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Abstract: The persistence of latent HIV provirus pools in different resting CD4+ cell subsets remains
the greatest obstacle in the current efforts to treat and cure HIV infection. Recent efforts to purge out
latently infected memory CD4+ T-cells using latency-reversing agents have failed in clinical trials.
This review discusses the epigenetic and non-epigenetic mechanisms of HIV latency control, major
limitations of the current approaches of using latency-reversing agents to reactivate HIV latency in
resting CD4+ T-cells, and potential solutions to these limitations.
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1. Introduction

When our immune system encounters a foreign body, such as an antigen or allergen,
the naive CD4+ T-cells become stimulated or metabolically activated. Upon antigenic
stimulation, naive CD4+ T-cells undergo clonal proliferation and transformation to become
effector CD4+ T-cells. Upon fulfillment of their effector functions, most of the effector CD4+
T-cells undergo programmed cell death, also known as apoptosis. However, a minuscule
fraction of the effector CD4+ T-cells reverts into quiescence to become resting memory
CD4+ T-cells with a half-life that can last a lifetime. Resting memory CD4+ T-cells are
antigen-specific and, thus, mediate immunologic memory such that following a subsequent
encounter with the same antigen, they can mount a quick and vast immune response.

As opposed to naive CD4+ T-cells, metabolically active CD4+ T-cells are required
for efficient HIV infection and replication [1,2]. Upon successful infection of individual
activated target CD4+ T-cells, the majority of the infecting viruses undergo functional decay
before or during the reverse transcription step [3]. Metabolically active effector CD4+ T-cells
are the major population functionally infected by HIV, due to the availability of required
metabolites for HIV life cycle. Although the immune system can temporarily clear the
HIV antigens in the peripheral circulation, it is unable to completely control/eradicate HIV
infection. Additionally, upon temporal clearance of the HIV antigens in the blood, a certain
population of effector CD4+ T-cells revert back and become quiescent resting memory
CD4+ T-cells. Due to the quiescent or metabolically silent nature of resting memory CD4+
T-cells, HIV is unable to go through its life cycle and becomes transcriptionally silent or
latent. Thus, HIV latency is a condition where quiescent resting memory CD4+ T-cells
harbor transcriptionally silent HIV proviruses. Most of the latent or hibernating HIV
proviruses are capable of entering into a fully productive lytic infection but await optimal
conditions, that usually arise following the reactivation of quiescent memory CD4+ T-cells,
which again make them metabolically active. However, the molecular control of HIV
latency in resting memory CD4+ T-cells is multi-pronged [4,5], and effective and efficient
reactivation of the latent HIV proviruses in all subsets of quiescent resting memory CD4+
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T-cells requires a combinatorial approach involving both epigenetic and non-epigenetic
mechanisms of HIV latency reactivation.

2. Epigenetic Control of HIV Latency in Resting Memory CD4+ T-cells

Molecular control and maintenance of HIV latency are mediated by multiple factors
acting in concert, including epigenetic and non-epigenetic mechanisms [4,5]. HIV integra-
tion preferentially occurs within actively transcribed cellular genes [6]. Upon provirus
integration, an ordered nucleosomal structure is assembled within the HIV long terminal
repeat (LTR) which functions as the HIV promoter [7-9]. The nucleosomal structure, par-
ticularly nucleosome-1 (Nuc-1), positioned around the HIV transcription initiation start
site, contributes to HIV latency or transcriptional silencing by blocking RNA polymerase II
(RNAP II) initiation of transcription [7].

In addition, other epigenetic mechanisms mediating HIV latency include histone
deacetylation [10], histone methylation [11], and deoxyribonucleic acid (DNA) methy-
lation [12,13]. Epigenetic modification of the HIV LTR through histone deacetylation is
mediated by the recruitment of histone deacetylases (HDACsS). In this regard, Margolis
and his group demonstrated cooperative binding of Late SV40 factors (LSF) and yin-yang 1
(YY1) to the HIV LTR, which mediated subsequent recruitment of HDACI to the Nuc-1
region of the HIV promoter [10,14,15]. Similarly, Williams et al. [16] demonstrated that
NF-«B p50 subunits are constitutively bound to the HIV LTR promoter of transcriptionally
silent HIV proviruses, which mediate HDACI recruitment to the HIV LTR, resulting in HIV
transcriptional repression. Furthermore, Tyagi et al. demonstrated that the C-promoter
binding factor 1 (CBF-1), which is a key regulator of the Notch signaling pathway, also
facilitates HIV latency by recruiting HDACs to the HIV LTR [17,18]. To extend those
observations further, Tyagi group recently, in Sharma et al. [19], demonstrated that CBF-1,
by recruiting the polycomb repressive complexes PRC1 and PRC2 to LTR, facilitates both
the establishment and the maintenance of HIV latency.

