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Introduction

Small regulatory RNAs, aptly named microRNAs (miRNAs), 
are critical regulators of diverse biological phenomena. MiRNAs 
are typically 21–25 length polynucleotides, untranslated RNA 
moieties that regulate post-transcriptional gene expression.1 The 
primary mechanism of action is base-pairing of miRNA unique 
“seed sequences” to a complementary sequence on the target 
genes.2 MiRNA genes are found either in intergenic regions with 
independent promoter and regulatory units or within introns of 
other genes, or even in exons, although this is rare.3,4 MiRNAs 
are transcribed by RNA polymerase II as a much larger primary 
transcript (pri-miRNA), which is sequentially cleaved to form 
mature miRNA.5 In the nucleus, pri-miRNAs are processed by 
the RNaseIII endonuclease Drosha to ssRNA hairpin precursors 

(pre-miRNA), which are transported across the nuclear envelope 
into the cytoplasm by exportin5 and processed to mature miRNA 
by RNase Dicer in the cytoplasm.6 Although both strands of the 
miRNA are co-transcribed, only one of the strands, a mature 
miRNA molecule, is bound by Argonaute (Ago) proteins and 
secured in the miRNA-induced silencing (RISC) complex, the 
other strand, known as a passenger strand (miRNA*), is degraded. 
Alternatively, the two strands are also denoted with the suffix 
-5p or -3p, according to the end of pre-miRNA on which they 
are generated.7 The binding of mature miRNAs dictates post-
transcriptional gene silencing through base-pairing of the 5′- 
seed sequences (two to seven nucleotides) with the 3′-UTR of the 
target gene.2 It recently has also been shown that miRNAs can 
increase target gene expression under specific circumstances.8-10

MiRNA—Miles to Go

The first miRNA, lin-4, was identified in 1993; for its role 
in cell-fate determination in C. elegans, to be followed 7 years 
later by let-7.11,12 The field of miRNA research has made rapid 
advances, such that it is now clearly established that miRNAs 
play critical roles in diverse biological processes. An appreciable 
amount of evolutionary conservation is observed across hundreds 
of known miRNAs. The conservation of miRNA families 
through millions of years of selection pressure emphasizes the 
essential role played by these regulatory molecules.13 A genome-
wide analysis estimates that at least 60% of all genes are regulated 
by miRNAs.14 The recent advances in sequencing techniques 
have enabled the de novo identification of thousands of both 
conserved and unique miRNAs across several metazoan species, 
while also making available the sequences of their target mRNAs. 
Since the first algorithm in 2003, several tools have been 
developed to predict the biologically relevant miRNA–mRNA 
target gene interactions. These computational methods are useful 
in streamlining the putative miRNA target genes, thus enabling 
researchers to prioritize their research.15,16 The predictive scoring 
methods are based on a set of parameters expected to influence 
the interaction between miRNA–mRNA species. Understanding 
the predicted strength of miRNA–target genes is essential for 
subsequent functional analysis. Several in vitro cellular assays 
have been developed to investigate the phenomenon of target 

*Correspondence to: Michael D Weston;  
Email: michaelweston@creighton.edu
Submitted: 12/20/2013; Revised: 03/12/2014;  
Accepted: 03/25/2014; Published Online: 04/02/2014
http://dx.doi.org/10.4161/rna.28649

Macros in microRNA target identification
A comparative analysis of in silico, in vitro, and in vivo 

approaches to microRNA target identification
Shikha Tarang and Michael D weston*

Department of Oral Biology; Creighton University School of Dentistry; Omaha, Ne USA

Keywords: microRNAs, computational approaches, target recognition, base-pairing, in vitro, post-transcriptional, genetic studies, 
in vivo

MicroRNAs (miRNAs) are short RNA molecules that 
modulate post-transcriptional gene expression by partial or 
incomplete base-pairing to the complementary sequences 
on their target genes. Sequence-based miRNA target gene 
recognition enables the utilization of computational methods, 
which are highly informative in identifying a subset of putative 
miRNA targets from the genome. Subsequently, single 
miRNA–target gene binding is evaluated experimentally by 
in vitro assays to validate and quantify the transcriptional or 
post-transcriptional effects of miRNA–target gene interaction. 
Although ex vivo approaches are instructive in providing a 
basis for further analyses, in vivo genetic studies are critical 
to determine the occurrence and biological relevance of 
miRNA targets under physiological conditions. in the present 
review, we summarize the important features of each of the 
experimental approaches, their technical and biological 
limitations, and future challenges in light of the complexity of 
miRNA target gene recognition.
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gene repression by miRNAs.17 The nature of miRNA gene 
targeting in animals is particularly complex as: (1) miRNA 
can bind to partially complementary sequences, leading to a 
large number of putative targets; (2) the majority of miRNA 
effects on their target genes show only a modest repression; and 
(3) distinction of first order effects from second order requires 
elaborate experimental validation of target genes. A combination 
of several technical tools often needs to be employed to predict 
the biological occurrence of miRNA–target gene interactions 
with greater certainty.

The implication of miRNAs in a number of human diseases 
warrants a critical need to identify miRNA-regulated genes in 
biologically relevant contexts.18,19 Only a small subset of in silico 
predicted miRNA–target gene pairs has been experimentally 
validated. The most commonly used cellular assays are based 
on the principle of studying the functional consequences of 
artificially manipulating endogenous miRNAs levels. However, 
as the biological concentrations of these miRNAs in vivo may be 
several orders of magnitude different than in in vitro conditions, it 
is essential that the results of ex vivo target recognition techniques 
be recapitulated in appropriate animal models. Unfortunately, 
only a few transgenic animals have been specifically designed for 
miRNA research as a means to provide biological support for ex 
vivo research findings. Consequently, in vivo biological approaches 
to microRNA target identification have not been adequately 
addressed in the literature published so far. In the present review, 
we discuss the key features of each of the approaches and emphasize 
how they complement each other. The future of miRNA target 
identification will require researchers to design experiments with 
increasing sensitivity to uncover miRNA functional roles within 
their chosen biological context, such as engineered animal models. 
This present review’s approach and presentation of compiling in 
silico, in vitro, and in vivo, (a priori) methodologies to microRNA 
target identification should provide a resource useful toward these 
endeavors in the future.

Approaches to miRNA Target Identification

Computational methods of miRNA target prediction
The miRNA–mRNA interactions based on sequence 

complementarity have made available a large number of genes 
as possible targets for single miRNAs, while also presenting 
opportunities for in silico prediction of target genes. The available 
algorithms have been developed based on our existing knowledge 
of known miRNA–mRNA interactions, to provide a predictive 
strength on miRNA target genes. The in silico approaches are 
highly significant and facilitate high-throughput identification 
of miRNA target genes. However, these methods are complex, as 
miRNAs often bind to targets with incomplete complementarity, 
containing mismatches, gaps, and G:U base pairs at multiple 
positions.2,20 Since the rules of target recognition are not 
completely understood, each prediction tool utilizes a unique 
combination of criterion for miRNA target site prediction. The 
most commonly utilized criteria by target prediction software are 
discussed in the following sections.

