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Background: Differentiation between cerebral glioblastoma multiforme (GBM) and
solitary brain metastasis (MET) is important. The existing radiomic differentiation method
ignores the clinical and routine magnetic resonance imaging (MRI) features.

Purpose: To differentiate between GBM and MET and between METs from the
lungs (MET-lung) and other sites (MET-other) through clinical and routine MRI, and
radiomics analyses.

Methods and Materials: A total of 350 patients were collected from two institutions,
including 182 patients with GBM and 168 patients with MET, which were all proven
by pathology. The ROI of the tumor was obtained on axial postcontrast MRI which
was performed before operation. Seven radiomic feature selection methods and four
classification algorithms constituted 28 classifiers in two classification strategies, with
the best classifier serving as the final radiomics model. The clinical and combination
models were constructed using the nomograms developed. The performance of the
nomograms was evaluated in terms of calibration, discrimination, and clinical usefulness.
Student’s t-test or the chi-square test was used to assess the differences in the
clinical and radiological characteristics between the training and internal validation
cohorts. Receiver operating characteristic curve analysis was performed to assess the
performance of developed models with the area under the curve (AUC).

Results: The classifier fisher_decision tree (fisher_DT) showed the best performance
(AUC: 0.696, 95% CI:0.608-0.783) for distinguishing between GBM and MET in internal
validation cohorts; the classifier reliefF_random forest (reliefF_RF) showed the best
performance (AUC: 0.759, 95% CI: 0.613-0.904) for distinguishing between MET-lung
and MET-other in internal validation cohorts. The combination models incorporating the
radiomics signature and clinical-radiological characteristics were superior to the clinical-
radiological models in the two classification strategies (AUC: 0.764 for differentiation
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between GBM in internal validation cohorts and MET and 0.759 or differentiation
between MET-lung and MET-other in internal validation cohorts). The nomograms
showed satisfactory performance and calibration and were considered clinically useful,
as revealed in the decision curve analysis.

Data Conclusion: The combination of radiomic and non-radiomic features is helpful for
the differentiation among GBM, MET-lung, and MET-other.

Keywords: glioblastoma multiforme, metastasis, magnetic resonance imaging, machine learning, radiomics

INTRODUCTION

Cerebral glioblastoma multiforme (GBM) and solitary brain
metastasis (MET) are the most common brain tumors in adults
(Ohgaki and Kleihues, 2005; Platta et al., 2010). Both GBM and
MET show ring enhancement with peripheral edema on routine
magnetic resonance imaging (MRI). Owing to the different
treatment strategies available, a similar radiological appearance
proposed a diagnostic dilemma for differentiation between the
two lesions (Weller et al., 2014). Accurate differentiation between
these two lesions is essential and has been one of the main focuses
in radiological research for many years.

To date, studies aimed at the differentiation between GBM and
MET have mainly shown two tendencies. The first tendency is to
improve the performance of imaging modalities, and the second
is to explore the differences among METs from different primary
sites. For the first tendency, many imaging modalities have been
proposed, including routine MRI and various advanced MRI
modalities, such as magnetic resonance spectroscopy, diffusion-
weighted imaging (DWI), diffusion tensor imaging, diffusion
kurtosis imaging, perfusion-weighted imaging (PWI), arterial
spin labeling, and amide proton transfer-weighted imaging (Chen
et al., 2012; Tan et al., 2015; Salice et al., 2016; Durmo et al., 2018;
Holly et al., 2018; Kamimura et al., 2019; Xi et al., 2019). For
the second tendency, the relative cerebral blood volume showed
no difference among METs from the lungs (MET-lung), breasts,
gastrointestinal tract, and skin (Askaner et al., 2019). Another
study showed that independent component analyses of dynamic
susceptibility contrast PWI can show differences between breast
MET and non-small-cell lung cancer (Chakhoyan et al., 2019).
Moreover, breast METs were found to be less likely to be located
in the posterior cerebral artery territory than MET-lung, kidneys,
colon, and skin (Mampre et al., 2019).

Radiomics analysis has been proven to be useful in the
diagnosis, prognosis assessment, and prediction of therapeutic
responses in cancers by extracting exhaustive features from
medical images (Aerts et al., 2014; Lambin et al., 2017). It
has been used successfully in many studies of brain tumors,
including those for tumor grading and genotype and overall
survival assessment (Zacharaki et al., 2009; Grabowski et al., 2014;
Li et al., 2018c; Chaddad et al., 2019). In particular, radiomics
analysis was used to differentiate among METs from the breasts,
lungs, and other sites in one study (Artzi et al., 2019). It was
also used to differentiate METs among breast cancer, small-cell
lung cancer, non-small-cell lung cancer, gastrointestinal cancer,
and melanoma (Kniep et al., 2019). MET-lung, breasts, and

skin also differed in texture features (Ortiz-Ramon et al., 2017;
Ortiz-Ramón et al., 2018).

To date, the existing studies on the differentiation between
GBM and MET have only focused on radiological data without
consideration of clinical factors. Analyses of MET subtypes
mainly considered the radiomic features without the routine MRI
features. In addition, the subtypes of METs to be differentiated
were not consistent in the existing studies. Of all METs, the
top primary tumor is lung cancer (>50%) (Füreder et al., 2018;
Rotta et al., 2018; Ascha et al., 2019). Therefore, we explored the
differences between GBM and MET-lung and other sites (MET-
other) with regard to the clinical and routine MRI and radiomic
features in this study.