Epigenetic control of HIV-1 latency is also mediated through histone methylation. In
this case, methylated histone H3 is trimethylated on either histone lysine 9 (H3K9me3) or
histone lysine 27 (H3K27me3) [20-22] or dimethylated on lysine 9 (H3K9me?2) [23]. All
these modifications are repressive markers for HIV gene expression. Epigenetic silencing of
HIV-1 LTR through histone deacetylation and histone methylation results in multifaceted,
heterogeneous patterns of DNA methylation along the HIV proviral genome [12,13]. Com-
plex epigenetic heterogeneity was found to exist among clonal populations of CD4+ T-cells,
despite carrying identical integrated proviruses [12,13]. Conceivably, this accounts for
variations that exist between different subsets of silenced proviruses which reactivate
differently in response to exogenous signals and most latency-reversing agents (LRAs).

3. Non-Epigenetic Regulation and Reactivation of HIV Latency by NF-«B and P-TEFb

Unlike in quiescent resting memory CD4+ T-cells, HIV potently replicates in activated
CD4+ T-cells. In latently infected resting memory CD4+ T-cells, transcription factors such as
the nuclear factor kappaB (NF-«kB), nuclear factor of activated T-cells (NFAT), and activator
protein 1 (AP-1) are all sequestered in the cytoplasm but soon translocate into the nucleus
following T-cell stimulation. Multiple signaling pathways, including T-cell receptor (TCR)
activation [24-27] or cytokine stimulation [20,28] that are capable of inducing NF-«B or
NFAT, are able to potently induce HIV proviral transcription.

The nuclear induction of NF-kB and its binding to the HIV LTR promoter trigger
HIV proviral transcription by recruiting histone acetyltransferases (HATs) to the HIV
promoter [29-32]. Histone acetylation at the HIV promoter subsequently results in the
recruitment of the chromatin remodeling complex BAF, which leads to transcriptional
activation by displacing Nuc-1, positioned immediately downstream of the transcription
start site [7-9,33-35]. Conceivably, the mode of HIV transcription initiation mediated by
NF-«B is also mediated by NFAT transcription factors. Paradoxically, using 2D10 Jurkat
T-cell clones we [36] most recently demonstrated that while NF-kB is able to activate
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HIV latency, NFAT inhibits HIV LTR transcription through competitive binding to the
overlapping NF-«B binding sites within the HIV LTR following T-cell receptor activation.