Seed sequence
The target prediction algorithms identify potential base-

pairing between 5′-seed region (nucleotide 2–7) of miRNA 
with 3′-UTR of the target mRNA. Three primary categories 
of binding sites can be recognized: (1) canonical sites with 
seven to eight nucleotide match in the seed region, which are 
present in the majority of known targets; (2) 3′-supplementary 
sites at positions 13–16 which provide higher efficacy in target 
gene downregulation; and (3) 3′-compensatory sites which can 
compensate for the seed mismatch.21 The assertion on the two 
to seven nucleotide seed complementarity is supported, as the 
5′-end is the most conserved region of the mammalian miRNA, 
suggesting its biological relevance.22 However, the prediction 
algorithms’ search for sequence complementarity between the 
5′-end of miRNA and the 3′-UTR of the mRNA vary in the 
extent of this requirement. For example, TargetScan23 requires 
strictly complementary sequences, whereas miRanda allows for 
one wobble position in the seed region to be compensated with 
the sequence match in the 3′-end of the miRNA.24 Another 
application, DIANA-microT, considers the entire miRNA 
topology in target gene prediction.25

Target site conservation
The conservation of the miRNA binding site in the 3′-UTR 

of the orthologous genes is a significant feature in predicting 
miRNA targets. As positive natural selection is expected to 
act on biologically important miRNA–mRNA interaction, a 
higher degree of conservation arguably reflects a more reliable 
prediction. The emphasis on phylogenetic conservations 
in making target gene predictions is based on seed match 
(DIANA-microT, PicTar, miRanda, and TargetScanS)24-27 and 
calculations on evolutionary distances (EIMMO).28 However, 
the computational distinction between identification of targets 
sites that are functionally preferentially conserved, from those 
that are expected to be conserved by chance, remains a major 
challenge to using sequence conservation criterion in target 
prediction.

Thermodynamic stability
Thermodynamic analysis calculates the energy required 

for the formation of miRNA–mRNA pairs from a completely 
dissociated state and is denoted as minimum free energy 
(MFE) for hybrid formation.20 This consideration of the 
stability of miRNA–mRNA base-pairings commonly used by 
algorithms (DIANA-microT, PITA, and PicTar)29 is significant 
in considering that a sufficient time is required for the RISC 
complex to process its enzymatic activity. The RNA folding 
programs, such as Vienna package and RNA hybrid, calculate 
MFE. Additional factors, such as the relative concentration 
of miRNA and mRNA molecules that affect the energetics 
of the reaction, remain unavailable for making free energy 
calculations.

Multiple target sites
The algorithms consider that occurrence of multiple target 

sites will have a dose-dependent effect on target gene expression. 
This observation is further extended for a single miRNA and/
or the binding of multiple miRNAs on the same gene across 
species.30,31 A notable algorithm that extensively considers this 
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Table 1. Characteristic features of algorithms providing information beyond classical miRNA target gene interaction

Prediction method Characteristic features Resource

Diana Micro-T
Target prediction made with miRNA or mRNA 

sequences as input
http://diana.cslab.ece.ntua.gr/microT/

FAMe
experimentally verified miRNA pathways infer 

biological process affected by miRNAs
http://acgt.cs.tau.ac.il/fame/

Hoctar
information on host genes regulating 
expression of its embedded microRNA

http://hoctar.tigem.it/

Magia
Query of miRNA target prediction, analysis 

of expression profiles, and post-transcription 
regulatory network

http://gencomp.bio.unipd.it/magia/start/

MaMi

miRNA target prediction based on 
hybridization energies and secondary 

structures for the miRNA-mRNA hybrid where 
parameters can be modified by the user

http://mami.med.harvard.edu/

Microinspector

identification of potential miRNA binding 
sites in user-submitted sequences, searching 
against databases of known miRNA binding 

sites

http://bioinfo.uni-plovdiv.bg/microinspector/

miR2disease
information on miRNA association to a disease 

process
http://www.mir2disease.org/

miRBase
Complete repository of miRNA sequences and 

targets
http://www.mirbase.org/

mirDiP
mirDiP integrates 12 microRNA prediction data 

sets from six microRNA prediction databases
http://ophid.utoronto.ca/mirDiP/index.jsp

miRecords
Two main modules, experimentally validated 
targets, and integrated information across 11 

independent prediction softwares
http://mirecords.umn.edu/miRecords/index.php

miRGator
integrates miRNA expression data with 

mRNA and protein to interpret the biological 
functions of miRNAs

http://genome.ewha.ac.kr/miRGator/miRGator.html

miRNAmap
information on statistics of miRNA sequences 

and target genes
http://mirnamap.mbc.nctu.edu.tw/

MirPath
identification of altered molecular pathways 

by the expression of specific miRNAs
http://83.212.96.7/DianaToolsNew/index.php?r=mirpath

miRTar
information on the biological function of 

miRNA-target gene pairs and on miRNA sites 
on the alternative spliced transcripts

http://mirtar.mbc.nctu.edu.tw/human/

MiRTarBase

information on experimentally verified 
miRNA targets by data mining and manually 

surveying pertinent literature related to 
functional studies on miRNAs

http://mirtarbase.mbc.nctu.edu.tw/

miRwalk

miRNA-target information on the complete 
sequence (promoter, 5′-UTR, CDS, and 3′-UTR) 

and target interaction information across 
eight other types of prediction software; 
information on experimentally validated 

targets

http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/index.
html

Patrocles
Polymorphisms on miRNA sequences and 

target genes
http://www.patrocles.org/

PiTA
Secondary structure of the miRNA-mRNA 

hybrid for target gene prediction
http://genie.weizmann.ac.il/pubs/mir07/index.html

Tarbase experimentally validated miRNA targets http://diana.cslab.ece.ntua.gr/tarbase/

Targetscan
Classical software for miRNA 

target gene prediction
http://www.targetscan.org/
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parameter is PicTar.29 However, the functional consequences of 
such complex interactions involving multiple tandem binding 
sites need to be subjected to rigorous experimental verification to 
improve the predictive scores.

Extension of prediction algorithms
Identification of promising miRNA targets is critical in 

determining the success of future experiments, so concerted 
efforts have been made to improve the functionality of prediction 
algorithms. The computational tools for miRNA target prediction 
currently available have been appropriately modified to incorporate 
recent information on miRNA target gene interaction. As listed in 
Table 1, in addition to the conventional prediction of microRNA 
targets, these tools provide several other valuable features, 
including information on polymorphisms in miRNAs and target 
sequences (Patrocles),32 co-expression of miRNA and their targets 
(miRGator),33 analysis of pathways regulated by specific miRNAs 
(miRPath),34 and miRNA disease relationships (miR2disease).35 
Further applications, such as miRWalk,36 link the information 
across several independent prediction software and enable parallel 
analysis across multiple databases.

An alternative way to predict miRNA targets is by machine-
learning algorithms, which utilizes a database of validated 
interactions (TarBase37 and mirRecords38) against which it 
evaluates future predictions. A number of machine-leaning 
algorithms, such as TargetBoost,39 TargetSpy,40 MultiMiTar,41 
and NBmiRTar42 have been developed. However, the dependence 
of machine learning algorithms on the quality of training data set 
of experimentally verified target genes represents a major source 
of bias.

Challenges to computational methods of target prediction
Computer-based prediction methods are valuable in 

preliminary identification of miRNA target genes. There are, 
however, inherent limitations to consider when applying the 
results of these searches to experimental verification. A majority 
of the current target prediction methods (with the exception 
of RNA 22, miRWalk) limit target gene prediction to the 
annotated 3′-UTR of the genes. A recent study demonstrated 
that miRNAs target as much as 25% of the sites in the coding 
region of the gene.43 Though miRNA target prediction in protein 
coding regions will likely carry high false positive rates due to 
background conservation, further studies need to be done to 
validate and incorporate the possible miRNA target recognition 
sites outside the 3′-UTR context.

