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INTRODUCTION 
 

Nasopharyngeal carcinoma (NPC) is one of the most 

common malignancies of the head and neck in China, 

whose morbidity is second only to thyroid cancer [1]. 

Its epidemiological characteristic is its unique 

geographical distribution, which frequently occurs in 

areas such as South China [2]. Radiotherapy is a major 

treatment method and an essential part of radical 

treatment for NPC [3]. With continuous discoveries in 

radiotherapy and therapeutic schemes, the five-year 

overall survival rate of NPC has reached about 80% [4]. 

However, more than 20% of NPC patients develop 

recurrence or distant metastasis after standard treatment 

[5, 6]. Currently, radioresistance is considered the major 

obstacle for the effective treatment of NPC [7, 8], but 
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ABSTRACT 
 

Objective: This study aimed to explore the effect of silencing hTERT on the CSC-like characteristics and 
radioresistance of CNE-2R cells. 
Results: Silencing hTERT suppressed CNE-2R cell proliferation and increased the cell apoptosis rate and 
radiosensitivity in vitro. Moreover, it could also inhibit the growth of xenografts and increase the apoptosis 
index and radiosensitivity in vivo. Further study discovered that after silencing hTERT, telomerase activity in 
CNE-2R cells was markedly suppressed, along with remarkably down-regulated stem cell-related protein levels 
both in vitro and in vivo. 
Conclusion: Silencing hTERT can suppress the CSC-like characteristics of CNE-2R cells to enhance their 
radiosensitivity, revealing that hTERT may become a potential target for treating radioresistant NPC. 
Methods: An RNAi lentiviral vector specific to the hTERT gene was constructed to infect CNE-2R cells, the hTERT 
silencing effect was verified through qPCR and Western blot assays, and telomerase activity was detected by 
PCR-ELISA. Moreover, radiosensitivity in vitro was detected through colony formation assays, CCK-8 assays and 
flow cytometry. Tumor growth and radioresistance were also evaluated using xenograft models, while the 
apoptosis index in xenografts was measured through TUNEL assay. Levels of stem cell-related proteins were 
determined in vitro and in vivo. 
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the specific mechanism of radioresistance remains 

unclear. Therefore, exploring the potential mechanism 

of radioresistance in NPC will contribute to improving 

the radiosensitivity of NPC, thus improving the clinical 

efficacy. 

 

In our previous study, the radioresistant cell line CNE-

2R was successfully established based on the poorly 

differentiated NPC cell line CNE-2 using fractionated 

irradiation [9]. Further study discovered that CNE-2R 

cells displayed cancer stem cell (CSC)-like 

characteristics and marked telomerase activity, along 

with high expression of human telomerase reverse 

transcriptase (hTERT) [10]. Telomerase is highly 

expressed in CSCs [11, 12] and is required for self-

renewal, progression and immortalization of CSCs [13]. 

hTERT is the essential catalytic subunit that maintains 

telomerase activity and regulates telomerase activity at 

the transcriptional level [14]. Down-regulation of 

hTERT transcription may be a potential mechanism for 

suppressing telomerase activity [15–17]. Some studies 

have indicated that downregulation of hTERT 

expression could eliminate the CSC phenotype [18–20]. 

Therefore, it was reasonable to consider that hTERT 

could regulate the CSC-like characteristics of CNE-2R 

cells. 

 

Moreover, some scholars have discovered that 

interference with hTERT could affect the 

radiosensitivity of cervical cancer [21] and breast cancer 

[22]. On the other hand, inhibition of telomerase 

activity could also increase the radiosensitivity of 

various cancers [23–26]. Consequently, we speculated 

that high hTERT expression and telomerase activity 

was related to the radioresistance of CNE-2R cells, and 

down-regulation of hTERT expression might potentially 

inhibit telomerase activity and CSC-like characteristics, 

thus enhancing the radiosensitivity of CNE-2R cells. 

 

In this study, we used lentiviral vector-mediated RNA 

interference (RNAi) technology to silence hTERT 

expression in CNE-2R cells and then detected changes 

in the radiosensitivity and CSC-like characteristics of 

CNE-2R cells before and after hTERT silencing. To the 

best of our knowledge, this study is the first to 

investigate the relationship between hTERT and NPC 

radioresistance, as well as the underlying mechanism, 

which might provide a potential molecular target for 

treating radioresistant NPC. 