MATERIALS AND METHODS

This retrospective study was approved by the committees of two
institutions; the need for obtaining informed consent from the
patients was waived.

Patients
Cerebral GBM was searched in the pathological database of
our institution between January 2014 and December 2015. The
inclusion and exclusion criteria are shown in Supplementary
Material 1. A total of 152 patients with GBM were included from
the first institution, and 30 patients with GBM were included
from the second institution. All patients showed a supratentorial
enhanced lesion in the cerebral parenchyma.

Solitary supratentorial MET was searched in the pathological
database of the two institutions between January 2010 and
December 2017. The inclusion and exclusion criteria are shown
in Supplementary Material 1. Finally, a total of 76 patients
with MET-lung and 62 patients with MET-other were included
from the first institution, and 15 patients with MET-lung
and 15 patients with MET-other were included from the
second institution. The detailed primary cancers are shown in
Supplementary Material 2.

Image Acquisition and Analysis
All patients underwent MRI scanning within 2 weeks before
cerebral operation. The tumor size was represented by the
maximal diameter on the postcontrast axial image. Peritumoral
edema was represented by the maximal diameter of the high
signal around the tumor on the axial T2-weighted image
(T2WI). The two parameters were manually measured using
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the Neurosoft PACS software1. The edema ratio was calculated
by dividing the peritumoral edema by the tumor size. The
location (left side/right side) was also reviewed by an experienced
radiologist. The detailed scanning protocol and parameters are
shown in Supplementary Material 3.

Radiomics Analysis
Region of Interest (ROI) Segmentation
Using the ITK-SNAP software2 version 3.x, we opened the
postcontrast axial sequence for each case and manually drew
the outline of the enhanced lesion on each slice showing the
tumor, which was saved as the segmented region of interest
(ROI). The segmentation was performed by a radiologist with
14 years of experience and reviewed by another radiologist
with 28 years of experience. Any discrepancy was resolved
through discussion. The details of the drawing are illustrated in
Supplementary Material 4.

Radiomic Feature Extraction
The radiomic features were extracted using PyRadiomics, which
is an open-source python package for the extraction of radiomic
features from medical images (Van Griethuysen et al., 2017).
For each ROI, we extracted three types of radiomic features,
including non-textural, textural, and wavelet features. The non-
textural features included 13 shape features and 18 first-order
features, and 74 textural features were calculated on the basis of
5 texture matrices: the gray level co-occurrence matrix (GLCM),
gray level dependence matrix (GLDM), gray level run-length
matrix (GLRLM), gray level size zone matrix (GLSZM), and
neighborhood gray-tone difference matrix (NGTDM). The three-
dimensional wavelet transformation decomposed the original
image set into eight filtered images set in three directions. Finally,
a total of 841 radiomic features were extracted, consisting of
shape features in the original image, first-order features, and
textural features in all images. A detailed description is provided
in Supplementary Material 5.

Feature Reduction
First, we randomly selected 50 patients and translated (three
pixels in the up, down, left, and right directions) and rotated
(3◦ in clockwise and anticlockwise directions) their ROIs to
evaluate the stability of the features through the intraclass
correlation coefficients (threshold = 0.8). After the prescreening,
all features were standardized using the z-scores derived from the
training cohort. Thereafter, seven feature selection methods were
used, including information theoretical-based feature selection:
conditional mutual information maximization (CMIM),
minimal-redundancy and maximal-relevance (MRMR), and
double input symmetrical relevance (DISR); similarity-based
feature selection: Fisher score and reliefF; and sparse learning-
based feature selection: multi-cluster feature selection (MCFS)
and robust feature selection (RFS), to recognize the most
discriminating features. For each feature selection method, we
ranked the features by their relevance score, and the best features
were selected for the later classifiers.
1http://www.neusoft.com
2http://www.itksnap.org/

Classifier Construction
Four algorithms were used to build the radiomics model:
logistic regression (LR), support vector machine (SVM),
decision tree (DT), and random forest (RF). These algorithms
were implemented on the basis of the selected features and
classification categories. The LR algorithm was used by tuning
the regular term and penalty term. The SVM algorithm was
used by tuning the penalty and gamma of the kernel function,
where the kernel function is “rbf.” The DT algorithm was
used by tuning two parameters: the maximum sample of the
leaf and the maximum node. The RF algorithm was used by
tuning the number of DTs and the maximum sample of the
leaf. Fivefold cross validation was used for all 28 classifiers. The
optimal classifier served as the final radiomics model. These
algorithms were implemented using the Python version 3.6.5
“scikit-learn” package.

Clinical-Radiological and Combination
Models
The clinical characteristics (patient age and sex) and the routine
radiological index (tumor size, edema ratio, and location)
were used to construct the clinical-radiological model for
differentiating between GBM and MET using an LR model
(denoted as the clinicalGBM model). To distinguish MET-
lung from MET-other, we used the same method to obtain
the clinical-radiological model (denoted as the clinicalMET

model). The clinical and routine radiological characteristics and
radiomics signature were integrated to construct the combination
models using the LR algorithm, and the optimal model
was selected using AIC with a stepwise regression algorithm
(denoted as the combinationGBM model and combinationMET

model, respectively).

Model Assessment
Receiver operating characteristic (ROC) curve analysis of each
model was performed, and the areas under the curve (AUCs)
were calculated in both the training and validation cohorts.
The optimal cutoff value in the training cohort was applied to
obtain accuracy, sensitivity, and specificity. The DeLong test
was used to evaluate the statistical differences between the
models. All assessments were performed in both the training and
validation cohorts.