The prediction algorithms, albeit distinct, have overlapping 
characteristic features. Each method utilizes a unique 
combination of target prediction criterion, which presents the 
researcher with an opportunity to compare and evaluate their 
performance to attain an optimal level of precision. Using a 
high-throughput proteomic approach, the proposed gene targets 
of miRNAs were compared among different in silico prediction 
methods. It was observed that a group of five programs (DIANA-
microT, ElMMo, Pictar, TargetScan, and TargetScanS) have a 
precision of ~50% and sensitivity between 6–12%.44 In another 
study, a relative analysis of target prediction algorithms against 
validated genes in TarBase demonstrated that DIANA-microT, 
TargetScanS, and PicTar have a precision level > 60%.45

It is conceivable that the use of multiple prediction tools 
lead to a higher confidence in predicting miRNA–target gene 

Table 2. Analytical techniques for miRNA target identification

Technique Advantages Limitations
G

en
e 

ex
pr

es
si

on

Microarray
• High-throughput

• Highly informative in identifying a subset of target genes • Unable to distinguish primary targets vs. 
secondary effects

• No evidence of direct miRNA-mRNA 
interactions

• High false-positive and false negative
RNA Sequencing

• High-throughput
• Higher signal-to-noise ratio and high dynamic range

• Identification of full-length transcripts includes premature 
termination sequences and other isoforms

CLiP

• Use of argonaute-specific antibodies dictates the evidence 
of a direct interaction

• High-throughput when coupled to microarray or 
RNA-Sequencing

• Require large quantities of cells or tissue
• Optimization of enzymatic and cross linking 

steps

LAMP
• Does not need the knowledge of 3′-UTRs

• Specific to miRNA
• Effect of adding label to miRNA on its binding 

is not known

Pr
ot

ei
n 

ou
tp

ut

SiLAC
• Metabolic labeling makes the 
quantification straight forward

• Mammalian cells are labeled easily

• Secondary effects lead to a much higher 
false-positive rate

• Not as high-throughput as transcriptome-
based techniques

• High set-up cost and not as time efficient
RPA • Useful for analyzing a limited amount of clinical samples

Translation profiling • Quantitative data at a greater depth than other techniques

Reporter assays
• Easy to adopt

• High sensitivity
• A wide dynamic range

• Requires prior knowledge of potential 
miRNA-mRNA interacting pairs

• Limited to analysis of single 
miRNA-mRNA target gene

• Caveats of miRNA overexpressioimmunoblotting

• Assay the ultimate effect of miRNA activity
• Easy to adopt

• High sensitivity
• A wide dynamic range



328 RNA Biology volume 11 issue 4

pairs. Using computational approaches, the false positives can be 
eliminated by further experimental analysis, but identification 
of false negatives is a technically daunting task. Nevertheless, 
in silico predictions are a proven method to identify a subset 
of miRNA targets for experimental verification and to further 
understand the role of miRNAs in gene-regulatory networks.

Experimental approaches to miRNA target identification
Experimental identification of the genes regulated by specific 

miRNAs is essential to elucidate the biological functions of 
miRNA moieties. The initial studies found that the extent 
of sequence complementarity between target mRNA and 
miRNA determined the degree of gene repression, whereas 
complete sequence complementarity affected mRNA stability, 
so a partial base pairing was likely to direct only suppression in 
translational machinery. Recent studies have demonstrated that, 
in spite of partial miRNA–mRNA base-pairing, many genes 
are regulated at the mRNA level.46,47 A study investigating the 
significance and relative contribution of RNA and protein-based 
approaches found that mRNA levels account for about 84% of 
any observed decrease in protein output.46 The effect of transcript 
destabilization by miRNAs is mediated by deadenylation, 
decapping, and subsequent 5′-3′ exonucleolytic cleavage. This 
effect is facilitated by binding of Ago2 and GW182 proteins 
to the RISC in humans. Translationally repressed mRNA 
molecules are sequestered in specialized cytoplasmic structures, 
known as P-bodies. Translational inhibition is operational if 
the decrease in protein output is more than that observed for 
mRNA expression and is primarily observed on the binding of 
initiation factor elF4E to the 5′-cap of the mRNA molecules. 
Several findings also support post-initiation suppression of 
translational machinery by causing premature termination and 
subsequent ribosome drop-off.48,49 The molecular determinants 
of the outcome of miRNA–mRNA base pairing are not clear. 

Although the answer to the question of whether 
the phenomenon of transcript destabilization and 
translational inhibition are mutually exclusive 
remains elusive, the approaches to study the 
phenomenon of target repression by miRNAs 
can be adopted by assaying the abundance of 
RNA and/or protein molecules as an effect to 
miRNA manipulation. Alternatively, by utilizing 
biochemical assays, components of RISC 
machinery can be investigated. High-throughput 
technologies serve as an ideal interface between 
in silico target prediction and the first evidence 
of a biological interaction. Further analysis on 
single miRNA–mRNA target genes is important 
to determine the occurrence of an interaction.

High-throughput target identification
The analysis of changes in global gene 

expression upon introduction of a specific miRNA 
is highly informative in rapid identification of 
a large number of both first- and second-order 
miRNA target genes. The high-throughput 
approach for analysis of miRNA-associated 
expression signatures can be easily adapted to 

in vitro manipulated cell populations, as well as in vivo animal 
models of miRNA research.

Microarray profiling is a widely utilized approach to study 
genome-wide scale changes in gene expression. The miRNA–
target gene interactions, which lead to a reduction in mRNA 
levels, are commonly detected by microarray analysis. The 
microarray-based approach is supported by the initial findings, 
which demonstrated that, upon transfection of miR-1 (muscle-
specific) and miR-124 (brain-specific) in HeLa cells (which 
normally do not express these miRNAs), there is a global shift 
in the expression profile toward a more muscle-tissue- or brain-
tissue-like expression, respectively.47 Recently, advances in 
sequencing technologies have enabled the use of RNA-sequencing 
(RNA-seq) as an alternative to gene expression microarrays. 
As RNA-seq encompasses de novo sequencing of full-length 
transcripts, it has the advantage of identifying premature 
termination sequences and identifying changes to a specific 
isoform. RNA-seq technology, with its higher signal-to-noise 
ratio and a wider dynamic range, is increasingly being employed 
as an alternative to microarray hybridization-based transcriptome 
analysis. High-throughput sequencing of RNA isolated by cross-
linking immunoprecipitation (HITS-CLIP) uses UV light 
for cross-linking, followed by purification, and sequencing of 
isolated miRNA-mRNA-Ago complexes.50 A modification to 
this technique, photoactivable-ribonucleoside-enhanced cross 
linking and immunoprecipitation (PAR-CLIP), is more efficient 
in the extent of cross-linking and RNA recovery.51

High-throughput proteomic approaches involve various 
modifications to mass spectrometric analysis. Stable-isotope 
labeling with amino acids in culture (SILAC) determines the relative 
abundance of proteins labeled with heavy isotopes (mostly lysine 
and arginine) and subsequent mass spectrometric analysis.52 Two-
dimensional gel electrophoresis (2D-DIGE) involves isoelectrically 

Figure 1. experimentally verified vertebrate miRNA–target interactions available in miR-
TarBase (Release 4.5).
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Table 3. Genetic studies to elucidate miRNA functions

miRNA Biological function Target gene/s

miR1–2 65 Cardiac development and physiology Hand2, irx5

miR12666 endothelial cells’ response to angiogenic stimuli Spred1

miR133a67 Cardiac growth and function Srf, Ccnd2

miR14078 Cartilage development and homeostasis Adamts5

miR15072 Lymphocyte development Myb

miR-15579 Normal functioning of the immune system - B- and 
T-lymphocytes and dendritic cells