 

RESULTS 
 

Effective silencing of hTERT in CNE-2R cells 
 

After lentiviral infection of CNE-2R cells for 96 h, 

approximately 95% of cells showed green fluorescence 

under an inverted fluorescence microscope, and they 

were at favorable growth status (Figure 1A). The qPCR 

results indicated that the relative hTERT mRNA 

expression in hTERT-shRNA cells (0.164±0.023) was 

remarkably lower than that in NC (1.207±0.054) and 

CNE-2R cells (1.000±0.041) (P<0.001). Moreover, the 

results also verified that the relative expression in parent 

CNE-2 cells (0.231±0.071) was notably lower than that 

in CNE-2R cells (P<0.01) (Figure 1B). Similarly, 

Western blot results also suggested that hTERT protein 

expression in hTERT-shRNA cells was markedly down-

regulated, which was consistent with the qPCR results 

(Figure 1C). The above findings indicated effective 

silencing of hTERT in CNE-2R cells; therefore, the 

cells could be used in subsequent functional assays. 

 

hTERT silencing enhanced radiosensitivity in vitro 

 

The radiosensitivity of CNE-2R cells, NC cells and 

hTERT-shRNA cells, was detected through a colony 

formation assay (Figure 2A). Then, the dose-survival 

curves were fitted using a single-hit multi-target model, 

and the results indicated that the survival fractions (SFs) 

of hTERT-shRNA cells at all radiation doses were 

lower than those of CNE-2R cells and NC cells (Figure 

2B). The radiobiological parameters are displayed in 

Table 1. The sensitization enhancement ratio (SER) of 

hTERT-shRNA cells to CNE-2R cells was calculated as 

SER=D0 (CNE-2R)/D0 (hTERT-shRNA)=1.23>1, 

revealing that hTERT-shRNA cells were more sensitive 

to irradiation. Furthermore, the proliferation capacity 

and radiosensitivity of cells were detected through 

CCK-8 assay, and the results suggested that the 

proliferation of hTERT-shRNA cells was suppressed 

(P<0.05, Figure 2C). After irradiation at various doses, 

the SFs of hTERT-shRNA cells were markedly lower 

than those of CNE-2R cells and NC cells (P<0.01, 

Figure 2D). 

 

hTERT silencing promoted cell apoptosis 

 

Apoptosis and radiosensitivity changes in CNE-2R cells 

after hTERT silencing were detected through flow 

cytometry (Figure 3A). The results demonstrated that at 

the time of non-irradiation (0 Gy), the apoptosis rates of 

CNE-2R, NC and hTERT-shRNA cells were 

4.82±0.73%, 4.85±0.35% and 6.25±0.38%, respectively 

(P=0.023). After irradiation at a dose of 4 Gy, the 

apoptosis rates of CNE-2R, NC and hTERT-shRNA 

cells were 12.10±1.14%, 12.71±0.74% and 

19.03±0.43%, respectively (P<0.01). Differences in the 

apoptosis rates in CNE-2R and NC cells before and 

after irradiation were not statistically significant 

(P>0.05) (Figure 3B). Taken together, the apoptosis 

rates in hTERT-shRNA cells were more notablely 

increased than those in CNE-2R cells and NC cells after 
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Figure 1. Effective silencing of hTERT. (A) CNE-2R cell infection rate observed under an inverted fluorescence microscope (200×);  
(B) hTERT mRNA expression detected by qPCR; (C) hTERT protein expression detected by Western blot assay. 

 

 
 

Figure 2. hTERT silencing enhanced radiosensitivity. (A) The radiosensitivity of CNE-2R, NC and hTERT-shRNA cells was compared 
through colony formation assay; (B) The dose-survival curves were fitted using the single-hit multi-target model; (C) Cell proliferation 
detected using CCK-8 assay; (D) The radiosensitivity was compared through the CCK-8 assay. 
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Table 1. The radiobiological parameters in the single-hit multi-target model (Mean±SD). 

