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Neuroprotective mechanisms and translational 
potential of therapeutic hypothermia in the treatment 
of ischemic stroke

Introduction
Although recently stroke fell from the fourth to the fifth 
leading cause of human death in the United States, each year 
there are still approximately 750,000 individuals who suffer 
a new or recurrent stroke (ischemic or hemorrhagic) (Writ-
ing Group et al., 2016). About 610,000 of them encounter 
a primary stroke attack, and 185,000 have recurrent stroke 
events. A stroke attack occurrs every 40 seconds, resulting in 
stroke-related deaths every 4 minutes in the United States. 
Due to the increasing aged population, the American Heart 
Association (AHA) has projected that healthcare costs asso-
ciated with stroke would increase dramatically in the next 20 
years according to the increased incidence and prevalence of 
stroke. 

Despite tremendous advancements in understanding the 
pathogenesis and cellular/molecular mechanisms of stroke 
over the last few decades, thrombolytic therapy using tis-
sue plasminogen activator (tPA) has been the only drug 
approved by the Food and Drug Administration (FDA) for 
treating acute ischemic stroke (Group, 1995). Although re-
cent data show that the rates of tPA application has been in-
creased between 2005 and 2009, still only < 4% of all stroke 
patients can benefit from the thrombolytic treatment. This 
is mainly due to the required early treatment and a high risk 

of hemorrhagic transformation associated with tPA applica-
tions (Adeoye et al., 2011). Thus, there is an urgent need to 
develop new therapies that have wider therapeutic windows 
and are more effective for more stroke patients (Shobha et 
al., 2011). 

Over the past two decades, many neuroprotective drugs 
and treatments have failed the clinical translation from an-
imal models to clinical practice due to the lack of efficacy 
and, in some cases, intolerable side-effects (Cheng et al., 
2004). With the increasing understanding of the cellular 
and molecular injurious pathways and their interplays in 
ischemic cascades, it is now increasingly recognized that the 
conventional strategy of targeting a specific inhibitory or 
excitatory neuronal receptor or ion channel or a single sig-
naling pathway/gene is far from enough to battle the over-
whelming pathophysiological cascades that occur acutely, 
sub-acutely, and even chronically after a stroke attack. Thus, 
a global protection paradigm that covers different cell types 
including neuronal and non-neuronal cells and multiple sig-
naling pathways is necessary to achieve clinically meaningful 
benefits for stroke patients. 

Compelling evidence from pre-clinical research in animal 
models demonstrated marked protective effects of mild to 
moderate hypothermia (therapeutic hypothermia) against 
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ischemic and hemorrhagic brain damage (Darwazeh and 
Yan, 2013; Chamorro et al., 2016). Therapeutic hypothermia 
ameliorates brain damage through inhibition of multiple 
pathways such as oxidative stress, inflammatory responses, 
metabolic disruption, and cell death signals (Katz et al., 
2004; Choi et al., 2012). Furthermore, therapeutic hypo-
thermia therapy improves functional outcomes in animal 
models of stroke and traumatic brain injury (TBI) (Polder-
man et al., 2002; Choi et al., 2012; Lee et al., 2014). In hu-
mans, multiple clinical trials involving both surface cooling 
and endovascular hypothermia have been effective in de-
creasing certain quantitative metrics that correspond with 
functional outcomes after TBI, including intracerebral pres-
sure (ICP) and the mean diffusion-weighted imaging (DWI) 
lesion growth (Schwab et al., 1998a, b, 2001; De Georgia et 
al., 2004). In clinical practice, mild to moderate hypother-
mia (3–5°C reduction) is safe and has been used for the 
treatments of cardiac arrest and hypoxic-ischemic enceph-
alopathy (Dae et al., 2003; Xiao et al., 2013). In fact, thera-
peutic hypothermia has been incorporated in the American 
Heart Association (AHA) guidelines for post-resuscitation 
care for more than 10 years (Sugerman and Abella, 2009). 
Thus, both pre-clinical and clinical evidence supports that 
therapeutic hypothermia has a promising potential to be an 
effective treatment for acute brain injury such as stroke and 
TBI (Schwab et al., 1998b, 2001; De Georgia et al., 2004; van 
der Worp et al., 2007; Torok et al., 2009; Kim et al., 2011; 
Yenari and Han, 2012; Lee et al., 2016a). Currently, there is 
no other experimental stroke therapy that has demonstrat-
ed such strong potential in both basic and clinical research, 
although challenges on the efficacy and the mechanism of 
action call for future and more specific investigations (Ta-
hir and Pabaney, 2016). This review will focus on emerging 
concepts in the protective mechanisms of therapeutic hy-
pothermia for treating patients with stroke, as well as high-
lighting pharmacologically induced hypothermia (PIH), or 
drug-induced cooling treatments, that can be applied as an 
acute hypothermic treatment with some unique advantages. 