Nomogram analysis was applied to assess the potential clinical
utility of the combination models. Calibration curves were drawn
to evaluate the degree of deviation between the predictions and
actual outcomes obtained using the Hosmer–Lemeshow test.
Additionally, to evaluate the clinical utility of the nomograms, we
performed a decision curve analysis by calculating the net benefits
at different threshold probabilities (Rios Velazquez et al., 2017).

Statistical Analysis
Patient age and sex, tumor size, and edema ratio were compared
between the patients with GBM and MET and between those
with MET-lung and MET-other using Student’s t-test or the chi-
square test between the training, internal and external validation
cohorts. P- values of <0.05 were considered to indicate a
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significant difference. The Spearman correlation coefficient was
used to assess the relationship between the clinical and radiolocial
characteristics and radiomic features. Statistical analysis was
performed using IBM SPSS Statistics version 22.

RESULTS

Clinical-Radiological Characteristics
The first institution included 152 patients with GBM and 138
patients with MET, which were randomly divided into a training
cohort (n = 193) and an internal validation cohort (n = 97)
with a ratio of 2:1. In addition, the patients with MET were
also randomly divided into the training (n = 92) and validation
cohorts (n = 46) at a ratio of 2:1. The second institute included 30
patients with GBM and 30 patients with MET, which were used
as the external validation cohort.

The baseline characteristics are summarized in Table 1. There
was no significant difference between the training and internal
validation cohort for the two classification strategies. And, no
significant difference between the training and external validation
cohort for the two classification strategies.

Radiomic Features
A total of 841 radiomic features were calculated for each patient.
After prescreening using the intraclass correlation coefficients,
687 radiomic features with high stability were retained for

subsequent analysis (Figure 1). Thereafter, the top 20 best
features in each feature selection method were reserved to
construct the radiomics models. Thus, seven feature subsets were
formed for the two classification strategies. The detailed radiomic
features are shown in Supplementary Material 6.

Performance of the Radiomics Models
The performance of each of the 28 classifiers in the training
and internal validation cohorts was reserved and is listed in
Supplementary Material 7. For distinguishing between GBM
and MET, the classifier fisher_decision tree (fisher_DT) showed
the best performance in the internal validation cohort (AUC:
0.696, 95% CI: 0.608-0.783 Figure 2A and Supplementary
Material 7). For differentiating between MET-lung and MET-
other, the classifier reliefF_random forest (reliefF_RF) showed
the best performance in the internal validation cohort (0.759,95%
CI: 0.613-0.904, Figure 2B and Supplementary Material
7). The classifiers fisher_DT and reliefF_RF were selected
as the optimal radiomics models in the two classification
strategies, which were denoted as the radiomicsGBM model and
radiomicsMET model, respectively. These two models are shown
in Supplementary Material 8.

Performance of the Clinical-Radiological
and Combination Models
We summarized the performances of the clinical-radiological
characteristics in the two classification strategies in Table 2.

TABLE 1 | Cohort demographics.

Cohort for differentiation of GBM and MET

Characteristics Training cohort (n = 193) Internal validation cohort (n = 97) p-value External validation cohort (n = 60) p-value

Age [years, mean (SD)] 54.63 (11.63) 53.86 (13.39) 0.611 55.38 (11.45) 0.661

Sex [n (%)] 0.329 0.752

Male 117 (60.6) 53 (54.6) 35 (58.3)

Female 76 (39.4) 44 (45.4) 25 (41.7)

Diameter [mm, mean (SD)] 41.96 (14.88) 44.49 (16.10) 0.184 45.75 (14.80) 0.086

Location 0.902 —

Left 98 (50.8) 50 (51.5) —

Right 95 (49.2) 47 (48.5) —

Edema ratio [mean (SD)] 1.94 (0.79) 1.87 (0.82) 0.518 1.79 (0.66) 0.185

Cohort for differentiation of MET-lung and MET-other

Characteristics Training cohort (n = 92) Internal validation cohort (n = 46) p-value External validation cohort (n = 30) p-value

Age [years, mean (SD)] 57.93 (9.11) 57.50 (10.92) 0.805 55.27 (11.69) 0.198

Sex 0.714

Male 53 (57.6) 28 (60.9) 16 (53.3) 0.682

Female 39 (42.4) 18 (39.1) 14 (46.7)

Diameter [mm, mean (SD)] 36.10 (14.82) 37.28 (16.31) 0.669 42.03 (17.25) 0.070

Edema ratio [mean (SD)] 2.30 (0.83) 2.19 (1.08) 0.543 2.01 (0.81) 0.114

Location 0.717 —

Left 49 (53.3) 26 (56.5) —

Right 43 (46.7) 20 (43.5) —

SD, standard deviation.
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FIGURE 1 | Remaining feature numbers after stability analyses for each disturbance. (A,B) The ROI was translated 3 pixels in the up and down directions; (C,D) The
ROI was translated 3 pixels in the left and right directions; (E,F) The ROI was rotated 3◦ in clockwise and anticlockwise directions.

FIGURE 2 | Performance of 28 classifiers in two classification strategies. (A) AUC of distinguishing GBM and MET in the internal validation cohort; (B) AUC of
distinguishing MET-lung and MET-other in the external validation cohort. AUC, area under the curve; GBM, glioblastoma multiforme; MET, metastasis.