Cell lines D0 Dq SF2 

CNE-2R 3.328±0.235 2.379±0.194 0.794±0.012 

NC 3.343±0.105 2.145±0.240 0.782±0.030 

hTERT-shRNA 2.831±0.119 1.723±0.149 0.724±0.020 

P 0.009 0.018 0.017 

D0 was the mean lethal dose, which was theoretically the radiation dose required to hit each cell; Dq was the quasi-threshold 
dose, which reflected the repair capacity of sublethal cell injury; and SF2 was the survival fraction at the dose of 2 Gy. 

 

 
 

Figure 3. hTERT silencing promoted apoptosis. (A) The apoptosis rates after irradiation at 0 Gy and 4 Gy; (B) Histogram of the apoptosis 
rate in each group (* indicates P<0.05 compared with hTERT-shRNA cells, while ** indicates P<0.01 compared with hTERT-shRNA cells); (C) 
Expression of apoptosis-related proteins in each group after irradiation at 4 Gy. 
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irradiation, suggesting that hTERT-shRNA cells were 

more sensitive to irradiation. 

 

To further understand the role of hTERT in apoptosis 

after irradiation, the apoptosis-related proteins Survivin 

and Caspase-3 were detected. Briefly, the cells were 

exposed to 4 Gy X-ray. Forty-eight hours later, total 

proteins were extracted, and the expression of Survivin 

and Caspase-3 proteins was detected through Western 

blot assay. The results revealed that, compared with that 

in CNE-2R and NC cells, Survivin protein expression in 

hTERT-shRNA cells was remarkably down-regulated, 

while the Cleaved-caspase-3 protein expression was 

notably increased (Figure 3C). 

 

Changes in telomerase activity, β-catenin and stem 

cell-related proteins 
 

Telomerase activities were detected utilizing the 

telomeric repeat amplification protocol (TRAP). The 

results suggested that, compared with that in NC cells 

(1.629±0.007) and CNE-2R cells (1.618±0.022), the 

telomerase activity in hTERT-shRNA cells 

(1.263±0.024) was obviously reduced (P<0.01, Figure 

4A). To observe whether hTERT silencing can affect 

the CSC-like characteristics, the expression of β-catenin 

and stem cell-related proteins was detected through 

Western blot assay. The results revealed that the 

expression of Sox2, Bmi1, Nanog, Oct4 and CD133 in 

hTERT-shRNA cells was significantly lower than that 

in NC and CNE-2R cells, but the expression of β-

catenin showed no significant difference among the 

three groups (Figure 4B). 

 

hTERT silencing enhanced radiosensitivity in vivo 

 

To further evaluate the effect of hTERT silencing on 

tumor growth, a xenograft model was constructed. 

Subcutaneous nodules could be palpable 3 days after 

cells injection. The tumor size was measured from day 

6 and was recorded every 3 days. On day 21, the nude 

mice in each group were randomly divided into 2 

subgroups, with 4 in each subgroup, to receive 

irradiation at 0 or 8 Gy. On day 36, all nude mice were 

sacrificed, and the tumors were collected (Figure 5A). 

The tumor growth curve indicated that when no 

irradiation was applied (0 Gy), the tumor volume in 

the hTERT-shRNA group at each time point was 

slightly smaller than those in the CNR-2R and NC 

groups (P<0.05). After irradiation at 8 Gy, the tumor 

growth in the three groups was inhibited, but the 

inhibition of the hTERT-shRNA group was more 

obvious (P<0.05) (Figure 5B). In addition, the tumor 

growth rates were further calculated, and the results 

showed that the tumor growth rate after irradiation in 

the hTERT-shRNA group at each time point was 

notably lower than that in the NC and CNE-2R groups 

(Figure 5C). 

 

hTERT silencing could induce apoptosis in vivo 

 

Apoptotic cells in the tumors were detected through 

TUNEL assay (Figure 6A). The results indicated that 

when no irradiation was applied, the apoptosis indexes 

in the CNE-2R, NC and hTERT-shRNA groups were 

7.63±1.33%, 7.13±1.15% and 11.64±1.54%, 

respectively (P<0.05). After radiation at 8 Gy, the 

apoptosis indexes in the CNE-2R, NC and hTERT-

shRNA groups were 15.08±2.00%, 14.38±1.06% and 

23.50±2.58%, respectively (P<0.01). Moreover, the 

difference in the apoptotic index between the CNE-2R 

and NC groups was not statistically significant (P>0.05) 

(Figure 6B). Taken together, the above findings 

indicated that after radiation at 8 Gy, the apoptosis 

index in the hTERT-shRNA group was more markedly 

increased than that in the CNE-2R and NC groups, 

revealing that tumors in the hTERT-shRNA group were 

more sensitive to irradiation. 