Mechanisms of Therapeutic Hypothermia 
against Ischemia-induced Brain Damage
Excitotoxicity
Glutamate mediates excitatory synaptic transmission 
through the activation of ionotropic glutamate receptors 
that are sensitive to N-methyl-D-aspartate (NMDA), α-ami-
no-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 
or kainite in the nervous system. The excitatory transmis-
sion mediates normal information processing and neuronal 
plasticity (Won et al., 2002). It has been well established that 
excessive activation of glutamate receptors mediates the 
initial step in excitotoxicity. Upon an ischemic insult, the 
interruption of blood supply in the brain causes the depri-
vation of oxygen and glucose, leading to impaired energy 
metabolism (Choi, 1992; Dugan and Choi, 1994). Conse-
quently, it increases glutamate release through membrane 
depolarization and the subsequent activation of the voltage 
gated Ca2+ channels (Choi, 1992; Dugan and Choi, 1994). 

Due to impaired energy synthesis, reuptake of glutamate is 
also interfered, which results in the excess accumulation of 
synaptic glutamate. The sustained over-activation of the ion-
otropic glutamate receptors leads to neuronal death, mostly 
due to necrotic cell death mechanism.

Recent reports have shown that therapeutic hypothermia 
prevents the accumulation or release of glutamate (Zhao et 
al., 2007a; Yenari and Han, 2012). Also, body temperature 
influences glutamate excitotoxicity during the acute phase 
of stroke, indicating that the release of these neurotrans-
mitters is temperature dependent (Campos et al., 2012). 
Hypothermia can directly affect excitotoxicity through reg-
ulating the glutamate receptor 2 (GluR2) subunit of AMPA 
receptors (Colbourne et al., 2003). Hypothermia recovers 
the downregulation of GluR2 in hippocampal CA1 neurons 
after global cerebral ischemia in gerbils. After stroke, hypo-
thermia significantly decreases brain glycine levels, which 
is needed to activate NMDA receptors and accelerate the 
function of NMDA receptors (Johnson and Ascher, 1987; 
Kvrivishvili, 2002). Additionally, hypothermia reduces the 
number of AMPA and NMDA receptors expressed on hip-
pocampal neurons after stroke, which is associated with 
decreased infarct volume (Friedman et al., 2001; Li et al., 
2011). Hypothermia also abates spreading depolarization 
that occurs after ischemic stroke by reducing the release 
of excitatory amino acids (EAA) (Nakashima and Todd, 
1996).