There is a low level of viral Tat protein in latently infected quiescent resting memory
CD4+ T-cells due to restricted ongoing HIV transcription in these cells. However, cellular
activation results in nuclear translocation of NF-«B, which initiates HIV transcription
leading to an increase in viral Tat protein levels. Viral Tat protein functions by unusually
binding to the transcription response (TAR) element found in nascent mRNA. TAR is a stem—
loop RNA structure located at the 5" end of all viral transcripts. Viral Tat binds to TAR and
recruits positive transcription elongation factor b (P-TEFb), which is a cellular transcription
elongation factor [37]. The cyclin-dependent kinase 9 (CDK9) subunit of P-TEFb then
phosphorylates the C-terminal domain (CTD) of the largest subunit of RNAP II, leading
to the enhancement of HIV transcription elongation [37,38]. Using the clone 2D10 model
system of HIV latency, Pearson et al. [20] demonstrated that, indeed, reactivation of HIV
latency is strictly dependent on NF-«B and viral Tat protein in Jurkat T-cells. Subsequently,
Tyagi et al. [17] demonstrated that HIV latency, in primary T cells, is restricted to both
initiation and elongation phases. Therefore, in order to reactivate latent HIV provirus
in primary T cells, there is a need to activate both NF-«b and P-TEFb. Hence, restricted
nuclear levels of P-TEFb in latently infected primary CD4+ T-cells strongly prohibited
HIV transcription even when NF-kB was induced by TNF-« stimulation. Tyagi et al.
found that TCR activation, which proficiently induces transcription factors including
NF-«B through the protein kinase C pathway and P-TEFb, mobilized through an ERK-
dependent pathway [26], was able to efficiently reactivate latent HIV in primary CD4+
T -cells [17]. Recently, Hokello et al. [36] demonstrated that AP-1 synergizes with NF-«B
to modulate HIV transcriptional elongation following TCR activation. Initially, Tyagi
et al. [39] demonstrated a functional interaction between DNA-dependent protein kinase
(DNA-PK) and RNAP II during HIV transcription, such that the knockdown of endogenous
DNA-PK using small hairpin RNAs resulted in a significant reduction in HIV transcription.
Recently, the Tyagi lab [40] specifically showed that DNA-PK, besides catalyzing RNAP
II CTD phosphorylation, also enhances the recruitment of P-TEFb to the HIV LTR. Thus,
DNA-PK concomitantly increases the phosphorylation of the CTD of RNAP II at Serine
5 and Serine 2, thereby stimulating both HIV transcriptional initiation and elongation.
The Tyagi lab also demonstrated that DNA-PK promotes the release of paused RNAP II
through the phosphorylation of tripartite motif-containing 28 (TRIM28) at the HIV LTR [40].
These results demonstrate that DNA-PK participates at multiple levels in order to facilitate
HIV transcription.

4. Nuclear Factor kappaB (NF-«kB) Transcription Factors

Different biological functions such as the innate and adaptive immune responses are
controlled by NF-«Bs, which are a superfamily of DNA-binding transcription factors [41,42].
Alternatively, referred to as Rel transcription factors, NF-kBs consist of five members, all
of which have the conserved N-terminal Rel homology domain (RHD). The RHD consists
of both the DNA-binding and the NF-«B dimerization domains. The nuclear localization
sequence (NLS) is also located within the RHD. Among the NF-«B family members, p50 and
p52 lack a transcription activation domain (TAD), while p65, also known as RelA, RelB, and
c-Re ]l contain a TAD and, for this reason, p50 and p52 are unable to activate transcription
on their own [43]. Interestingly, NF-kBs can form functional hetero- or homodimers within
their own members, and the most abundant heterodimers are formed between p65 and
P50, which also happen to be the most transcriptionally active form, although homodimers
of p65 are also known to potently activate transcription [43]. Heterodimers of p50 and
P52 or their homodimers are unable to activate transcription, due to the fact that p50 and
p52 lack a TAD. The RHD comprises two independently folded immunoglobulin-like sub-
domains referred to as RHR-N and RHR-C. Rel homology region N is used in the binding
of specific DNA sequences, while RHR-C mediates NF-«B dimerization and binding to
IkB-« inhibitor [41,44]. IkBs contain ankyrin repeats at the N-terminus and a PEST motif at
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the C-terminus. The major form and the best-studied IkBs is IkB-«, which binds NF-«B
dimers and blocks their NLS, while causing their sequestration in the cytoplasm [41].