 

Expression of hTERT, β-catenin and stem cell-

related proteins in vivo 

 

The histological morphology of the tumor was observed 

through HE staining, and the results showed that the 

necrotic area in the hTERT-shRNA group was slightly 

increased. hTERT protein expression in tumors was 

detected by IHC, and the results revealed that hTERT 

protein expression in the hTERT-shRNA group was 

remarkably lower than that in the CNE-2R and NC 

groups. Thus, it could be figured out that, lentiviral 

vector-mediated hTERT interference could be stably 

inherited and effectively expressed in vivo. In order to 

preliminarily understand whether hTERT silencing 

would also affect the CSC-like characteristics of CNE-

2R cells in vivo, the expression of β-catenin and stem 

cell-related proteins in tumors was detected. The results 

indicated that the expression of Sox2, Bmi1, Nanog, 

Oct4 and CD133 proteins in the hTERT-shRNA group 

was significantly lower than that in the CNE-2R and 

NC groups. The expression of β-catenin protein was 

strongly positive in the three groups, but it was mainly 

expressed in the membrane and cytoplasm in the 

hTERT-shRNA group, and expression could also be 

observed in part of nuclei in the CNE-2R and NC 

groups (Figure 7). 

 

DISCUSSION 
 

In recent years, the role of hTERT in human disease, 

especially in tumors, has attracted wide attention. In 

normal human cells, hTERT is generally less or not 

expressed, except for embryonic stem cells (ESCs) and 
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germ cells; however, it is highly expressed in all 

malignant human tumors. It is thought to maintain the 

immortalization of cancer cells [27] and is closely 

related to tumor transformation, growth and metastasis 

[28]. Previous studies have suggested that interfering 

with hTERT expression is an effective method for 

targeted therapy of tumors [27–30]. Moreover, some 

studies have reported that hTERT is related to the 

radiosensitivity of cervical cancer and breast cancer, but 

the mechanism remains unclear [21, 22]. In our 

previous study, the radioresistant NPC cell line CNE-2R 

had been established [9]. Further study discovered that 

 

 
 

Figure 4. hTERT silencing reduced telomerase activity and stem cell-related proteins expression in vitro. (A) Telomerase activity 

detected utilizing the TRAP method (** indicates P<0.01 compared with CNE-2R cells); (B) Expression of β-catenin and stem cell-related 
proteins detected by Western blot assay. 

 

 
 

Figure 5. Effect of hTERT silencing on tumor growth. (A) Tumor sizes when cells were injected into nude mice and allowed to grow to 

day 36; (B) Growth curve of tumors in each group after receiving irradiation at 0 Gy or 8 Gy (black arrow indicates the time point of 
irradiation); (C) Tumor growth rate in each group after irradiation. 
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hTERT gene and protein expression in CNE-2R cells 

was markedly higher than that in parent CNE-2 cells, 

revealing that high hTERT expression might be related 

to NPC radioresistance [10]. This study aimed to 

explore the relationship between hTERT and NPC 

radioresistance as well as the potential mechanism in 

CNE-2R cells. 

 

Currently, some studies have indicated that, down-

regulating hTERT could suppress the proliferation and 

promote apoptosis of various tumor cells, including 

NPC cells [29, 31–35]. In this study, we adopted 

lentiviral vector-mediated RNAi technology to silence 

hTERT in CNE-2R cells and obtained stable hTERT-

shRNA cells with favorable silencing effects. The 

results of the CCK-8 assay and flow cytometry also 

demonstrated that hTERT silencing could suppress 

proliferation and promote apoptosis. After irradiation at 

4 Gy, the results of flow cytometry revealed that the 

apoptosis rates in the three groups were markedly 

increased, but those in the hTERT-shRNA group were 

more strongly increased. In addition, it was also 

discovered that after irradiation at 4 Gy, the expression 

of the apoptosis-related protein Survivin in hTERT-

shRNA cells was significantly down-regulated, while 

that of Cleaved-caspase 3 protein was up-regulated. 

