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Osteosarcoma (OS) is one of the most common types of primary bone tumors in early adolescence with unsatisfied prognosis.
Aberrant DNA methylation had been demonstrated to be related to tumorigenesis and progression of multiple cancers and
could serve as the potential biomarkers for the prognosis of human cancers. In conclusion, this study identified 18
downregulated hypomethylation genes and 52 upregulated hypomethylation genes in OS by integrating the analysis the
GSE97529 and GSE42572 datasets. Bioinformatics analysis revealed that OS-specific methylated genes were involved in
regulating multiple biological processes, including chemical synaptic transmission, transcription, response to drug, and
regulating immune response. KEGG pathway analysis showed that OS-specific methylated genes were associated with the
regulation of Hippo, cAMP calcium, MAPK, and Wnt signaling pathways. By analyzing R2 datasets, this study showed that the
dysregulation of these OS-specific methylated genes was associated with the metastasis-free survival time in patients with OS,
including CBLN4, ANKMY1, BZW1, KRTCAP3, GZMB, KRTDAP, LY9, PFKFB2, PTPN22, and CLDN7. This study provided
a better understanding of the molecular mechanisms underlying the progression and OS and novel biomarkers for the prognosis
of OS.

1. Introduction

Osteosarcoma (OS) is one of the most common types of pri-
mary bone tumors in early adolescence, which was character-
ized by an aggressive osteolytic or osteoblastic appearance
with a periosteal reaction [1]. Chemotherapy and surgery
are the most important treatments for patients with OS [2,
3]. The survival rate of primary OS patients after treatments
remains at 60–70% [4]. However, the prognosis of patients
with progressive or recurrent OS was less than 20% [5]. In
the past decades, emerging studies reported that multiple fac-
tors are associated with the tumorigenesis and progression of
OS, including germline genetic variants [6], dysregulation of
oncogenes or tumor suppressors [7], and the abnormal epi-

genetics change [8, 9]. A few proteins had been revealed to
be related to the progression of OS. For example, GFRA1
was reported to promote autophagy and cisplatin-induced
chemoresistance in OS [10]. The isoform 1 of TMIGD3 sup-
pressed OS progression though downregulating NF-κB [11].
Understanding the mechanisms related to OS development
could provide new targets for OS.

DNA methylation could affect the gene expression
though suppressing transcription [12]. Aberrant DNAmeth-
ylation had been demonstrated to be involved in regulating
tumorigenesis and progression of multiple cancers [13, 14].
In OS, DNA methylation-mediated suppression of miR-
449c could promote cell cycle though inhibiting c-Myc in
OS [15]. Hypomethylation of IRX1 was found to promote
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OS metastasis by activating CXCL14/NF-κB signaling [16].
Very interestingly, recent studies showed that aberrant
DNA methylation was associated with the prognosis of OS.
For example, the DNA methylation level of WNT6 was neg-
atively correlated to the prognosis of children with osteosar-
coma [17]. The hypermethylation of ESR1 was correlated to
the worse overall survival of OS [18]. These results suggested
that the DNA methylation status could be potential diagnos-
tic and therapeutic targets for OS.

The present study analyzed the GSE97529 [19] dataset to
identify OS-specific methylated genes. In silico analyses were
performed to explore the functions of OS-specific methylated
genes. Next, the GSE42572 dataset was used to validate the
expression levels of OS-specific methylated genes [20]. Of
note, we found that these OS-specific methylated genes were
correlated to the prognosis of patients with OS. By these
methods, it is hopeful that novel aberrant methylation genes
and pathways will be screened in the OS and an understand-
ing of the underlying molecular mechanisms will be
enhanced.

2. Materials and Methods

2.1. Microarray Data. The present study is aimed at identify-
ing dysregulated OS-specific methylated genes in OS by ana-
lyzing public databases with bioinformatics analysis. Thus,
we screened the GEO databases. The candidate databases
were selected according to 3 standards: (1) the candidate
database should contain clinical OS samples, (2) the number
of clinical samples should be more than 10 cases, and (3) the
candidate database was not noncoding RNA datasets. Finally,
only the SE97529 and GSE42572 datasets were selected for

further analysis. We have included this information in Mate-
rials and Methods. The GSE97529 dataset was used to iden-
tify OS-specific methylated genes, which was downloaded
from the NCBI GEO database (GSE97529). A total of 10
Ewing’s sarcoma, 11 synovial sarcoma, and 15 OS samples
were included in this dataset. The GSE42572 dataset was ana-
lyzed to identify differently expressed genes in OS compared
to normal samples, which was also downloaded from the
NCBI GEO database (GSE42572). Differentially expressed
genes (DEGs) and differentially methylated genes (DMGs)
were identified by applying GEO2R. P < 0:05 and ∣fold
change ∣ ≥2 is set as the cutoff criterion.