However, TCR stimulation results in the activation of the canonical pathway of NF-kB
induction, whereby the catalytic subunit IKK-{, together with the regulatory subunit IKK-
v or NEMO, becomes activated and phosphorylates IkB-o leading to its ubiquitination,
proteasomal degradation, and the resultant nuclear localization of NF-«B to regulate the
expression of NF-«kB-responsive genes [41]. In addition to the TCR signals, other proin-
flammatory cytokine signals are able to induce nuclear translocation of NF-«B, including
signaling through tumor necrosis factor-apha (TNF-«x) receptor and interleukin 1 (IL-1)
receptor. Similarly, a variety of pathogen-associated molecular patterns (PAMPs) involving
toll-like receptors (TLRs) such as TLR-2, TLR-4, and TLR-7 can induce NF-kB nuclear
mobilization and regulate NF-kB-responsive genes [45-47]. Though some studies have
demonstrated that these cytokine signals and TLR signals can independently reactivate
HIV latency in some cellular models of HIV latency [45], Tyagi et al. [17] exhaustively
demonstrated that, unlike TCR activation, TNF-« stimulation of latently infected primary
CD4+ T-cells to induce nuclear NF-«B failed to activate HIV transcription due to nuclear
restriction of P-TEFb, which is not induced by TNF-« stimulation. This observation is clear
evidence that any non-epigenetic approach that is employed to deplete latently infected
resting memory CD4+ T-cells should be able to cause nuclear mobilization of not only
NF-«B but also P-TEFb. Other than exogenous extracellular signals, several intracellu-
lar agonists have been demonstrated to induce NF-«B nuclear translocation, and these
include PKC agonists such as prostatin, bryostatin, ingenol, and phorbol myristic acid
(PMA) [26,48]. Interestingly, these PKC agonists are also able to potently induce P-TEFb
nuclear mobilization.

5. Positive Transcription Elongation Factor b (P-TEFb)

Positive transcription elongation factor b (P-TEFD), originally identified as a general
transcription factor that stimulates RNAP II transcriptional elongation, was subsequently
discovered to be an essential cellular co-factor of HIV transcription mediated by viral
Tat proteins [49]. In Jurkat T-cells, which are actively replicating cells, P-TEFb exists in
an active pool, either by itself or in association with various proteins that recruit P-TEFb
to its target genes where RNAP Il is engaged (free pools of P-TEFb), and in an inactive
complex comprising hexamethylene bisacetamide-inducible mRNAs 1 and 2 (HEXIM1/2)
proteins, La-related protein 7 (LARP7), and methyl phosphate capping enzyme (MePCE),
also referred to as 7SK small nuclear ribonucleoprotein (7SK snRNP) [50-59]. In Jurkat
T cells, about 50% to 90% of P-TEFb is found in the 7SK snRNP inactive complex (Fig-
ure 1). This P-TEFb equilibrium maintains the level of active P-TEFb that stimulates
transcription elongation.

The recruitment of P-TEFb upon cellular activation is a key checkpoint of RNAP II
pause-release and subsequent induction of transcription elongation [60-62]. Chromatin-
binding proteins such as bromodomain-containing protein 4 (Brd4) are P-TEFb binding
factors that recruit it to its target genes [63,64]. However, in the case of HIV transcription, P-
TEFbD is recruited by viral Tat protein. The sequestered P-TEFb in the 7SK snRNP complex
effectively prevents basal transcriptional activation by Tat-independent recruitment of
P-TEFb to the provirus. Thus, Tat overcomes this barrier by disrupting the 7SK snRNP
complex thorugh competition with HEXIM for CycT1 binding [65-67]. A study suggests
that cyclin T1 acetylation also triggers dissociation of HEXIM1 and 7SK snRNA from the
inactive 7SK snRNP complex and activates the transcriptional activity of P-TEFb [68].
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Figure 1. Equilibrium of positive transcription elongation factor b (P-TEFb) between the active pool and the inactive

complex of 7SK small nuclear ribonucleoprotein (7SK snRNP).

Because of the highly restricted levels of cyclin T1 in primary resting memory CD4+
T-cells [17,69] and primary monocytes [70], activation of P-TEFb in these cells requires
multiple steps involving both the initial assembly of the 7SK snRNP complex and its relo-
calization to nuclear speckles before it becomes available and accessible to Tat and the other
transcription machinery. Another important observation to consider is that compounds
such as bromodomain and extraterminal inhibitors (BETi) also target P-TEFb [71-73]. When
cells are treated with BET], such as JQ1 and I-BET, the Brd4/P-TEFb complex bound to
histone H3 acetylated at the lysine residue 27 (H3K27Ac) soon dissociates from transcrip-
tionally active chromatin, suppressing P-TEFb-dependent transcription of genes associated
with the transcriptionally active modified histone H3K27Ac [73]. Similarly, BETi treat-
ment releases P-TEFb from its inactive pools in 7SK snRNP to activate P-TEFb-dependent
transcription [50]. However, this P-TEFb release also triggers HEXIM1 upregulation and
concomitant suppression of P-TEFb-dependent transcription by forming the 7SK snRNP
complex [74]. Therefore, the overall effects on cellular gene expression resulting from BETi
are a mixture of activation and suppression of P-TEFb-dependent transcription, which
is also dependent on particular genes, chromatin structure, cellular status, and cell type,
among other factors. Therefore, this suggests that the use of BETi such as JQ1 to reverse
HIV latency may be unsustainable.