Moreover, it was further confirmed through colony 

formation assay and CCK-8 assay that hTERT-shRNA 

 

 
 

Figure 6. hTERT silencing could induce apoptosis in vivo. (A) Apoptotic cells in tumors detected by TUNEL, red fluorescence (TMR red) 

represents positive apoptotic cell nucleus, while blue fluorescence (DAPI) was used for nuclear localization (200×); (B) Histogram of the 
apoptosis index in each group (* indicates P<0.05 compared with the hTERT-shRNA group, and ** indicates P<0.01 compared with the hTERT-
shRNA group). 
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Figure 7. Histological morphology and expression of hTERT, Sox2, Nanog, Bmi1, Oct4, CD133 and β-catenin proteins in each 
group (200×). 
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cells were more sensitive to irradiation. The above 

results demonstrated that hTERT silencing could 

enhance the radiosensitivity of CNE-2R cells in vitro. 

Our research results were similar to those by Zhang et 

al., which indicated that down-regulating hTERT could 

enhance the radiosensitivity of SiHa cells [21]. 

 

Specific genes silenced through lentivirus-mediated 

RNAi technology can be stably inherited and effectively 

expressed in multiple xenograft models [36–40]. Our 

previous study had also successfully constructed a stable 

cofilin-2 silencing NPC xenograft model [41]. This study 

also supported the above finding, and the IHC results 

revealed that tumors formed by hTERT-shRNA cells 

expressed low levels of the hTERT protein. Zhao et al. 

found that silencing hTERT could promote apoptosis in 

oral squamous carcinoma xenografts and suppress tumor 

growth [32]. In this study, tumor growth in the hTERT-

shRNA group was slightly suppressed when no 

irradiation was applied, and TUNEL results revealed that 

the apoptosis index in this group was slightly increased. 

Moreover, HE staining results also found that the 

necrotic area in the hTERT-shRNA group was slightly 

increased. Further research discovered that the growth of 

tumors in each group was notably suppressed after 

exposure to irradiation. However, the degree of growth 

suppression in the hTERT-shRNA group was more 

obvious, as could be observed from the tumor growth 

curve and tumor growth rate after irradiation, and the 

apoptosis index in that group was also markedly 

increased. These results strongly suggested that hTERT 

silencing could not only promote apoptosis and suppress 

proliferation but also enhance the radiosensitivity of 

CNE-2R cells in vivo. 

 

Previous studies found that silencing hTERT could 

eliminate the CSC phenotype [18–20]. Our research 

results also suggest that the expression of stem cell-

related proteins in CNE-2R cells was down-regulated 

both in vitro and in vivo after silencing hTERT, and the 

CSC-like characteristics were decreased. An increasing 

number of studies have verified that radioresistance of 

tumors is associated with CSCs [42–45]. Krause et al. 

proposed that CSCs mediated tumors to develop 

radioresistance through multiple mechanisms [46, 47]. 

Similarly, studies on NPC also indicated that CSC-like 

cells displayed obvious radioresistance [48–51]. 

Moreover, some studies reported that silencing the 

telomeric repeat binding factor-2 (TRF2) gene could 

enhance the radiosensitivity of telomerase-immortalized 

human mesenchymal stem cells [52, 53]. Therefore, we 

believe that the enhanced radiosensitivity of CNE-2R 

cells after silencing hTERT might be related to the 

reduced CSC-like characteristics. In addition, we 

discovered that silencing hTERT could significantly 

decrease telomerase activity. Some studies proved that 

suppressing telomerase activity enhanced the 

radiosensitivity of multiple tumors [23–26]. Berardinelli 

suggested that targeting telomere/telomerase was one of 

the most promising methods to enhance the 

radiosensitivity of tumor cells [54]. Some scholars found 

that telomerase is highly expressed in CSCs [11, 12, 25], 

which was essential for the self-renewal, progression and 

immortalization of CSCs [13]. Consequently, we 

speculate that silencing hTERT may suppress telomerase 

activity through the hTERT/telomerase pathway, which 

can attenuate the CSC-like characteristics of CNE-2R 

cells, thus enhancing their radiosensitivity. 