2.2. Functional and Pathway Enrichment Analyses. The
DAVID system was used to predict the potential biological
processes and KEGG pathways involved in target genes in
this study [21]. P < 0:05 was set as the cutoff criterion.

2.3. Protein-Protein Interaction (PPI) Network Analysis. In
the present study, PPI networks were used to reveal the inter-
actions among differentially expressed OS-specific methyl-
ated genes using the STRING database (https://string-db
.org/). PPI was visualized using Cytoscape [22].

2.4. Survival Analysis. Survival analysis was performed using
the OS microarray dataset (mixed osteosarcoma (mesenchy-
mal)-Kuijjer-127-vst-ilmnhwg6v2) from the R2: Genomics
Analysis and Visualization Platform (http://r2.amc.nl). The
median expression of targets was selected as the cutoff to
divide all OS samples into the high or low group.
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Figure 1: OS-specific methylated genes were identified by using the public dataset GSE97529. (a) DNA methylation status of 482,421 CpG
sites in 10 Ewing’s sarcoma, 11 synovial sarcoma, and 15 OS samples were included in this dataset.
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Figure 2: Continued.
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3. Results

3.1. Identification of OS-Specific Methylated Genes. The pub-
lic dataset GSE97529 was used to identify OS-specific meth-
ylated genes. DNA methylation status of 482,421 CpG sites
in 10 Ewing’s sarcoma, 11 synovial sarcoma, and 15 OS sam-
ples were included in this dataset (Figure 1(a)). Totally, we
identified 3125 OS-specific methylated genes, including 875
hypermethylation genes and 2250 hypomethylation genes
in OS samples compared to Ewing’s sarcoma or synovial sar-
coma samples (Figure 1(a)).

3.2. GO and KEGG Pathway Enrichment Analyses. GO anal-
ysis showed that hypermethylation genes were significantly
associated with biological processes (BP) of the nervous sys-
tem development, chemical synaptic transmission, transcrip-
tion from RNA polymerase II promoter, anterior/posterior
pattern specification, regulation of synaptic plasticity, neuron
differentiation, movement of cell or subcellular component,
skeletal muscle cell differentiation, response to drug, potas-
sium ion transmembrane transport, hindbrain development,
gland development, and cell migration (Figure 2(a)). Hypo-
methylation genes were significantly related to immune
response, signal transduction, inflammatory response,
acute-phase response, sodium ion transport, monocyte che-
motaxis, detection of chemical stimulus, defense response
to fungus, positive regulation of PI3K pathway, cell chemo-
taxis, chemotaxis, neutrophil chemotaxis, innate immune
response, ion transmembrane transport, and cell adhesion
(Figure 2(b)).

KEGG pathway analysis showed that significant path-
ways of hypermethylation genes in OS included the Hippo
pathway, cAMP signaling, thyroid cancer, pathways in can-
cer, calcium signaling, endometrial cancer, Rap1 signaling
pathway, transcriptional misregulation in cancer, MAPK sig-
naling pathway, Epstein-Barr virus infection, Wnt signaling
pathway, cocaine addiction, and basal cell carcinoma

(Figure 2(c)). And hypomethylation genes in OS were associ-
ated with Staphylococcus aureus infection, olfactory trans-
duction, inflammatory bowel disease (IBD), complement
and coagulation cascades, allograft rejection, fat digestion
and absorption, graft-versus-host disease, phagosome, viral
myocarditis, and fatty acid biosynthesis (Figure 2(d)).