For distinguishing between GBM and MET, the clinicalGBM
model exhibited satisfactory performance in all cohorts (training:
AUC: 0.803, 95% CI: 0.740-0.867; internal validation: AUC: 0.744

95% CI: 0.643-0.846; external validation: AUC:0.674, 95% CI:
0.528-0.821, Figures 3A–C and Table 2). For distinguishing
between MET-lung and MET-other, the AUC of the clinicalMET
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TABLE 2 | Predictive performance of each model.

Differentiation of GBM and MET

Model Traning cohort Internal validation cohort External validation cohort

AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE

ClinicalGBM model 0.803
(0.740,0.867)

0.762 0.876 0.646 0.744
(0.643,0.846)

0.721 0.854 0.548 0.674
(0.528,0.821)

0.683 0.900 0.467

RadiomicsGBM model 0.772
(0.718,0.827)

0.757 0.938 0.573 0.696
(0.608,0.783)

0701 0.873 0.476 0.676
(0.572,0.779)

0.683 0.933 0.433

CombinedGBM model 0.859
(0.809,0.911)

0.783 0.794 0.771 0.764
(0.667,0.860)

0.691 0.655 0.738 0.708
(0.570,0.846)

0.617 0.567 0.667

Differentiation of MET-lung and MET-other

Model Training cohort Internal validation cohort External validation cohort

AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE

ClinicalMET model 0.660
(0.547,0.772)

0.663 0.771 0.546 0.598
(0.430,0.767)

0.457 0.621 0.177 0.759
(0.548,0.971)

0.700 0.750 0.667

RadiomicsMET model 0.798
(0.708,0.888)

0.728 0.771 0.682 0.759 (0.613,
0.904)

0.630 0.552 0.765 0.704
(0.492,0.901)

0.733 0.750 0.722

CombinedMET model 0.770
(0.672,0.869)

0.750 0.875 0.614 0.759
(0.609,0.908)

0.761 0.793 0.706 0.741
(0.527,0.954)

0.667 0.667 0.667

ACC, accuracy; SEN, sensitivity; SPE, specificity.

FIGURE 3 | ROC curve for clinical, radiomics, and combination models. (A–C) ROC curves of distinguishing GBM and MET; (D–F) ROC curves of distinguishing
MET-lung and MET-other. ROC, receiver operating characteristic; GBM, glioblastoma multiforme; MET, metastasis.

model was 0.598 (95% CI: 0.430-0.767) and 0.759 (95% CI:
0.548-0.971) in the internal and external validation cohort,
respectively (Figures 3D–F and Table 2). For distinguishing

between GBM and MET, the patient age, tumor diameter,
edema ratio, and radiomicsGBM signature were considered as the
input variables of the combinationGBM model after a stepwise
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FIGURE 4 | Model assessment. (A) Nomogram for distinguishing GBM and MET; (B) Nomogram for distinguishing MET-lung and MET-other. GBM, glioblastoma
multiforme; MET, metastasis.

search. For distinguishing between MET-lung and MET-other,
the tumor diameter, edema ratio, and radiomicsMET signature
were considered as the input variables of the combinationMET

model. After the incorporation of the radiomics signatures, the
performance of the combination models in the two classification
strategies improved compared with that of the clinical models
(Table 2). In particular, the performance of the combinationMET

model was significantly better than that of the clinicalMET model
(DeLong test: P = 0.019 in the internal validation cohort). The
violin figures of all models in the training and validation cohorts
are shown in Supplementary Material 9.

Nomogram Implementation
We used the nomograms to show the graphical representation
of the combination models. The nomograms for the two
classification strategies are illustrated in Figure 4. The calibration
curves demonstrated good agreement between the predictive and

observational probabilities for the two classification strategies
(P > 0.05 for all cohorts, Hosmer–Lemeshow test, Figure 5).
The AUCs for the nomogram were 0.859 (95% CI: 0.809-
0.911) in the training cohort, 0.764 (95% CI:0.667-0.860) in the
internal validation cohort and 0.708 (95% CI: 0.570-0.846) in the
external validation cohort for the differentiation between GBM
and MET. The AUCs for the nomogram were 0.770 (95% CI:
0.672-0.869) in the training cohort, 0.759 (95% CI:0.609-0.908
in the internal validation cohort and 0.741 (95%CI:0.527-0.954)
in the external validation cohort for the differentiation between
MET-lung and MET-other. The decision curves showed that
the combination GBM nomogram added more benefit than did
the clinicalGBM nomogram when the threshold probability was
>6% (Figure 6A); for the differentiation between MET-lung
and MET-other, the combinationMET nomogram added more
benefit than did the clinicalMET nomogram when the threshold
probability was > 16% (Figure 6B). The correlation between
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FIGURE 5 | Calibration curves. (A–C) Calibration curves of distinguishing GBM and MET; (D–F) Calibration curves of distinguishing MET-lung and MET-other. GBM,
glioblastoma multiforme; MET, metastasis.

the clinical-radiological characteristics and radiomic features was
demonstrated in the heat map with the absolute value of the
Spearman correlation coefficients (Supplementary Material 10).

DISCUSSION

We utilized radiomics analysis to distinguish between GBM
and MET and between MET-lung and MET-other. For both
classification strategies, we applied seven methods to select
features and four algorithms to construct the radiomics model.
Of all 28 classifiers for distinguishing between GBM and MET, the
classifier fisher_DT exhibited the best classification performance,
with an AUC of 0.696 in the internal validation cohort. For
distinguishing between MET-lung and MET-other, the classifier
reliefF_RF exhibited the best classification performance, with an
AUC of 0.759 in the validation cohort. The combination models
exhibited an improved predictive performance compared with
the clinical models when the radiomics signatures were added to
the models, especially for identifying the primary tumor of MET.