 

Additionally, our western blot results showed that, 

compared with that in NC cells and CNE-2R cells, the 

total β-catenin protein expression in hTERT-shRNA 

cells showed no significant change. However, IHC 

results demonstrated that β-catenin protein expression in 

the hTERT-shRNA group was mainly located at the 

membrane and cytoplasm and that β-catenin protein 

expression in some cells of the NC and CNE-2R groups 

could be located in the nucleus. Such interesting 

findings indicated that silencing hTERT might not 

affect the total β-catenin protein expression but would 

change its expression localization. There might be a 

regulatory relationship between hTERT and the Wnt/β-

catenin pathway, but how they interact still remains 

controversial [55–58]. β-catenin plays an important role 

in maintaining the NPC CSC phenotype, which 

confirms that the Wnt/β-catenin pathway plays a 

regulatory role in CSCs [59, 60]. Our previous study 

also found that CNE-2R cells highly expressed β-

catenin protein compared with parental CNE-2 cells 

[10]. Therefore, we speculate that the Wnt/β-catenin 

pathway may be involved in the regulation of 

radiosensitivity of CNE-2R cells by hTERT, which is 

our next research focus. 

 

In conclusion, our study showed that silencing hTERT 

could enhance the radiosensitivity of CNE-2R cells both 

in vitro and in vivo. Moreover, we also discovered that 

silencing hTERT could reduce telomerase activity and 

suppress the CSC-like characteristics of CNE-2R cells. 

Overall, the down-regulation of hTERT could inhibit 

telomerase activity, which could then affect the CSC-

like characteristics of CNE-2R cells, finally enhancing 

the radiosensitivity of CNE-2R cells. These results also 

revealed that the hTERT/telomerase pathway might 

become a therapeutic target for radioresistance in NPC. 

 

MATERIALS AND METHODS 
 

Cell lines and cells culture 
 

The poorly differentiated NPC cell line CNE-2 was 

purchased from Fudan University Shanghai Cancer 
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Center (Shanghai, China). The CNE-2 cells were tested 

by Short Tandem Repeat profiling on March 15, 2018. 

The radioresistant cell line CNE-2R was established by 

subjecting CNE-2 to fractional irradiation in our 

previous study [9]. The cells were cultured in DMEM 

containing 10% fetal bovine serum (Gibco, USA), 100 

U/mL penicillin and 0.1 mg/mL streptomycin (Solarbio, 

China) in a saturated humidity incubator containing 5% 

CO2 at 37° C. 

 

Construction of lentiviral vector and infection of 

CNE-2R cells 
 

The RNAi target sequence of the hTERT gene 

(Accession No.: NM_198253.2) was designed as 5'-

AAGTTGCAAAGCATTGGAA-3' according to the 

RNAi sequence design principle, while the RNAi 

negative control scramble sequence was designed as 5'-

TTCTCCGAACGTGTCACGT-3'. The lentiviral vector 

was constructed by Shanghai Genechem Co., Ltd. 

(Shanghai, China) using the GV493 vector according to 

the vector element of hU6-MCS-CBh-gcGFP-IRES-

puromycin. CNE-2R cells were prepared into 

suspension at a density of 5×10
4
 cells/mL with complete 

medium. Then, 2 mL/well suspension (approximately 

10
5
 cells) was seeded into the 6-well culture plate. After 

24 h of culture, the cells had grown to approximately 

2×10
5
 cells/well, the medium was discarded, and 1 mL 

Enhanced Infection Solution containing 5 μg/mL 

Polybrene (Genechem, China) was added. The hTERT-

shRNA and negative control (NC) cells were obtained 

by using target gene and NC lentiviral vectors 

(MOI=30) to infect cells, respectively. Ninety-six hours 

after infection, the infection rate was observed using an 

inverted fluorescence microscope (Olympus 

Corporation, Japan). 