6. Limitations to the Current Use of Latency-Reversing Agents

Recent studies of HIV latency tested novel therapeutic approaches to deplete the latent
HIV provirus pools in the peripheral circulation [75-80]. For instance, the “shock and kill”
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strategy has undergone several clinical trials and utilizes latency-reversing agents (LRAs) or
transactivators, which are given to patients on highly active antiretroviral therapy (HAART)
in order to reactivate transcription of the latent HIV proviruses in latently infected resting
memory CD4+ T-cells [81]. The “shock and kill” strategy aims to limit the exposure to LRAs
until the latent provirus pools are reactivated to an extent that HAART can be discontinued
without the risk of viral rebound. The most common LRAs employed in the “shock and
kill” strategy include histone deacetylase inhibitors (HDACi) and protein kinase-C (PKC)
agonists. The major aim of the ‘shock and kill” strategy is to activate HIV-1 transcription
such that activated latently infected resting memory CD4+ T-cells can be cleared from
the peripheral circulation by the viral cytopathic effects and/or host cytolytic immune
effectors, while at the same time limiting new target cell infection through HAART [81].
The “shock and kill” strategy initially appeared promising as the ultimate solution to
HIV-1 eradication; however, following over 15 clinical trials that tested LRAs of distinct
mechanistic classes [82,83], the results were not encouraging, since only limited reactivation
of the latent HIV reservoirs was achieved. Likewise, ex vivo experiments that tested potent
single LRA regimens using aviremic patient cells demonstrated that viral reactivation
occurs for only a miniscule fraction of latently infected cells [84-86].

Testing of LRAs from different mechanistic classes in clinical trials was informed by
encouraging results and recommendations from several studies which demonstrated that
the use of LRAs alone or in combinations, such as of PKC agonists which induce NF-«B
with those that induce P-TEFb, potently induced latent HIV provirus reactivation both in
in vitro and ex vivio experiments [48,87].

One of the major limitations of using LRAs is that they were intended only to target
circulating latently infected CD4+ T-cells, and yet, the majority of latently infected HIV
provirus pools are found in anatomical sites, where LRAs access may be highly restricted.
The “shock and kill” strategy requires that activated virus-expressing CD4+ T-cells are
cleared by cytotoxic T-lymphocytes (CTLs), which may also need to be boosted due to the
fact that during the chronic phase of HIV infection, the cytolytic capacity of CD8+ T-cells is
greatly impaired and not restored by HAART.

The use of individual LRAs alone has failed to reduce the size of the latent provirus
pools, majorly because of the heterogeneity of the latent HIV reservoirs [88]. Because HIV
latency occurs in different cell types in different anatomical sites, there is, therefore, a
need to first understand the mechanisms of HIV latency control and reactivations in these
cellular and tissue reservoirs. For instance, the latently infected CD4+ T-cell reservoirs
are so diverse and can be distinguished by their state of differentiation or functions [88].
Considering the differentiation state, there are naive CD4+ T-cells, which are, however,
rarely infected by HIV, and memory CD4+ T-cells. Latently infected memory CD4+ T-cells
can be further grouped into four subsets, namely, central memory CD4+ T-cells (TCM),
effector memory CD4+ T-cells (TEM), transitional memory CD4+ T-cells (TTM), and stem
cell-like memory CD4+ T-cells (TSCM). Resting memory CD4+ T-cells constitute the vast
majority of latent HIV provirus pools in different anatomical sites. The chromosomal
environment of the integrated HIV proviruses is reported to interfere with HIV latency;
however, it is still unclear whether the molecular mechanisms of HIV latency control are the
same in all the different latently infected resting memory CD4+ T-cell subsets. Considering
these limitations of LRAs, additional strategies to deplete latently infected resting memory
CD4+ T-cell subsets are urgently needed.