3.3. OS-Specific Methylated Genes Were Differentially
Expressed in OS. Subsequently, an independent public data-
set, GSE42572, was used to identify differentially expressed
genes in OS. As shown in Figure 3(a), we identified 614
upregulated genes and 696 downregulated genes in OS com-
pared to healthy control samples (Figure 3(a)). Among
DEGs, a total of 18 downregulated hypomethylation genes
were screened out from overlapping 875 hypermethylation
and 690 downregulated genes, while 52 upregulated hypome-
thylation genes were screened out from overlapping 2250
hypomethylation and 614 downregulated genes
(Figure 3(b)). The 70 differentially expressed OS-specific
methylated genes were presented by heat map (Figure 3(c)).

3.4. Construction of PPI Network to Identify Hub
Differentially Expressed OS-Specific Methylated Genes. Fur-
thermore, we constructed a PPI network to identify a hub dif-
ferentially expressed OS-specific methylated gene using the
STRING database. As presented in Figure 4, a total of 29
nodes and 30 edges were included in this network. The hub
genes included NPSR1, PTAFR, LPAR5, PTGER3, NPY5R,
KCNK3, KRTDAP, HCN4, KRT38, KCNIP2, KCNJ5, and
KRTCAP3 (Figure 4).

3.5. The Survival Time Analysis of Differentially Expressed
OS-Specific Methylated Genes. The above analysis was con-
ducted with the GSE97529 and GSE42572 datasets. Unfortu-
nately, the clinical information about metastasis-free survival
time was not included in both databases. Thus, we analyzed
an independent database, R2 dataset (http://r2.amc.nl), to
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Figure 2: Bioinformatics analysis of hypermethylation genes and hypomethylation genes. (a) GO analysis of OS-specific hypermethylation
genes. (b) GO analysis of OS-specific hypomethylation genes. (c) KEGG pathway analysis of OS-specific hypermethylation genes. (d)
KEGG pathway analysis of OS-specific hypomethylation genes. The gene ratio was present in the X-axis.
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further evaluate the prognostic value of OS-specific methyl-
ated genes. The median expression of candidates in all OS
samples was selected.

As the cutoff is used to divide OS samples into the high
and low groups, it was shown that higher expression of
CBLN4 (P < 0:05) was associated with longer metastasis-
free survival time in patients with OS, as well as ANKMY1
(P < 0:05), BZW1 (P < 0:05), and KRTCAP3 (P < 0:001).
However, higher expression of GZMB (P < 0:05), KRTDAP

(P < 0:05), LY9 (P < 0:05), PFKFB2 (P < 0:05), PTPN22
(P < 0:05), and CLDN7 (P < 0:05) was associated with
shorter metastasis-free survival time in patients with OS
(Figure 5).

4. Discussion

The mechanisms underlying OS progression remained
largely unclear. It has been widely accepted that DNA
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upregulated hypomethylation genes were screened out. (c) The 70 differentially expressed OS-specific methylated genes were presented by
heat map.
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methylation was involved in regulating the tumorigenesis
and development though modulating gene expression.
DNA methylation has been shown to play an important role
in gene regulation and implicated in various types of cancer.
Emerging studies revealed that the cancer-specific CpG
hypermethylation could turn off the expression of tumor
suppressors; however, cancer-specific CpG hypomethylation
could activate the expression of oncogenes [23]. Identifica-
tion of aberrantly methylated genes in OS would be helpful
to identify new diagnostic and therapeutic biomarkers for
OS. The present study identified OS-specific methylated
genes from Ewing’s sarcoma or synovial sarcoma samples.
Bioinformatics analysis revealed that OS-specific methylated
genes were involved in regulating multiple biological pro-
cesses, including chemical synaptic transmission, transcrip-
tion, response to drug, and regulating immune response.
Further validation indicated that OS-specific methylated
genes were dysregulated in OS samples and correlated to
the prognosis of patients with OS.

OS, together with Ewing’s Sarcoma (EWS) and synovial
sarcoma (SS), was the most common pediatric sarcomas
[24]. These types of sarcomas occur in similar anatomical
locations; however, the treatments for these sarcomas dif-
fered depending on the tumor type. The accurate diagnosis
of OS remained to be a big challenge. Emerging studies dem-
onstrated that aberrant DNA methylation was associated
with the prognosis of human cancers, including OS. For