 

Real-time quantitative PCR (qPCR) 
 

Total RNA was extracted from cells using TRIzol 

reagent (Invitrogen, USA), and cDNA was obtained 

through reverse transcription using the PrimeScript RT 

reagent Kit (Takara, Japan). The mRNA expression of 

the hTERT gene was detected using the SYBR Premix 

Ex TaqTM II kit (Takara, Japan), with GAPDH as the 

reference gene. The gene primers were as follows (5'-3'): 

hTERT-F: CTCCCATTTCATCAGCAAGTTT, hTERT-

R: CTTGGCTTTCAGGATGGAGTAG; GAPDH-F: 

CAGGAGGCATTGCTGATGAT, and GAPDH-R: 

GAAGGCTGGGGCTCATTT. The relative mRNA 

expression was calculated by the 2
-ΔΔCt

 method. 

 

Colony-formation assay 

 

CNE-2R cells, NC cells and hTERT-shRNA cells were 

seeded into six-well plates at cell numbers of 200, 200, 

400, 600 and 1000, respectively. The cells were then 

cultured to adherence, followed by 6 MV-X ray 

irradiation at different doses (0, 2, 4, 6 and 8 Gy for 

each cell number). After the completion of irradiation, 

the cells were further cultured for 14 days, followed by 

4% paraformaldehyde fixation for 30 min and Giemsa 

staining for 30 min. The number of colonies containing 

≥ 50 cells at different irradiation doses was counted. 

Then, the dose-survival curves were fitted using the 

multi-target single-hit model y=1-(1-exp(-k*x))^N, and 

the radiobiological parameters D0, Dq and SF2 were 

calculated, where D0=1/K and Dq=lnN* D0. 

 

CCK-8 assay 

 

First, the proliferation capacity of cells in each group 

was detected. In brief, cells were seeded into 96-well 

plates at a cell number of 2×10
3
 /well, and the cell 

viability was detected on days 0 (after cell adherence), 

1, 2, 3, 4 and 5. Subsequently, the radiosensitivity of 

cells in each group was also detected. Similarly, cells 

were seeded into 96-well plates (2×10
3
 cells/well), and 

each group of cells was divided into 5 subgroups 

according to the different irradiation doses (0, 2, 4, 6 

and 8 Gy). After adherence, cells were exposed to 6 

MV-X ray, and cell viability was detected 48 h after 

irradiation. Cell viability was assessed using the Cell 

Counting Kit-8 (CCK-8) (Dojindo, Japan) assay 

according to the manufacturer's instructions. The optical 

density (OD) value at a wavelength of 450 nm was 

detected using the Microplate Reader (Thermo, USA). 

Finally, the radiosensitivity of cells in each group was 

evaluated by the survival fraction (SF), which was 

calculated as follows: SF=OD/OD0Gy. 

 

Apoptosis rate analysis using flow cytometry 
 

The apoptosis rate was detected using the Annexin V-

APC/7-AAD kit (BD, USA). Cells were exposed to 6 

MV-X ray at doses of 0 and 4 Gy, and all cells in each 

group were collected 48 h after irradiation. Then, the 

cells were labelled with 5 μL Annexin V-APC and 5 μL 

7-AAD according to the manufacturer’s instructions. 

Apoptotic cells were analyzed by the flow cytometry 

system (BD FACSCalibur, USA) within 1 h. 

 

Western blot assay 

 

Total proteins of CNE-2R, NC and hTERT-shRNA 

cells were extracted using RIPA lysis buffer, after 

which 50 μg total proteins were separated by SDS-

PAGE electrophoresis, and the electrophoresis products 

were transferred onto PVDF membranes through the 

wet transfer method. Afterwards, the PVDF membranes 

were blocked with 5% skim milk for 1.5 h and washed 

with 1×TBST. Then, the membranes were incubated 
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with primary antibodies against hTERT (Abcam, UK), 

CD133 (Wanleibio, China), β-catenin, Sox2, Nanog, 

Bmi1, Oct4, Survivin, Caspase 3, GAPDH and β-actin 

(CST, USA), respectively, followed by slow shaking on 

a shaking table at 4° C overnight. The PVDF 

membranes were taken out and washed with 1×TBST, 

followed by incubation with secondary antibody IgG 

HRP (CST, USA) at room temperature (RT) for 1 h and 

washing with 1×TBST. The images were collected 

using the Gel Imaging System (Bio-Rad, USA). 