Radiomics analysis has been used for the differentiation
between GBM and MET. To determine the best classification
model for differentiation, 12 feature selection methods and 7
classification methods were used; the highest AUC obtained was
0.90 in the study by Qian et al. (2019). Artzi et al. (2019) used

four machine-learning algorithms to differentiate between the
GBM and MET subtypes, and the accuracies were 0.85, 0.89, 0.82,
and 0.89 for identifying GBM and METs from breast, lung, and
other cancers, respectively. All these studies have high clinical
applicability but have only focused on the comparison of imaging
features and radiomics models and did not consider the clinical
factors. The complementarity of radiomic features and clinical-
radiological factors should also be explored.

Considering the importance of patient age and sex in
medical diagnosis, these variables were included in this study.
Moreover, the tumor size, perilesional edema, and location are
important radiological signs for diagnosis, which are readily
obtained by routine radiological scans. The radiomicsGBM
model and clinicalGBM model yielded a comparable predictive
performance (P = 0.361 in the internal validation cohort,
DeLong test). In addition, the predictive performance of the
combinationGBM model improved compared with that of the
clinicalGBM model when the radiomicsGBM signature and clinical-
radiological factors were combined. However, the DeLong test
showed no significant improvement (P = 0.064 in the internal
validation cohort). This indicates that the radiomics signature
can be used as a signal predictor to obtain satisfactory results.
For differentiation between MET-lung and MET-other, and the
performance of radiomicsMET model significantly better than that
of the clinicalMET model (P = 0.019 in the internal validation
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FIGURE 6 | Decision curve. (A) Decision curve of distinguishing GBM and MET; (B) decision curve of distinguishing MET-lung and MET-other. GBM, glioblastoma
multiforme; MET, metastasis.

cohort, DeLong test). The combinationMET model also showed
a better predictive performance than the clinicalMET model,
and the DeLong test showed significant improvements in the
internal validation cohorts (P = 0.019), which suggested that the
radiomics signature can increase the predictive power of clinical
factors. Based on the results of the two classification strategies,
we observed that radiomics analysis has a superior classification
ability in differentiating tumor types, which is consistent with
previous study findings (Artzi et al., 2019; Qian et al., 2019).

Our study also showed that the tumor size was related to the
type of tumor, which was consistent with a previous study finding
(Baris et al., 2016). Compared with the other characteristics, the
tumor size had a higher correlation with the radiomic features
used in the radiomicsGBM model (Supplementary Material
10), as observed in the Spearman correlation analysis. This
may explain why the clinicalGBM model and radiomicsGBM
model yielded a comparable predictive performance; however,
the performance of the combination GBM model did not
improve significantly, which emphasizes the importance of the
tumor size in distinguishing between GBM and MET. With
regard to the features used in the radiomicsMET model, most
radiomic features showed low correlations with the clinical-
radiological characteristics (Supplementary Material 10); thus,
the performance of the combinationMET model improved
significantly. This indicated that the radiomic features could
complement the clinical factors, and the difference between MET-
lung and MET-other could not be accurately recognized using
simple tumor phenotypes.

We segmented tumors on post-contrast axial T1-weighted
image (T1WI) not on other images, such as T2WI, et al. This
is due to the different findings on different MRI images. For
low-grade gliomas, they usually show no or partial enhancement,

without or with minimal peritumoral edema. They are low signal
intensity on post-contrast T1WI. Therefore, it is difficult to
outline the border of the tumor on post-contrast T1WI images.
On T2WI, however, low-grade gliomas are high signal intensity
and prone to the identification of the tumor border. That is why
many research studies segmented low-grade gliomas on T2WI (Li
et al., 2018a,b; Liu et al., 2018, 2019; Qian et al., 2018). GBM,
however, often shows a mass with vivid peritumoral edema.
On post-contrast images, the mass usually demonstrates strong
enhancement with non-enhanced peritumoral edema. Hence, the
tumor mass is high signal while the peritumoral edema is low
signal intensity on post-contrast T1WI, which is prone to outline
the border of the mass. On T2WI, both the tumor itself and
peritumoral edema are hyperintensity. It is difficult to distinguish
the tumor from the perilesional edema. If the area of high signal
intensity on T2WI is considered as the ROI for segmentation, the
ROI would be larger than the tumor itself because the peritumoral
edema is also recruited in the ROI. Cerebral metastasis often
demonstrates as a mass with obvious edema. On T2WI and post-
contrast T1WI, both the metastatic mass and the peritumoral
edema show the same findings as that of GBM. Therefore, the
radiomic analysis of cerebral metastasis is also based on post-
contrast T1WI in some researches (Artzi et al., 2019; Karami et al.,
2019a,b).

There are several limitations of this study. First, the radiomic
imaging data used were only T1 enhanced sequences. Other
sequences, including T2WI, DWI, and PWI, may contain
additional functional and biological information; therefore, more
imaging modalities should be taken into account for future
research. Second, although the number of cases in our study was
relatively large, the MET-other cases involved many origins, with
each origin having a small case number. More detailed subgroups
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based on the primary origin of METs should be considered in
future studies. Finally, this was a retrospective study. Although
we used external validation to reduce the impact, the prospective
multi-center study was still required.