Maf

miR15573 Suppression of Myc-Igh translocations in B cells via its target 
gene AiD

Aicda

miR15a/16–171 B cell proliferation
Ccne1,Chk1, Mcm5, Ccnd2, Cdk4, Cdk6, Ccnd3, 

Cdc25a, Arl2, igf1r

miR17–92 cluster80 B cell survival by repressing pro-apoptotic genes Bim

miR17–92 cluster81 Proliferation of lung progenitor cells Rbl2

miR18275 No significant retinal phenotype -

miR183 cluster76 Retinal function -

miR20682 Onset of neurodegenerative ALS disease Hdac4

miR-20868 Cardiac response to stress and hormonal signaling Thrap1

miR208a70 Muscle gene expression and function Myh7b,Sox6, Purb,Sp3,Hp1b

miR208a69 Cardiac function and conduction Thrap1, Mstn

miR22374 Granulocyte activation and differentiation Mef2c

miR37583 Glucose metabolism-, β-cell turnover Several genes in growth-promoting pathways

separating cell populations labeled with different fluorophores and 
subsequent proteomic analysis.53 These techniques can be modified 
for comparison of miRNA mimic/inhibitor-transfected cells. To 
capture correlative changes in abundance of protein, these data sets 
are subsequently queried to identify overrepresentation of targets 
containing seed-sequences to miRNA to distinguish second order 
effects of miRNA function. However, while high-throughput 
analysis can unequivocally establish global effects due to miRNA, 
there remains a challenge to appropriately interpret the massive 
amount of data generated and segregate the observed changes 
due to a direct miRNA–target interaction from the secondary 
changes in gene-regulatory network. Regardless, validation of 
high-throughput data using cellular assays is essential for miRNA–
mRNA gene-specific interactions. MiRNA-associated effects on 
target gene expression can be studied by approaches such as qRT-
PCR, luciferase assay, western blotting, and immunohistochemical 
analysis. Alternatively, several biochemical assays have been 
developed to investigate the RISC complex for direct evidence of 
an interaction between a specific miRNA and its target gene.17,54 A 
combination of these techniques often is adapted to obtain a more 
definitive answer on miRNA–mRNA interactions.

In vitro biochemical assays
In vitro studies on isolated cell populations that are amenable 

to experimental manipulation are useful in identification of 
the molecular mechanisms of miRNA function. Biochemical 
assays often utilize either labeling or isolation with Ago-specific 
antibodies or exogenous miRNA mimic. Whereas, HITS-CLIP 
and PAR-CLIP capture the entire mRNA cellular pool with 

antibodies to Ago protein, labeling the miRNA and analysis of 
the associated transcripts is another commonly used experimental 
approach. Labeled miRNA pull-down assay (LAMP) involves 
the transfection of a tagged-miRNA (biotin/digoxygenin) 
and isolating the miRNA–mRNA complex using an antibody 
against the tag.55 The assay has the advantage of not needing 
the genomic information on 3′-UTRs. Parallel analysis of RNA 
ends (PARE), also known as degradome sequencing, is a recently 
developed modification to RACE, which also identifies direct 
Ago2 RISC-associated cleavage targets.56 It involves ligation of an 
RNA adaptor (containing MmeI sites) to 5′-monophosphorylated 
products of miRNA-induced cleavage. The ligated products are 
reverse-transcribed and cleaved with MmeI. The 5′-fragments are 
ligated to a 3′-double-stranded DNA adaptor and PCR-amplified 
and subjected to deep-sequencing.

Another approach to the analysis of translationally active 
ribosome-associated mRNAs can be used to identify the 
direct effects of miRNA-induced translational repression. 
This technique, known as “translational profiling,” involves 
the separation of ribosome-bound and -unbound mRNAs 
populations on sucrose gradient, labeling, and hybridization to 
microarrays.57 These techniques, however, do not measure protein 
levels they yield quantitative data at a greater depth than other 
direct protein-based approaches. Reverse-phase protein arrays 
(RPA) have also been applied to probe the complex mixtures of 
proteins with antibodies to target genes that have been predicted 
computationally. Such an approach is particularly useful for 
analyzing limited amounts of clinical samples.58
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A comparative analysis of various transcriptional and post-
transcriptional approaches is shown in Table 2. The analysis 
of the number of miRNA target genes identified with major 
experimental approaches has been made using databases, such as 
TarBase and miRTarBase. We further analyzed the complete list 
of experimentally verified miRNA–target interactions available 
in miRTarBase (Release 4.5) and have graphically represented the 
data in Figure 1.

The caveats of ex vivo experimental techniques
Ex vivo studies provide excellent model systems to study 

the effects of miRNA manipulation on target gene expression. 
This includes the opportunity to artificially manipulate the 
concentrations of endogenous miRNAs with the use of double-
stranded mimics and miRNA inhibitors, and to further validate the 
findings by investigating the rescue effects on mutations of these 
miRNA sequences. These cellular assays are based on the principle 
that loss-of-function or gain-of-function of specific miRNAs is 
associated with a corresponding change in the expression of a 
putative target. Although this seems plausible, a major caveat of 
such an assumption is that transfection with miRNA mimic or 
inhibitor often leads to supra-physiological levels that may perturb 
the endogenous gene-regulatory networks.59 Recently, an analysis 
comparing miRNA overexpression (representing global mRNA 
changes due to miRNA transfection) to sequence data obtained 
from CLIP-based approaches (which represent a more direct 
interaction of target mRNAs with endogenous miRNAs and AGO 
proteins) supports the notion that alteration in miRNA levels has 
effects on the predictive power of miRNA–target interactions. 
Indeed, each of these methodologies were biased on detecting 
miRNA targets on different, yet complementary, parameters of 
miRNA target prediction.60 It has been demonstrated that target 
genes for endogenous miRNAs have significantly higher levels 
of expression upon transfection with small RNA molecules.59 

Another study investigating the target genes of miR140 by both 
inhibition and overexpression, showed that although each affected 
the expression of hundreds of genes, only 49 overlapping genes 
were identified between the two groups.61 Therefore, artificial 
concentrations might lead to the formation of erroneous miRNA–
mRNA pairs that may not be relevant in complex biological 
situations. Further, the gene-regulatory networks operating within 
a cell may be highly complex.

While a wealth of information is available on miRNA 
regulation of target genes, not much is known about how 
miRNAs themselves are regulated. In physiological conditions, 
the cellular signaling pathways are highly complex and not linear, 
as investigated by in vitro experiments. For example, the activity 
of a miRNA and its target gene could in turn be a regulated by a 
common transcription factor. Thus, the effect of a miRNA on a 
joint target gene will be the combined effect of the transcription 
factor regulating the miRNA and the target protein-coding 
genes. Such interactions have been commonly observed and can 
be predicted in silico by a sequence-based prediction program.62 
An experimental verification of such an interaction is technically 
daunting and, when possible, is limited to analysis of only a few 
gene regulatory networks at a given time.

