20] 

for sensor-based tracking of smoking movements of the arm and wrist and, more 

importantly, provides the first pilot results of the system’s efficacy with actual smokers 

whose movements were unrestricted and who could engage in other behavior (e.g., reading a 

magazine, talking on the phone, playing with hair, etc.) while they were smoking. These 

data show that two families of machine learning algorithms can be used with a reasonable 

set of sensor hardware placements to detect cigarette events with high confidence in actual 

smokers. The current approach was not as effective at the level of detecting individual puffs 

because of the considerable variability that was introduced by participant-specific non-

smoking movements. Nevertheless, we are optimistic that future work will enable us to 

track, in real-world environments, detailed measurements of smoking topography that has 

not previously been possible. The kinematic sensor detection system examined in the current 
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study has great potential for improving smoking research and smoking cessation 

interventions. Future research will further refine the algorithms and aim to improve this 

detection system, especially as the events occur in the smoker’s natural environment. This 

system will ultimately measure smoking, while also maintaining the privacy of participants, 

which is of paramount importance in any remote monitoring system, mHealth technology, or 

treatment intervention.
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Figure 1. 
Each white rectangle shows the placement of one Shimmer kinematic sensor on a 

participant’s arm during the session. Participants 1–3 were outfitted with all four sensors as 

shown, whereas Participants 4–6 were outfitted with only the Elbow 1 and Wrist sensors on 

each arm, rather than just the smoking arm. The reference coordinate frame is also shown.
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Figure 2. 
Training and Puff detection for the Support Vector Machines (SVM)-based approach.
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Figure 3. 
Receiver Operator Characteristic (ROC) Curves for each participant with SVM-based (left 

column) and Edge-detection based methods (right column). Every data point represents a 

different configuration feature set. The circled points indicate the configurations that 

produced the best results.
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Figure 4. 
Mean Sequence of Puff movement durations (SPM; blue bars) and mean Puff durations 

(white bars) are shown for each participant across each of the six cigarettes smoked during 

the session (determined by watching video recordings of participants smoking during the 

session). Error bars represent minimum and maximum values.
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Figure 5. 
Number of SPM events (top row), SPM durations (middle row) and Inter-SPM durations 

(bottom row) from Ground Truth (based on video; dark grey bars), SVM-based (light grey 

bars) and edge-detection-based methods (white bars) for each participant. Error bars 

represent minimum and maximum values.
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Figure 6. 
Timings of each SPM detected from Ground Truth (top row for each participant) SVM-

based detection (middle row for each participant), and edge-based detection (bottom row for 

each participant). Each line represents an SPM event in time across each of the six cigarettes 

smoked during the session.
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Figure 7. 
Number of cigarettes (top row) and cigarette durations (bottom row) from Ground Truth 

(based on video; dark blue bars), SVM-based (light blue bars) and edge-detection-based 

method (white bars) are shown for each participant. Error bars represent minimum and 

maximum values.
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Figure 8. 
Timing of cigarettes from Ground Truth (based on videos; dark blue bars), SVM-based 

(light blue bars) and edge-based methods (white bars) are shown for each participant. Each 

rectangle represents a cigarette-smoking event in time.
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Table 2

Average puff number, mean inter-puff interval (s), and total cigarette time (s) averaged across six cigarettes 

for each participant.

Participant Puffs Mean Inter-puff Interval (s) Total Cigarette Time (s)

1 8.5 51.1 464.0

4 14.8 18.8 323.7

5 5.8 56.0 325.9

6 7.7 44.8 355.0

Average 9.2 42.7 367.2
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Table 4

Number of true positives, false positives and false negatives at the cigarette level for both methods across 

participants. Number of false negatives equals to total number of cigarettes (6) subtracted by true positives.

Participant
True Positives False Positives

SVM-based Edge-detection based SVM-based Edge-detection based

1 6 6 0 0

4 6 6 0 0

5 6 5 1 2

6 4 6 1 0
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