CONCLUSION

Our study suggests that radiomics analysis has a superior
classification ability in the differentiation among GBM, MET-
lung, and MET-other. The combination of radiomic and non-
radiomic features is helpful for the differentiation of these three
types of tumors.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Beijing Tiantan Hospital. Written informed consent
for participation was not provided by the participants’ legal
guardians/next of kin because: As a retrospective study, it was
approved by our institute committee without the informed
consent of the patients.

AUTHOR CONTRIBUTIONS

YH and LZ performed the study design, information collection,
statistical analysis, and manuscript editing. HZ, YX, and XC
guided and study design, reviewed images, and revised the
manuscript. SN, SC, and BY provided the technical support.
HC, FZ, and YZ collected the images and clinical information.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China under grant number 81772005, the
National Key Research and Development Program of China
Grant under grant number 2018YFC0115604, and Collaborative
innovative major special project supported by Beijing Municipal
Science & Technology Commission under grant number
Z191100006619088.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
710461/full#supplementary-material

REFERENCES
Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P.,

Carvalho, S., et al. (2014). Decoding tumour phenotype by noninvasive imaging
using a quantitative radiomics approach. Nat. Commun. 5:4006. doi: 10.1038/
ncomms5006

Artzi, M., Bressler, I., and Ben Bashat, D. (2019). Differentiation between
glioblastoma, brain metastasis and subtypes using radiomics analysis. J. Magn.
Reson. Imaging 50, 519–528. doi: 10.1002/jmri.26643

Ascha, M. S., Ostrom, Q. T., Wright, J., Kumthekar, P., Bordeaux, J. S., Sloan, A. E.,
et al. (2019). Lifetime occurrence of brain metastases arising from lung, breast,
and skin cancers in the elderly: a SEER-medicare study. Cancer Epidemiol.
Biomarkers Prev. 28, 917–925. doi: 10.1158/1055-9965.Epi-18-1116

Askaner, K., Rydelius, A., Engelholm, S., Knutsson, L., Lätt, J., Abul-Kasim,
K., et al. (2019). Differentiation between glioblastomas and brain metastases
and regarding their primary site of malignancy using dynamic susceptibility
contrast MRI at 3T. J. Neuroradiol. 46, 367–372. doi: 10.1016/j.neurad.2018.
09.006

Baris, M. M., Celik, A. O., Gezer, N. S., and Ada, E. (2016). Role of mass effect,
tumor volume and peritumoral edema volume in the differential diagnosis
of primary brain tumor and metastasis. Clin. Neurol. Neurosurg 148, 67–71.
doi: 10.1016/j.clineuro.2016.07.008

Chaddad, A., Daniel, P., Desrosiers, C., Toews, M., and Abdulkarim, B. (2019).
Novel radiomic features based on joint intensity matrices for predicting
glioblastoma patient survival time. IEEE J. Biomed. Health Inform. 23, 795–804.
doi: 10.1109/jbhi.2018.2825027

Chakhoyan, A., Raymond, C., Chen, J., Goldman, J., Yao, J., Kaprealian, T. B., et al.
(2019). Probabilistic independent component analysis of dynamic susceptibility
contrast perfusion MRI in metastatic brain tumors. Cancer Imaging 19:14.
doi: 10.1186/s40644-019-0201-0

Chen, X. Z., Yin, X. M., Ai, L., Chen, Q., Li, S. W., and Dai, J. P. (2012).
Differentiation between brain glioblastoma multiforme and solitary metastasis:

qualitative and quantitative analysis based on routine MR imaging. AJNR Am.
J. Neuroradiol. 33, 1907–1912. doi: 10.3174/ajnr.A3106

Durmo, F., Rydelius, A., Baena, S. C., Askaner, K., Lätt, J., Bengzon,
J., et al. (2018). Multivoxel 1H-MR spectroscopy biometrics for
preoprerative differentiation between brain tumors. Tomography 4, 172–181.
doi: 10.18383/j.tom.2018.00051

Füreder, L. M., Dieckmann, B., Hainfellner, K., Bartsch, J. A., Zielinski, R.,
Preusser, C. C., and Berghoff, A. S. (2018). Brain metastases as first
manifestation of advanced cancer: exploratory analysis of 459 patients at a
tertiary care center. Clin. Exp. Metastas. 35, 727–738. doi: 10.1007/s10585-018-9
947-1

Grabowski, M. M., Recinos, P. F., Nowacki, A. S., Schroeder, J. L., Angelov, L.,
Barnett, G. H., et al. (2014). Residual tumor volume versus extent of resection:
predictors of survival after surgery for glioblastoma. J. Neurosurg. 121, 1115–
1123. doi: 10.3171/2014.7.Jns132449

Holly, K. S., Fitz-Gerald, J. S., Barker, B. J., Murcia, D., Daggett, R., Ledbetter, C.,
et al. (2018). Differentiation of high-grade glioma and intracranial metastasis
using volumetric diffusion tensor imaging tractography. World Neurosurg. 120,
e131–e141. doi: 10.1016/j.wneu.2018.07.230

Kamimura, K., Nakajo, M., Yoneyama, T., Fukukura, Y., Hirano, H., Goto, Y.,
et al. (2019). Histogram analysis of amide proton transfer-weighted imaging:
comparison of glioblastoma and solitary brain metastasis in enhancing tumors
and peritumoral regions. Eur. Radiol. 29, 4133–4140. doi: 10.1007/s00330-018-
5832-1