The significance of animal studies
MiRNAs play critical roles in maintaining cellular 

homeostasis by regulating key biological functions. A deregulated 
miRNA expression is therefore observed in many pathological 
conditions.63,64 miRNAs often target multiple genes in a common 
regulatory network, so miRNA-based therapy offers a distinct 
therapeutic advantage over other approaches. Though the ongoing 
research in the field of miRNA biology has been successful 
in demonstrating the translational potential of miRNAs, the 
current utilization of miRNAs in clinics is primarily limited 
to expression profiling for diagnostic or prognostic purposes.63 

Figure 2. Flowchart summarizing the key approaches and major techniques in miRNA target identification.



www.landesbioscience.com RNA Biology 331

The animal studies on miRNA done so far have established a 
critical role of miRNAs in several biological processes (Table 3), 
while also demonstrating the complexity of miRNA-regulated 
pathways in physiological conditions. The knowledge obtained 
from in-depth analysis in appropriate animal models can be 
translated into designing miRNA-based therapeutics.

Sequence-based target gene predictions and in vitro approaches 
to manipulate miRNA functions in isolated cell populations have 
identified several miRNA–mRNA interacting pairs, yet in vivo 
identification of true miRNA targets is challenging. Animal 
studies investigating miRNA function in vivo have underscored 
miRNAs as critical mediators of biological processes, such as 
cardiovascular development (miR1-2,65 miR126,66 miR133a,67 
miR208,68 miR208a69,70) and immune function (miR15a/16-1,71 
miR150,72 miR155,73 miR22374). Interestingly, certain miRNAs 
have undergone evolutionary processes to regulate the expression 
of critical target genes and are likely to produce greater changes 
in target gene expression. Consequently, a disruption of such 
miRNA–target gene interaction has more discernible phenotypic 
consequences. This is exemplified by miR150 regulation of 
c-Myb, which plays key role in lymphocyte development.72 
Alternatively, a single miRNA can target multiple genes in the 
same pathway, while a target gene may be regulated by several 
miRNAs. In physiological conditions, miRNA-regulated 
pathways are often redundant and highly complex.29 A few of the 
studies highlighting the complexity of miRNA target recognition 
in in vivo conditions are discussed in the following section.

Complexity of miRNA regulation
The phenotypic consequences of miRNA targeting are 

subtle. Therefore, when extrapolating the rules of miRNA 
target repression to in vivo conditions, it is not surprising that 
the identification of such small changes in gene expression in a 
heterogeneous environment is challenging. It is estimated that 
90% of evolutionarily conserved miRNA–mRNAs interactions 
involve a single target site and are expected to downregulate 
target mRNAs by less than 50%.21 In addition, most mRNAs 
that have one miRNA site also harbor another site to some other 
miRNA. Thus, assuming active regulation by other co-expressed 
miRNAs, perturbing target interactions for one miRNA may not 
have an appreciable effect on target gene expression. The miRNA-
perturbed pathways are also believed to be more tolerated due 
to gene regulatory buffering.21 The targeted deletion of miR182 
with abundant retinal expression did not show an upregulation 
in the expression of target genes by microarray analysis, and the 
cellular retinal structure was also normal.75 Interestingly, miR182 
is within a polycistronic miRNA cluster that includes miR182, 
miR183, and miR96. These miRNAs are co-transcribed with 
similar tissue expression patterns and seed sequences.75 A 
possible explanation could be that they exhibit redundancy in 
function and compensation. Indeed, germline deletion of the 
miR182, miR183, and miR96 cluster exhibited a robust retinal 
phenotype, consistent with the idea of functional redundancy 
and compensation among miR182, miR183, and miR96.76

It is important to note that the genetic studies on targeted 
deletion of miRNAs are effects of deregulated expression of 
several genes. Thus, the net effect of a miRNA on a specific gene 

is the consequence of its direct effect on its target genes and/
or indirect effect on other genes that are also miRNA targets 
and may also influence the expression of the gene in study. 
The relative contribution of miR155-AID (activation-induced 
cytidine deaminase) signaling and indirect signaling pathways in 
Myc-Igh translocations was analyzed by a mutation in miR155 
binding site in the 3′-UTR of its target AID. Though similar 
levels of AID RNA and protein were observed in miR155

-/-
 and 

AID155 mice, higher translocations were observed in miR155
-/-

 
mice suggesting that miR155 regulates other genes that also act 
to suppress Myc-Igh translocations.73 Another study investigating 
the role of miR143/145 in cardiac muscle development found 
contradicting roles for miR143/145 in in vitro model assays of 
carotid artery injury model to those observed in miR143/145 
mutant mice.77 A study demonstrating 3-fold higher miR208 
in transgenic hearts showed that, in wild-type hearts, the 
upregulated genes in the microarray were not predicted to be 
the direct targets of miR208.68 These findings imply that either 
the computational algorithms are unable to identify a significant 
proportion of target genes, or that miRNA-mediated effects are 
too subtle to be identified by our experimental approach. These 
findings further emphasize the significance of in vivo studies 
in transgenic models for an in-depth understanding of miRNA 
functions in disease processes.

A schematic representation of the various approaches to 
identify miRNA target genes and a generalized hierarchical order 
are shown in Figure 2.

Summary

In a relatively short period since the significance of miRNAs 
was realized in 2000, miRNA function has come to be considered 
a biologic modulator (within the context of most major biomedical 
research questions), as evidenced by its increasing prevalence in the 
scientific literature. However, recent findings also challenge the 
dogma of prevalent molecular mechanisms of miRNA action and 
its role in various life processes. A future challenge in the field will 
be assigning functions of both evolutionally conserved miRNAs 
and species-specific miRNAs in normal and disease biology. The 
present approaches to miRNA target identification (in silico, in 
vitro, and in vivo) each have advantages and limitations. While 
computational methods streamline possible target sets, cell-based 
assays are more amenable to artificial manipulation in deciphering 
the molecular mechanisms of miRNA action. In spite of robust 
ex vivo analytical techniques of miRNA target identification, it 
is important to realize that an experimentally verified miRNA–
target gene interaction may have no functional consequences 
in the complex microenvironment under in vivo physiological 
conditions. Future methodological and computational 
advancements in primary, secondary, and higher-order functional 
assessments of miRNA function(s) using appropriate miRNA/
siRNA animal models, along with high-throughput quantitation 
to assess global miRNA and target gene levels, will be necessary 
to advance the field and are essential to assess the potential and 
pitfalls of any envisioned miRNA-based therapeutics.



332 RNA Biology volume 11 issue 4

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was partially supported by grant NIH/NCRR 
5P20RR018788, NIH/NIGMS 8P20GM103471.

References
1. He L, Hannon GJ. MicroRNAs: small RNAs with a big 

role in gene regulation. Nat Rev Genet 2004; 5:522-31; 
PMID:15211354; http://dx.doi.org/10.1038/nrg1379

2. Brennecke J, Stark A, Russell RB, Cohen SM. 
Principles of microRNA-target recognition. PLoS 
Biol 2005; 3:e85; PMID:15723116; http://dx.doi.
org/10.1371/journal.pbio.0030085

3. Kim YK, Kim VN. Processing of intronic microRNAs. 
EMBO J 2007; 26:775-83; PMID:17255951; http://
dx.doi.org/10.1038/sj.emboj.7601512

4. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley 
A. Identification of mammalian microRNA host 
genes and transcription units. Genome Res 2004; 
14(10A):1902-10; PMID:15364901; http://dx.doi.
org/10.1101/gr.2722704

5. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA 
maturation: stepwise processing and subcellular 
localization. EMBO J 2002; 21:4663-70; 
PMID:12198168; http://dx.doi.org/10.1093/emboj/
cdf476

6. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 
mediates the nuclear export of pre-microRNAs and 
short hairpin RNAs. Genes Dev 2003; 17:3011-
6; PMID:14681208; http://dx.doi.org/10.1101/
gad.1158803