 

Telomerase activity assay 
 

Telomerase activity was measured using the 

TeloTAGGG Telomerase PCR ELISA kit (Roche, 

Switzerland). Telomerase activity measurement was 

performed as previously described [10]. An RNase-

treated extract was used as a negative control, and 293 

cell extract was used as a positive control. 

 

Xenograft model 

 

BALB/c nude mice were purchased from the 

Laboratory Animal Center of Guangxi Medical 

University (Nanning, China). CNE-2R, NC and 

hTERT-shRNA cells were subcutaneously injected into 

the left groin of nude mice at a dose of 1×10
7
, and 8 

nude mice were used in each group. Each nude mouse 

was labeled with the ear tag. After tumor formation, the 

long (a) and short (b) diameters of the tumors were 

measured with an electronic vernier caliper every 3 

days, and the tumor volume was calculated according to 

the formula V=ab
2
/2. When the long tumor diameter 

had reached approximately 10 mm, the nude mice in 

each group were randomly divided into 2 subgroups, 

with 4 in each subgroup, and received 6 MV-X ray 

irradiation at doses of 0 and 8 Gy. Afterwards, the 

tumors were further observed for 15 days, and the tumor 

growth rate was calculated as follows: growth rate=(Vt-

V0)/V0, where Vt represented the volume at each 

measurement after irradiation, and V0 stood for the 

tumor volume measured before irradiation. The 

procedures involving animals and their care were 

approved by the Laboratory Animal Care and Use 

Committee of the Guangxi Medical University. 

 

TdT-mediated dUTP Nick-End Labeling (TUNEL) 

assay 

 

Apoptotic cells in xenografts were detected using the In 

Situ Cell Death Detection Kit (TMR red) (Roche, 

Switzerland). Briefly, the paraffin sections were 

deparaffinized and hydrated. Microwave-based antigen 

retrieval was performed in citrate buffer solution 

(pH=6.0) for 5 min. The enzyme solution (TdT) and 

label solution (dUTP) in the kit were mixed at a ratio of 

1:9 (v/v) to obtain the Reaction Solution. One hundred 

microliters of reaction solution was added to cover the 

tissue and incubated at 37° C for 1 h in the dark. DAPI 

staining solution (Beyotime, China) was added and 

incubated for 10 min at RT in the dark. Subsequently, 

the sections were mounted using anti-fluorescence 

quenching medium (Beyotime, China). Apoptotic cells 

were counted using a fluorescence microscope 

(Olympus Corporation, Japan) in 10 randomly selected 

high-power fields (200×), and the apoptosis index was 

calculated as a percentage of at least 1,000 scored cells. 

 

Immunohistochemistry (IHC) 

 

Paraffin sections from the unirradiated (0 Gy) 

xenografts were deparaffinized and hydrated according 

to standard protocols. High-pressure heating antigen 

retrieval was performed in citrate buffer solution 

(pH=6.0). Endogenous peroxidase activity was blocked 

with 3% H2O2. Then, nonspecific antigens were blocked 

with 3% BSA. The primary antibodies were applied at 

4° C overnight, followed by a biotinylated secondary 

antibody and HRP-labeled streptavidin (ZSGB-BIO, 

China). The peroxidase reaction was carried out with a 

DAB kit (ZSGB-BIO, China). The sections were 

counterstained with hematoxylin, mounted with neutral 

balsam, and observed under a light microscope 

(Olympus Corporation, Japan). The results were 

analyzed according to the methods employed in our 

previous study [41]. 

 

Statistical analysis 

 

GraphPad Prism 5.0 (GraphPad Software, San Diego, 

CA, USA) or SPSS 20.0 (IBM, Armonk, NY, USA) 

software was used for statistical analyses, and the data 

are expressed as the mean ± standard deviation (SD). 

The statistical significance of the differences in the in 
vitro experiments was determined using two-tailed 

Student’s t-test or one-way ANOVA. Moreover, 

differences in tumor growth among different groups 

were assessed by ANOVA with a repeated 

measurement module. A two-tailed difference of P<0.05 

was considered statistically significant. 
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