Karami, E., Ruschin, M., Soliman, H., Sahgal, A., Stanisz, G. J., and Sadeghi-
Naini, A. (2019a). An MR radiomics framework for predicting the outcome
of stereotactic radiation therapy in brain metastasis. Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. 2019, 1022–1025. doi: 10.1109/embc.2019.88
56558

Karami, E., Soliman, H., Ruschin, M., Sahgal, A., Myrehaug, S., Tseng, C. L., et al.
(2019b). Quantitative MRI biomarkers of stereotactic radiotherapy outcome in
brain metastasis. Sci. Rep. 9:19830. doi: 10.1038/s41598-019-56185-5

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 August 2021 | Volume 9 | Article 710461

https://www.frontiersin.org/articles/10.3389/fcell.2021.710461/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.710461/full#supplementary-material
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1002/jmri.26643
https://doi.org/10.1158/1055-9965.Epi-18-1116
https://doi.org/10.1016/j.neurad.2018.09.006
https://doi.org/10.1016/j.neurad.2018.09.006
https://doi.org/10.1016/j.clineuro.2016.07.008
https://doi.org/10.1109/jbhi.2018.2825027
https://doi.org/10.1186/s40644-019-0201-0
https://doi.org/10.3174/ajnr.A3106
https://doi.org/10.18383/j.tom.2018.00051
https://doi.org/10.1007/s10585-018-9947-1
https://doi.org/10.1007/s10585-018-9947-1
https://doi.org/10.3171/2014.7.Jns132449
https://doi.org/10.1016/j.wneu.2018.07.230
https://doi.org/10.1007/s00330-018-5832-1
https://doi.org/10.1007/s00330-018-5832-1
https://doi.org/10.1109/embc.2019.8856558
https://doi.org/10.1109/embc.2019.8856558
https://doi.org/10.1038/s41598-019-56185-5
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-710461 August 21, 2021 Time: 17:52 # 11

Han et al. Differentiation Between Glioblastoma and Metastasis

Kniep, H. C., Madesta, F., Schneider, T., Hanning, U., Schg, S., Tseng, C. L.,
et al. (2019). Quantitative MRI biomarkers of ste. Radiology 290, 479–487.
doi: 10.1148/radiol.2018180946

Lambin, P., Leijenaar, R. T. H., Deist, T. M., Peerlings, J., De Jong, E. E. C., Van
Timmeren, J., et al. (2017). Radiomics: the bridge between medical imaging
and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762. doi: 10.1038/
nrclinonc.2017.141

Li, Y., Liu, X., Xu, K., Qian, Z., Wang, K., Fan, X., et al. (2018a). MRI
features can predict EGFR expression in lower grade gliomas: a voxel-
based radiomic analysis. Eur. Radiol. 28, 356–362. doi: 10.1007/s00330-017-4
964-z

Li, Y., Qian, Z., Xu, K., Wang, K., Fan, X., Li, S., et al. (2018b). MRI features
predict p53 status in lower-grade gliomas via a machine-learning approach.
Neuroimage Clin. 17, 306–311. doi: 10.1016/j.nicl.2017.10.030

Li, Z. C., Bai, H., Sun, Q., Li, Q., Liu, L., Zou, Y., et al. (2018c). Multiregional
radiomics features from multiparametric MRI for prediction of MGMT
methylation status in glioblastoma multiforme: a multicentre study. Eur. Radiol.
28, 3640–3650. doi: 10.1007/s00330-017-5302-1

Liu, X., Li, Y., Li, S., Fan, X., Sun, Z., Yang, Z., et al. (2019). IDH mutation-specific
radiomic signature in lower-grade gliomas. Aging (Albany N. Y.) 11, 673–696.
doi: 10.18632/aging.101769

Liu, X., Li, Y., Qian, Z., Sun, Z., Xu, K., Wang, K., et al. (2018). A radiomic signature
as a non-invasive predictor of progression-free survival in patients with lower-
grade gliomas. Neuroimage Clin. 20, 1070–1077. doi: 10.1016/j.nicl.2018.10.
014

Mampre, D., Ehresman, J., Alvarado-Estrada, K., Wijesekera, O., Sarabia-Estrada,
R., Quinones-Hinojosa, A., et al. (2019). Propensity for different vascular
distributions and cerebral edema of intraparenchymal brain metastases from
different primary cancers. J. Neurooncol. 143, 115–122. doi: 10.1007/s11060-
019-03142-x

Ohgaki, H., and Kleihues, P. (2005). Epidemiology and etiology of gliomas. Acta
Neuropathol. 109, 93–108. doi: 10.1007/s00401-005-0991-y

Ortiz-Ramon, R., Larroza, A., Arana, E., and Moratal, D. (2017). A radiomics
evaluation of 2D and 3D MRI texture features to classify brain metastases from
lung cancer and melanoma. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017,
493–496. doi: 10.1109/embc.2017.8036869

Ortiz-Ramón, R., Larroza, A., España, S., Arana, E., and Moratal, D. (2018).
Classifying brain metastases by their primary site of origin using a radiomics
approach based on texture analysis: a feasibility study. Eur. Radiol. 28, 4514–
4523. doi: 10.1007/s00330-018-5463-6

Platta, C. S., Khuntia, D., Mehta, M. P., and Suh, J. H. (2010). Current treatment
strategies for brain metastasis and complications from therapeutic techniques: a
review of current literature. Am. J. Clin. Oncol. 33, 398–407. doi: 10.1097/COC.
0b013e318194f744