7. Combinatorial Use of LRAs That Utilize Both Epigenetic and Non-Epigenetic
Mechanisms to Reactivate HIV Latency in Resting Memory CD4+ T-Cell Subsets
Studies that have attempted to address the problems of HIV latency reversal in differ-
ent memory CD4+ T-cell subsets analyzed integration sites data in different in vitro models
of HIV latency that are based on primary CD4+ T-cells or T-cell lines [89]. In this case,
latent HIV proviruses were analyzed based on proviral expression status versus genomic
features. Results of this analysis demonstrated that genomic features were significantly
associated with HIV proviral expression ability across different individual latency mod-
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els. Most recently, Pardons et al. [90] analyzed the levels of cellular factors involved in
HIV gene expression in TCM, TTM, and TEM memory CD4+ T-cell subsets. In particular,
the levels of acetylated histones H3, active NF-«B, and active P-TEFb were measured in
these memory CD4+ T-cell subsets following treatment with different LRAs. Interestingly,
Pardons et al. observed that Vorinostat and Romidepsin displayed opposite abilities to
induce histone acetylation across the different memory CD4+ T-cell subsets. Whereas PKC
agonists effectively induced NF-«B activation through phosphorylation in TCM cells, they
potently activated P-TEFb in TEM cell subsets. Furthermore, while ingenol, which is a PKC
agonist, displayed modest activities in all memory CD4+ T-cell subsets, a combination of
ingenol and HDACi dramatically increased HIV latency reactivation across all the memory
CD4+ T-cell subsets.

Similarly, Grau-Exposito et al. [91] demonstrated the inability of different potent LRAs
to induce HIV proviral expression across all the different memory CD4+T-cell subsets, even
when LRAs of different mechanistic classes were combined, provided the LRAs were all
HDAC:. On the contrary, a combination of panobinostat, HDACI, and bryostatin, a PKC
agonist, was most effective in reactivating HIV expression in all different memory CD4+
T-cell subsets. These observations suggest that cellular reservoirs of HIV latency respond
differently to different LRAs when used alone, such that a combinatorial approach involv-
ing the use of LRAs that utilize epigenetic and non-epigenetic mechanisms to reactivate
HIV latency is critically required in order to effectively reactivate HIV latency in all subsets
of memory CD4+ T-cells. The PKC agonists including prostatin, bryostatin, and ingenol
are known to effectively activate both NF-«xB and P-TEFb [48].

8. Conclusions

The existence of latent HIV provirus pools remains a major barrier to successful
HIV treatment and eradication. LRAs belonging to classes of agents that target different
mechanisms involved in maintaining HIV latency, such as epigenetic and non-epigenetic
mechanisms have been discovered, but several obstacles still remain. First and foremost,
successful utilization of LRAs requires reactivation of the entire latent HIV provirus pools
in different anatomical sites. However, currently, this has not been possible, conceivably
because of multiple factors, including suboptimal efficacy of LRAs or the multifactorial
nature of latency in different resting memory CD4+ T-cell subsets. In order to overcome
these problems, there is a need to use a multifactorial approach involving the use of LRAs
from different classes in combinations. Although several studies have recommended the
use of LRAs combinations which induce both NF-«B and P-TEFb in order to potently
reactivate the latent provirus pools, this approach still needs further indepth study. In this
case, instead of using LRAs of different classes but belonging to the same category, such as
HDAC: only or PKC agonists only, we propose that a combination of LRAs that employ
both epigenetic and non-epigenetic mechanisms of HIV latency reactivation should be
employed. For instance, increased reactivation of latent HIV-1 has been obtained by using
combinations of HDACi with a PKC activator such as prostratin in different systems. The
use of such combinations has several merits; for instance, when LRAs are used in such
different combinations, lower concentrations could be effective, which could also help to
eliminate toxicity and side effects of the drugs. Other studies have also demonstrated that
the use of such LRAs combinations has the effects of significantly lowering the threshold
levels of transcription factors required to reactivate HIV LTR transcription. Secondly, the
toxicity that arises from global TCR activation or the use of PKC agonists needs to be
tackled. In this case, the use of non-TCR signals such as those from cytokines and TLRs
could be employed to activate NF-kB in combination with activators of the P-TEFb and
HDACI.
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