Oxidative stress
Neurons are exposed to a minimum level of free radicals 
from both exogenous and endogenous sources in the nor-
mal condition (Dugan and Choi, 1994; Won et al., 2002). 
However, excess accumulation of reactive oxygen species 
leads to the damage of basic components for cell function 
and survival. Because the storage capacity of oxygen is lim-
ited in the brain, as well as there being a high probability of 
lipid peroxidation, neurons can be vulnerable to the change 
of free radical levels when oxygen supply is interrupted. 
Following stroke, increases in arachidonic acid, nitric ox-
ide, glutamate, and over-activation of glutamate receptors 
rapidly develop in the ischemic tissue, which coincides with 
the production of free oxygen radicals such as superoxide 
(O2

−), peroxynitrite (NO2
−), hydrogen peroxide (H2O2), 

and hydroxyl radicals (OH−), resulting in neuronal death 
(Dugan and Choi, 1994; Globus et al., 1995b; Yenari and 
Han, 2012). The production of free radicals after stroke is 
temperature-dependent, and the suppression of free rad-
ical production is linearly proportional to the decreased 
temperature (Globus et al., 1995a; Hall, 1997). As a result, 
hypothermia can significantly reduce the production of free 
radicals and maintain the endogenous antioxidant activity 
in injured cells (Globus et al., 1995a).

Apoptosis
Necrosis and apoptosis are two major forms of neuronal cell 
death after ischemic stroke. Necrosis is a form of cell injury 
where edema and cellular inflammatory responses occur, 
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leading to excitotoxic death. Apoptosis is the main type of 
programmed cell death caused by activation of a cascade of 
intracellular pathways. This cell death mechanism is regulat-
ed by the culmination of interactions between pro-apoptotic 
and anti-apoptotic signaling genes (Mattson, 2000). Hypoxia 
and ATP depletion trigger neurons to activate the apoptotic 
regulatory proteins and several cellular processes, which 
include mitochondria dysfunction, activation of caspase 
enzymes, acidosis, calcium imbalance, and other cellular en-
ergy metabolism disorders (Won et al., 2002; Xu et al., 2002). 
These apoptotic events are mostly responsible for some de-
layed and secondary brain injuries.

Experimental models of ischemia have shown that ther-
apeutic hypothermia prevents neuronal apoptosis through 
decreasing p53 protein, a transcription factor which activates 
apoptosis and pro-apoptotic proteins, including Bak, Bax, 
and NAD depletion (Bargonetti and Manfredi, 2002; Choi et 
al., 2012; Lee et al., 2014). Hypothermia regulates the levels 
of apoptotic related genes such as B-cell lymphoma-2 (BCL-
2), cytochrome C, and tumor necrosis factor (TNF) pathway 
genes (Bossenmeyer-Pourie et al., 2000; Zhao et al., 2004, 
2007b; Liu et al., 2008). After stroke, hypothermia stimu-
lates anti-apoptotic proteins in the Bcl-2 family, causes the 
reduction of cytochrome c release into the cytosol, inhibits 
caspase activation, and thus enhances cell survival (Prakasa 
Babu et al., 2000; Zhao et al., 2004). Experimental animal 
models have shown that hypothermia has a beneficial effect 
on the dysfunction of ATP-dependent Na+/K+ pumps and 
Na+, K+, and Ca+ channels and reduces the influx of calcium 
into the cells, abating neuronal damage (Siesjo et al., 1989; 
Hall, 1997). 

Autophagy
Autophagy is normally a physiological catabolic process 
for nutrient recycling, involving degradation of damaged 
organelles and proteins. The process is tightly regulated 
by autophagy signaling pathways, and alterations in this 
process may lead to diseases or exacerbate damage under 
pathological conditions. In recent years, increased auto-
phagy has been identified as one of the pathophysiological 
mechanism after ischemic stroke (Chen et al., 2014). We 
were one of the first groups to demonstrate that a sup-
pressing effect of therapeutic hypothermia on autophagy 
contributes to the neuroprotection after ischemic stroke 
(Choi et al., 2012). In our investigation, autophagic activity 
was examined by the formation of microtubule-associated 
protein light chain 3 (LC3-II) and degradation levels of 
sequestosome 1/p62 in the penumbra region. Both auto-
phagic factors were decreased by hypothermic treatment 
using the neurotensin receptor agonist ABS-201. LC3-la-
beled autophagosome formation and TUNEL/LC3/NeuN 
triple-labeled cells were also decreased by the treatment. At 
about the same time, a different group reported that isch-
emia and reperfusion stimulate cell autophagy and cause 
cell death, which can be attenuated by mild hypothermia 
(Cheng et al., 2013). More recent papers demonstrated 
that hypothermia can inhibit autophagic cell death after 