Qian, Z., Li, Y., Sun, Z., Fan, X., Xu, K., Wang, K., et al. (2018). Radiogenomics of
lower-grade gliomas: a radiomic signature as a biological surrogate for survival
prediction. Aging (Albany N. Y.) 10, 2884–2899. doi: 10.18632/aging.101594

Qian, Z., Li, Y., Wang, Y., Li, L., Li, R., Wang, K., et al. (2019). Differentiation of
glioblastoma from solitary brain metastases using radiomic machine-learning
classifiers. Cancer Lett. 451, 128–135. doi: 10.1016/j.canlet.2019.02.054

Rios Velazquez, E., Parmar, C., Liu, Y., Coroller, T. P., Cruz, G., Stringfield, O., et al.
(2017). Somatic mutations drive distinct imaging phenotypes in lung cancer.
Cancer Res. 77, 3922–3930. doi: 10.1158/0008-5472.Can-17-0122

Rotta, J. M., Rodrigues, D. B., Diniz, J. M., Abreu, B. M., Kamimura, F., Sousa,
U. O., et al. (2018). Analysis of survival in patients with brain metastases treated
surgically: impact of age, gender, oncologic status, chemotherapy, radiotherapy,
number and localization of lesions, and primary cancer site. Rev. Assoc. Med.
Bras. (1992) 64, 717–722. doi: 10.1590/1806-9282.64.08.717

Salice, S., Esposito, R., Ciavardelli, D., Delli Pizzi, S., Di Bastiano, R., and Tartaro,
A. (2016). Combined 3 tesla MRI biomarkers improve the differentiation
between benign vs. malignant single ring enhancing brain masses. PLoS One
11:e0159047. doi: 10.1371/journal.pone.0159047

Tan, Y., Wang, X. C., Zhang, H., Wang, J., Qin, J. B., Wu, X. F., et al. (2015).
Differentiation of high-grade-astrocytomas from solitary-brain-metastases:
comparing diffusion kurtosis imaging and diffusion tensor imaging. Eur. J.
Radiol. 84, 2618–2624. doi: 10.1016/j.ejrad.2015.10.007

Van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan,
V., et al. (2017). Computational radiomics system to decode the radiographic
phenotype. Cancer Res. 77, e104–e107. doi: 10.1158/0008-5472.Can-17-0339

Weller, M., Van Den Bent, M., Hopkins, K., Tonn, J. C., Stupp, R., Falini, A., et al.
(2014). EANO guideline for the diagnosis and treatment of anaplastic gliomas
and glioblastoma. Lancet Oncol. 15, e395–e403. doi: 10.1016/s1470-2045(14)
70011-7

Xi, Y. B., Kang, X. W., Wang, N., Liu, T. T., Zhu, Y. Q., Cheng, G., et al. (2019).
Differentiation of primary central nervous system lymphoma from high-grade
glioma and brain metastasis using arterial spin labeling and dynamic contrast-
enhanced magnetic resonance imaging. Eur. J. Radiol. 112, 59–64. doi: 10.1016/
j.ejrad.2019.01.008

Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R.,
et al. (2009). Classification of brain tumor type and grade using MRI texture
and shape in a machine learning scheme. Magn. Reson. Med. 62, 1609–1618.
doi: 10.1002/mrm.22147

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Han, Zhang, Niu, Chen, Yang, Chen, Zheng, Zang, Zhang, Xin
and Chen. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 August 2021 | Volume 9 | Article 710461

https://doi.org/10.1148/radiol.2018180946
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1007/s00330-017-4964-z
https://doi.org/10.1007/s00330-017-4964-z
https://doi.org/10.1016/j.nicl.2017.10.030
https://doi.org/10.1007/s00330-017-5302-1
https://doi.org/10.18632/aging.101769
https://doi.org/10.1016/j.nicl.2018.10.014
https://doi.org/10.1016/j.nicl.2018.10.014
https://doi.org/10.1007/s11060-019-03142-x
https://doi.org/10.1007/s11060-019-03142-x
https://doi.org/10.1007/s00401-005-0991-y
https://doi.org/10.1109/embc.2017.8036869
https://doi.org/10.1007/s00330-018-5463-6
https://doi.org/10.1097/COC.0b013e318194f744
https://doi.org/10.1097/COC.0b013e318194f744
https://doi.org/10.18632/aging.101594
https://doi.org/10.1016/j.canlet.2019.02.054
https://doi.org/10.1158/0008-5472.Can-17-0122
https://doi.org/10.1590/1806-9282.64.08.717
https://doi.org/10.1371/journal.pone.0159047
https://doi.org/10.1016/j.ejrad.2015.10.007
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1016/s1470-2045(14)70011-7
https://doi.org/10.1016/s1470-2045(14)70011-7
https://doi.org/10.1016/j.ejrad.2019.01.008
https://doi.org/10.1016/j.ejrad.2019.01.008
https://doi.org/10.1002/mrm.22147
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Differentiation Between Glioblastoma Multiforme and Metastasis From the Lungs and Other Sites Using Combined Clinical/Routine MRI Radiomics
	Introduction
	Materials and Methods
	Patients
	Image Acquisition and Analysis
	Radiomics Analysis
	Region of Interest (ROI) Segmentation
	Radiomic Feature Extraction
	Feature Reduction
	Classifier Construction

	Clinical-Radiological and Combination Models
	Model Assessment
	Statistical Analysis

	Results
	Clinical-Radiological Characteristics
	Radiomic Features
	Performance of the Radiomics Models
	Performance of the Clinical-Radiological and Combination Models
	Nomogram Implementation

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