example, DNA methylation level of WNT6 and ESR1 was
related to the prognosis of OS. The present study is aimed
at identifying OS-specific methylated genes. A total of 3125
OS-specific methylated genes were identified, including 875
hypermethylation genes and 2250 hypomethylation genes
in OS samples compared to Ewing’s sarcoma or synovial sar-
coma samples. Furthermore, GO and KEGG pathway analy-
ses were further used to predict the potential roles of OS-
specific methylated genes. Of note, our predictions showed
that these methylated genes were associated with the Hippo
signaling and Wnt signaling. Hippo pathway aberrations
had been demonstrated in OS by multiple studies and
involved in regulating primary tumor growth, angiogenesis,
epithelial to mesenchymal transition, and metastatic dissem-
ination [25]. The Hippo signaling played an important role
controlling cancer cell proliferation and apoptosis [26]. Mul-
tiple studies indicated YAP was overexpressed in OS samples,
and knockdown of YAP significantly inhibits OS cell growth
and invasion [27]. Sox2, as a YAP upstream regulator, was
reported to be required for tumor development and cancer
cell proliferation in OS [28]. This study provided a potential
mechanism to elucidate how the Hippo signaling activated in
OS. Many studies support an aberrant activation of the
canonical Wnt signaling pathway in osteosarcoma cells. For
example, two recent studies described a high β-catenin level
in osteosarcoma tissues compared to adjacent healthy tissues
associated with poor prognosis and lung metastatic
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dissemination. Wnt signaling pathway played a crucial role
in tumorigenicity and metastasis via regulation of the
immune system, bone remodeling, angiogenesis, hypoxia
response, and EMT [29].

Of note, this study showed that OS-specific methylated
genes were significantly differentially expressed in OS sam-
ples. A total of 18 downregulated hypomethylation genes
and 52 upregulated hypomethylation genes were identified
in this study. PPI network analysis was constructed to reveal
the relation among these genes. Totally, 29 nodes and 30
edges were included in this network. By analyzing R2 data-
sets, we found the dysregulation of these OS-specific methyl-
ated genes were associated with the metastasis-free survival
time in patients with OS, including CBLN4, ANKMY1,
BZW1, KRTCAP3, GZMB, KRTDAP, LY9, PFKFB2,
PTPN22, and CLDN7. Among these regulators, BZW1 is a
transcription factor related to the regulation of cell cycle
and proliferation [30]. LY9 was a member of SLAM family
of immunomodulatory receptors [31] and interacted with
the adaptor molecule signaling lymphocyte activation
molecule-associated proteins. A previous study showed LY9
was related to the cancer progression and correlated to over-
all survival of the patients with breast cancer. PFKFB2 is an
enzyme involved in regulating the Warburg effect (also

termed as glycolysis) [32]. PFKFB2 had been found to have
a key role in regulating tumor growth and survival in multi-
ple cancer types, including gastric cancer, gliomas, and oste-
osarcoma [32–37].

Several limitations were also exited in this study. First,
our studies revealed several hub OS-specific methylated
genes. However, the roles of these genes remained to be
unclear. The gain or loss of function assays should be per-
formed to further explore their roles in OS. Next, the expres-
sion levels and methylation levels of hub OS-specific
methylated genes in OS samples should be confirmed using
clinical samples. Third, the direct interaction among these
hub genes has not been confirmed using experimental assays.

5. Conclusion

In conclusion, this study identified 18 downregulated hypo-
methylation genes and 52 upregulated hypomethylation
genes in OS and a series biological processes and pathways
regulated by aberrantly methylated genes. PPI network anal-
ysis revealed the interactions among these genes. Moreover,
the present study showed that the dysregulation of OS-
specific methylated genes was correlated with the
metastasis-free time in patients with OS, including CBLN4,
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Figure 5: The prognostic values of differentially expressed OS-specific methylated genes were calculated by using the R2: Genomics Analysis
and Visualization Platform. (a–j) Higher expression of CBLN4 (a) was associated with longer metastasis-free survival time in patients with
OS, as well as ANKMY1 (b), BZW1 (c), and KRTCAP3 (e). However, higher expression of GZMB (d), KRTDAP (f), LY9 (g), PFKFB2
(h), PTPN22 (i), and CLDN7 (j) was associated with shorter metastasis-free survival time in patients with OS.
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ANKMY1, BZW1, KRTCAP3, GZMB, KRTDAP, LY9,
PFKFB2, PTPN22, and CLDN7. This study provided a better
understanding of the molecular mechanisms underlying the
progression and OS and novel biomarkers for the prognosis
of OS.
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