7. Guo L, Lu Z. The fate of miRNA* strand through 
evolutionary analysis: implication for degradation as 
merely carrier strand or potential regulatory molecule? 
PLoS One 2010; 5:e11387; PMID:20613982; http://
dx.doi.org/10.1371/journal.pone.0011387

8. Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a 
binds the 5’UTR of ribosomal protein mRNAs and 
enhances their translation. Mol Cell 2008; 30:460-
71; PMID:18498749; http://dx.doi.org/10.1016/j.
molcel.2008.05.001

9. Vasudevan S, Tong Y, Steitz JA. Switching 
from repression to activation: microRNAs can 
up-regulate translation. Science 2007; 318:1931-
4; PMID:18048652; http://dx.doi.org/10.1126/
science.1149460

10. Vasudevan S. Posttranscriptional upregulation by 
microRNAs. Wiley Interdiscip Rev RNA 2012; 3:311-
30; PMID:22072587; http://dx.doi.org/10.1002/
wrna.121

11. Lee RC, Feinbaum RL, Ambros V. The C. elegans 
heterochronic gene lin-4 encodes small RNAs 
with antisense complementarity to lin-14. Cell 
1993; 75:843-54; PMID:8252621; http://dx.doi.
org/10.1016/0092-8674(93)90529-Y

12. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, 
Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. 
The 21-nucleotide let-7 RNA regulates developmental 
timing in Caenorhabditis elegans. Nature 2000; 
403:901-6; PMID:10706289; http://dx.doi.
org/10.1038/35002607

13. Wheeler BM, Heimberg AM, Moy VN, Sperling 
EA, Holstein TW, Heber S, Peterson KJ. The deep 
evolution of metazoan microRNAs. Evol Dev 
2009; 11:50-68; PMID:19196333; http://dx.doi.
org/10.1111/j.1525-142X.2008.00302.x

14. Friedman RC, Farh KK, Burge CB, Bartel DP. 
Most mammalian mRNAs are conserved targets 
of microRNAs. Genome Res 2009; 19:92-105; 
PMID:18955434; http://dx.doi.org/10.1101/
gr.082701.108

15. Watanabe Y, Tomita M, Kanai A. Computational 
methods for microRNA target prediction. Methods 
Enzymol 2007; 427:65-86; PMID:17720479; http://
dx.doi.org/10.1016/S0076-6879(07)27004-1

16. Witkos TM, Koscianska E, Krzyzosiak WJ. Practical 
Aspects of microRNA Target Prediction. Curr Mol 
Med 2011; 11:93-109; PMID:21342132; http://
dx.doi.org/10.2174/156652411794859250

17. Ørom UA, Lund AH. Experimental identification 
of microRNA targets. Gene 2010; 451:1-5; 
PMID:19944134; http://dx.doi.org/10.1016/j.
gene.2009.11.008

18. Santos-Rebouças CB, Pimentel MM. MicroRNAs: 
macro challenges on understanding human biological 
functions and neurological diseases. Curr Mol Med 
2010; 10:692-704; PMID:20937025; http://dx.doi.
org/10.2174/156652410793384169

19. Singh SK, Pal Bhadra M, Girschick HJ, Bhadra U. 
MicroRNAs--micro in size but macro in function. 
FEBS J 2008; 275:4929-44; PMID:18754771; http://
dx.doi.org/10.1111/j.1742-4658.2008.06624.x

20. Hammell M. Computational methods to identify 
miRNA targets. Semin Cell Dev Biol 2010; 21:738-
44; PMID:20079866; http://dx.doi.org/10.1016/j.
semcdb.2010.01.004

21. Bartel DP. MicroRNAs: target recognition and 
regulatory functions. Cell 2009; 136:215-33; 
PMID:19167326; http://dx.doi.org/10.1016/j.
cell.2009.01.002

22. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, 
Yekta S, Rhoades MW, Burge CB, Bartel DP. The 
microRNAs of Caenorhabditis elegans. Genes Dev 
2003; 17:991-1008; PMID:12672692; http://dx.doi.
org/10.1101/gad.1074403

23. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, 
Burge CB. Prediction of mammalian microRNA 
targets. Cell 2003; 115:787-98; PMID:14697198; 
http://dx.doi.org/10.1016/S0092-8674(03)01018-3

24. John B, Enright AJ, Aravin A, Tuschl T, Sander C, 
Marks DS. Human MicroRNA targets. PLoS Biol 
2004; 2:e363; PMID:15502875; http://dx.doi.
org/10.1371/journal.pbio.0020363

25. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, 
Bouyioukos C, Mourelatos Z, Hatzigeorgiou A. A 
combined computational-experimental approach 
predicts human microRNA targets. Genes Dev 
2004; 18:1165-78; PMID:15131085; http://dx.doi.
org/10.1101/gad.1184704

26. Grimson A, Farh KK, Johnston WK, Garrett-Engele 
P, Lim LP, Bartel DP. MicroRNA targeting specificity 
in mammals: determinants beyond seed pairing. Mol 
Cell 2007; 27:91-105; PMID:17612493; http://dx.doi.
org/10.1016/j.molcel.2007.06.017

27. Grün D, Wang YL, Langenberger D, Gunsalus 
KC, Rajewsky N. microRNA target predictions 
across seven Drosophila species and comparison to 
mammalian targets. PLoS Comput Biol 2005; 1:e13; 
PMID:16103902; http://dx.doi.org/10.1371/journal.
pcbi.0010013

28. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan 
M. Inference of miRNA targets using evolutionary 
conservation and pathway analysis. BMC 
Bioinformatics 2007; 8:69; PMID:17331257; http://
dx.doi.org/10.1186/1471-2105-8-69

29. Shirdel EA, Xie W, Mak TW, Jurisica I. NAViGaTing 
the micronome--using multiple microRNA 
prediction databases to identify signalling pathway-
associated microRNAs. PLoS One 2011; 6:e17429; 
PMID:21364759; http://dx.doi.org/10.1371/journal.
pone.0017429

30. Doench JG, Petersen CP, Sharp PA. siRNAs can 
function as miRNAs. Genes Dev 2003; 17:438-
42; PMID:12600936; http://dx.doi.org/10.1101/
gad.1064703

31. Doench JG, Sharp PA. Specificity of microRNA 
target selection in translational repression. Genes Dev 
2004; 18:504-11; PMID:15014042; http://dx.doi.
org/10.1101/gad.1184404

32. Hiard S, Charlier C, Coppieters W, Georges M, Baurain 
D. Patrocles: a database of polymorphic miRNA-
mediated gene regulation in vertebrates. Nucleic Acids 
Res 2010; 38:D640-51; PMID:19906729; http://
dx.doi.org/10.1093/nar/gkp926

33. Cho S, Jang I, Jun Y, Yoon S, Ko M, Kwon Y, Choi 
I, Chang H, Ryu D, Lee B, et al. MiRGator v3.0: a 
microRNA portal for deep sequencing, expression 
profiling and mRNA targeting. Nucleic Acids Res 
2013; 41:D252-7; PMID:23193297; http://dx.doi.
org/10.1093/nar/gks1168

34. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas 
G, Reczko M, Maragkakis M, Paraskevopoulou MD, 
Prionidis K, Dalamagas T, Hatzigeorgiou AG. DIANA 
miRPath v.2.0: investigating the combinatorial effect 
of microRNAs in pathways. Nucleic Acids Res 2012; 
40:W498-504; PMID:22649059; http://dx.doi.
org/10.1093/nar/gks494

35. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang 
X, Li M, Wang G, Liu Y. miR2Disease: a manually 
curated database for microRNA deregulation in 
human disease. Nucleic Acids Res 2009; 37:D98-104; 
PMID:18927107; http://dx.doi.org/10.1093/nar/
gkn714

36. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk--
database: prediction of possible miRNA binding sites 
by “walking” the genes of three genomes. J Biomed 
Inform 2011; 44:839-47; PMID:21605702; http://
dx.doi.org/10.1016/j.jbi.2011.05.002

37. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, 
Maragkakis M, Reczko M, Gerangelos S, Koziris 
N, Dalamagas T, Hatzigeorgiou AG. TarBase 6.0: 
capturing the exponential growth of miRNA targets 
with experimental support. Nucleic Acids Res 
2012; 40:D222-9; PMID:22135297; http://dx.doi.
org/10.1093/nar/gkr1161

38. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. 
miRecords: an integrated resource for microRNA-
target interactions. Nucleic Acids Res 2009; 37:D105-
10; PMID:18996891; http://dx.doi.org/10.1093/nar/
gkn851

39. Saetrom O, Snøve O Jr., Saetrom P. Weighted sequence 
motifs as an improved seeding step in microRNA 
target prediction algorithms. RNA 2005; 11:995-
1003; PMID:15928346; http://dx.doi.org/10.1261/
rna.7290705

40. Sturm M, Hackenberg M, Langenberger D, Frishman 
D. TargetSpy: a supervised machine learning approach 
for microRNA target prediction. BMC Bioinformatics 
2010; 11:292; PMID:20509939; http://dx.doi.
org/10.1186/1471-2105-11-292

41. Mitra R, Bandyopadhyay S. MultiMiTar: a novel multi 
objective optimization based miRNA-target prediction 
method. PLoS One 2011; 6:e24583; PMID:21949731; 
http://dx.doi.org/10.1371/journal.pone.0024583

42. Yousef M, Jung S, Kossenkov AV, Showe LC, 
Showe MK. Naïve Bayes for microRNA target 
predictions--machine learning for microRNA targets. 
Bioinformatics 2007; 23:2987-92; PMID:17925304; 
http://dx.doi.org/10.1093/bioinformatics/btm484

43. Chi SW, Zang JB, Mele A, Darnell RB. Argonaute 
HITS-CLIP decodes microRNA-mRNA interaction 
maps. Nature 2009; 460:479-86; PMID:19536157

44. Alexiou P, Maragkakis M, Papadopoulos GL, 
Reczko M, Hatzigeorgiou AG. Lost in translation: 
an assessment and perspective for computational 
microRNA target identification. Bioinformatics 
2009; 25:3049-55; PMID:19789267; http://dx.doi.
org/10.1093/bioinformatics/btp565



www.landesbioscience.com RNA Biology 333

45. Min H, Yoon S. Got target? Computational methods 
for microRNA target prediction and their extension. 
Exp Mol Med 2010; 42:233-44; PMID:20177143; 
http://dx.doi.org/10.3858/emm.2010.42.4.032

46. Guo H, Ingolia NT, Weissman JS, Bartel DP. 
Mammalian microRNAs predominantly act to 
decrease target mRNA levels. Nature 2010; 466:835-
40; PMID:20703300; http://dx.doi.org/10.1038/
nature09267

47. Lim LP, Lau NC, Garrett-Engele P, Grimson A, 
Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson 
JM. Microarray analysis shows that some microRNAs 
downregulate large numbers of target mRNAs. Nature 
2005; 433:769-73; PMID:15685193; http://dx.doi.
org/10.1038/nature03315

48. Behm-Ansmant I, Rehwinkel J, Izaurralde E. 
MicroRNAs silence gene expression by repressing 
protein expression and/or by promoting mRNA decay. 
Cold Spring Harb Symp Quant Biol 2006; 71:523-
30; PMID:17381335; http://dx.doi.org/10.1101/
sqb.2006.71.013

49. Gu S, Kay MA. How do miRNAs mediate translational 
repression? Silence 2010; 1:11; PMID:20459656; 
http://dx.doi.org/10.1186/1758-907X-1-11

50. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi 
SW, Clark TA, Schweitzer AC, Blume JE, Wang X, et 
al. HITS-CLIP yields genome-wide insights into brain 
alternative RNA processing. Nature 2008; 456:464-
9; PMID:18978773; http://dx.doi.org/10.1038/
nature07488

51. Hafner M, Landthaler M, Burger L, Khorshid M, 
Hausser J, Berninger P, Rothballer A, Ascano M Jr., 
Jungkamp AC, Munschauer M, et al. Transcriptome-
wide identification of RNA-binding protein and 
microRNA target sites by PAR-CLIP. Cell 2010; 
141:129-41; PMID:20371350; http://dx.doi.
org/10.1016/j.cell.2010.03.009

52. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, 
Steen H, Pandey A, Mann M. Stable isotope labeling 
by amino acids in cell culture, SILAC, as a simple and 
accurate approach to expression proteomics. Mol Cell 
Proteomics 2002; 1:376-86; PMID:12118079; http://
dx.doi.org/10.1074/mcp.M200025-MCP200

53. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets 
the tumor suppressor gene tropomyosin 1 (TPM1). J 
Biol Chem 2007; 282:14328-36; PMID:17363372; 
http://dx.doi.org/10.1074/jbc.M611393200

54. Thomson DW, Bracken CP, Goodall GJ. Experimental 
strategies for microRNA target identification. Nucleic 
Acids Res 2011; 39:6845-53; PMID:21652644; 
http://dx.doi.org/10.1093/nar/gkr330

55. Hsu RJ, Yang HJ, Tsai HJ. Labeled microRNA 
pull-down assay system: an experimental approach 
for high-throughput identification of microRNA-
target mRNAs. Nucleic Acids Res 2009; 37:e77; 
PMID:19420057; http://dx.doi.org/10.1093/nar/
gkp274

56. German MA, Luo S, Schroth G, Meyers BC, Green 
PJ. Construction of Parallel Analysis of RNA Ends 
(PARE) libraries for the study of cleaved miRNA 
targets and the RNA degradome. Nat Protoc 
2009; 4:356-62; PMID:19247285; http://dx.doi.
org/10.1038/nprot.2009.8

57. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, 
Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan 
DA, Surmeier DJ, et al. A translational profiling 
approach for the molecular characterization of CNS 
cell types. Cell 2008; 135:738-48; PMID:19013281; 
http://dx.doi.org/10.1016/j.cell.2008.10.028

58. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou 
A. Integrative microRNA and proteomic approaches 
identify novel osteoarthritis genes and their 
collaborative metabolic and inflammatory networks. 
PLoS One 2008; 3:e3740; PMID:19011694; http://
dx.doi.org/10.1371/journal.pone.0003740

59. Khan AA, Betel D, Miller ML, Sander C, Leslie CS, 
Marks DS. Transfection of small RNAs globally 
perturbs gene regulation by endogenous microRNAs. 
Nat Biotechnol 2009; 27:549-55; PMID:19465925; 
http://dx.doi.org/10.1038/nbt0709-671a

60. Wen J, Parker BJ, Jacobsen A, Krogh A. MicroRNA 
transfection and AGO-bound CLIP-seq data sets 
reveal distinct determinants of miRNA action. RNA 
2011; 17:820-34; PMID:21389147; http://dx.doi.
org/10.1261/rna.2387911

61. Nicolas FE, Pais H, Schwach F, Lindow M, 
Kauppinen S, Moulton V, Dalmay T. Experimental 
identification of microRNA-140 targets by silencing 
and overexpressing miR-140. RNA 2008; 14:2513-
20; PMID:18945805; http://dx.doi.org/10.1261/
rna.1221108

62. Friard O, Re A, Taverna D, De Bortoli M, Corá 
D. CircuitsDB: a database of mixed microRNA/
transcription factor feed-forward regulatory 
circuits in human and mouse. BMC Bioinformatics 
2010; 11:435; PMID:20731828; http://dx.doi.
org/10.1186/1471-2105-11-435

63. Soifer HS, Rossi JJ, Saetrom P. MicroRNAs in disease 
and potential therapeutic applications. Mol Ther 
2007; 15:2070-9; PMID:17878899; http://dx.doi.
org/10.1038/sj.mt.6300311

64. Mendell JT, Olson EN. MicroRNAs in stress 
signaling and human disease. Cell 2012; 148:1172-
87; PMID:22424228; http://dx.doi.org/10.1016/j.
cell.2012.02.005

65. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, 
Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, 
Srivastava D. Dysregulation of cardiogenesis, cardiac 
conduction, and cell cycle in mice lacking miRNA-1-
2. Cell 2007; 129:303-17; PMID:17397913; http://
dx.doi.org/10.1016/j.cell.2007.03.030

66. Wang S, Aurora AB, Johnson BA, Qi X, McAnally 
J, Hill JA, Richardson JA, Bassel-Duby R, Olson 
EN. The endothelial-specific microRNA miR-126 
governs vascular integrity and angiogenesis. Dev Cell 
2008; 15:261-71; PMID:18694565; http://dx.doi.
org/10.1016/j.devcel.2008.07.002

67. Liu N, Bezprozvannaya S, Williams AH, Qi X, 
Richardson JA, Bassel-Duby R, Olson EN. microRNA-
133a regulates cardiomyocyte proliferation and 
suppresses smooth muscle gene expression in the heart. 
Genes Dev 2008; 22:3242-54; PMID:19015276; 
http://dx.doi.org/10.1101/gad.1738708

68. van Rooij E, Sutherland LB, Qi X, Richardson JA, 
Hill J, Olson EN; van RE. Control of stress-dependent 
cardiac growth and gene expression by a microRNA. 
Science 2007; 316:575-9; PMID:17379774; http://
dx.doi.org/10.1126/science.1139089

69. Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi 
M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate 
J, et al. MicroRNA-208a is a regulator of cardiac 
hypertrophy and conduction in mice. J Clin Invest 
2009; 119:2772-86; PMID:19726871; http://dx.doi.
org/10.1172/JCI36154

70. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi 
X, Richardson JA, Kelm RJ Jr., Olson EN; van RE. 
A family of microRNAs encoded by myosin genes 
governs myosin expression and muscle performance. 
Dev Cell 2009; 17:662-73; PMID:19922871; http://
dx.doi.org/10.1016/j.devcel.2009.10.013

71. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo 
T, Ambesi-Impiombato A, Califano A, Migliazza 
A, Bhagat G, et al. The DLEU2/miR-15a/16-1 
cluster controls B cell proliferation and its deletion 
leads to chronic lymphocytic leukemia. Cancer Cell 
2010; 17:28-40; PMID:20060366; http://dx.doi.
org/10.1016/j.ccr.2009.11.019

72. Xiao C, Calado DP, Galler G, Thai TH, Patterson 
HC, Wang J, Rajewsky N, Bender TP, Rajewsky K. 
MiR-150 controls B cell differentiation by targeting 
the transcription factor c-Myb. Cell 2007; 131:146-
59; PMID:17923094; http://dx.doi.org/10.1016/j.
cell.2007.07.021

73. Dorsett Y, McBride KM, Jankovic M, Gazumyan 
A, Thai TH, Robbiani DF, Di Virgilio M, Reina 
San-Martin B, Heidkamp G, Schwickert TA, et 
al. MicroRNA-155 suppresses activation-induced 
cytidine deaminase-mediated Myc-Igh translocation. 
Immunity 2008; 28:630-8; PMID:18455451; http://
dx.doi.org/10.1016/j.immuni.2008.04.002

74. Johnnidis JB, Harris MH, Wheeler RT, Stehling-
Sun S, Lam MH, Kirak O, Brummelkamp 
TR, Fleming MD, Camargo FD. Regulation 
of progenitor cell proliferation and granulocyte 
function by microRNA-223. Nature 2008; 451:1125-
9; PMID:18278031; http://dx.doi.org/10.1038/
nature06607

75. Jin ZB, Hirokawa G, Gui L, Takahashi R, Osakada F, 
Hiura Y, Takahashi M, Yasuhara O, Iwai N. Targeted 
deletion of miR-182, an abundant retinal microRNA. 
Mol Vis 2009; 15:523-33; PMID:19279690

76. Lumayag S, Haldin CE, Corbett NJ, Wahlin 
KJ, Cowan C, Turturro S, Larsen PE, Kovacs B, 
Witmer PD, Valle D, et al. Inactivation of the 
microRNA-183/96/182 cluster results in syndromic 
retinal degeneration. Proc Natl Acad Sci U S A 
2013; 110:E507-16; PMID:23341629; http://dx.doi.
org/10.1073/pnas.1212655110

77. Xin M, Small EM, Sutherland LB, Qi X, McAnally 
J, Plato CF, Richardson JA, Bassel-Duby R, Olson 
EN. MicroRNAs miR-143 and miR-145 modulate 
cytoskeletal dynamics and responsiveness of smooth 
muscle cells to injury. Genes Dev 2009; 23:2166-
78; PMID:19720868; http://dx.doi.org/10.1101/
gad.1842409

78. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama 
S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et 
al. MicroRNA-140 plays dual roles in both cartilage 
development and homeostasis. Genes Dev 2010; 
24:1173-85; PMID:20466812; http://dx.doi.
org/10.1101/gad.1915510

79. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet 
P, Soond DR, van Dongen S, Grocock RJ, Das PP, 
Miska EA, et al. Requirement of bic/microRNA-155 
for normal immune function. Science 2007; 316:608-
11; PMID:17463290; http://dx.doi.org/10.1126/
science.1139253

80. Ventura A, Young AG, Winslow MM, Lintault 
L, Meissner A, Erkeland SJ, Newman J, Bronson 
RT, Crowley D, Stone JR, et al. Targeted deletion 
reveals essential and overlapping functions of the 
miR-17 through 92 family of miRNA clusters. Cell 
2008; 132:875-86; PMID:18329372; http://dx.doi.
org/10.1016/j.cell.2008.02.019

81. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan 
BL. Transgenic over-expression of the microRNA 
miR-17-92 cluster promotes proliferation and inhibits 
differentiation of lung epithelial progenitor cells. Dev 
Biol 2007; 310:442-53; PMID:17765889; http://
dx.doi.org/10.1016/j.ydbio.2007.08.007

82. Williams AH, Valdez G, Moresi V, Qi X, McAnally 
J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN. 
MicroRNA-206 delays ALS progression and promotes 
regeneration of neuromuscular synapses in mice. 
Science 2009; 326:1549-54; PMID:20007902; http://
dx.doi.org/10.1126/science.1181046

83. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, 
Rorsman P, Zavolan M, Stoffel M. miR-375 maintains 
normal pancreatic alpha- and beta-cell mass. Proc Natl 
Acad Sci U S A 2009; 106:5813-8; PMID:19289822; 
http://dx.doi.org/10.1073/pnas.0810550106