TBI and spinal cord injury (Jin et al., 2015, 2016; Seo et al., 
2015). The mechanism underlying the anti-autophagy ac-
tion of therapeutic hypothermia is an active area of current 
research.  

Inflammation
Inflammatory mechanisms are activated after brain isch-
emia and act as important mediators in the pathogenesis 
of stroke-induced primary and secondary injuries (Vila et 
al., 2000; Gelderblom et al., 2009). Although a certain level 
of inflammation has beneficial effects required for tissue 
recovery and repairing, many reports have shown that in-
flammation is a major pathological mechanism underlying 
ischemic brain injury (Lakhan et al., 2009; Jin et al., 2010). 
During ischemia, inflammation is characterized by the pro-
duction of pro-inflammatory cytokines such as TNF-α, in-
terleukin-1β (IL-1β), IL-6, and anti-inflammatory cytokines 
such as IL-10, as well as the accumulation of neutrophils and 
the activation of microglia in the injured brain (Huang et al., 
2006). Also, ischemia-mediated neuronal damage induces 
the synthesis and release of chemokines, such as monocyte 
chemoattractant protein-1 (MCP-1), macrophage inflamma-
tory protein-1α (MIP-1α), and IP-10 (interferon-inducible 
protein), which can recruit microglia, monocytes, and neu-
trophils into the ischemic region (Rappert et al., 2004; Wang 
et al., 2008; Jiang et al., 2016). 

Hypothermia reduces the expressions of this pro-inflam-
matory immune response such as TNF-α and IL-1β, but it 
also regulates the expression of some anti-inflammatory 
cytokines such as IL-10 and transforming growth factor-β 
(TGF-β) (Matsui and Kakeda, 2008; Jiang et al., 2016; Lee 
et al., 2016b). Accumulated data suggest that MCP-1 and 
MIP-1α play crucial roles in ischemia-mediated cellular 
damage. Upregulation of MCP-1 and MIP-1α were observed 
after ischemia; while MCP-1 knockout mice show reduced 
infarct volume after ischemia (Che et al., 2001; Hughes et 
al., 2002; Wang et al., 2008; Strecker et al., 2013). In addi-
tion, MIP-1α injection exacerbated brain infarction but a 
broad-spectrum chemokine receptor antagonist using viral 
macrophage inflammatory protein-2 (vMIP-2), prevented 
neuronal damage from ischemic insults (Takami et al., 2001; 
Wang et al., 2008). Hypothermia attenuated the expression 
levels of chemokines such as MCP-1 and MIP-1α (Lee et al., 
2016b). Recent reports have demonstrated that hypothermia 
prevented inflammation-mediated cellular damage through 
regulating both activation of NF-κB (nuclear factor kappa-
light-chain-enhancer of activated B cells) and Janus kinase 
(JAK) and signal transducer/activator of transcription path-
way (STAT) signaling. 

Microglia/macrophages are highly flexible cells with 
diverse phenotypes that are involved in the generation of 
distinct effector cells and functions (Murray and Wynn, 
2011; Hu et al., 2012). Various cytokines by diverse stimuli 
lead to the development of M1 or M2 subtypes, which can 
express different levels of cell surface markers and secrete 
mediators such as scavenger receptors, chemokines, and 
cytokines. Recently, we showed that hypothermia shows 
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neuroprotective effects partly due to a shift from M1 to M2 
type microglia cells. M1 is the classic activated state that is 
more associated with pro-inflammation, while M2 is more 
protective and associated with anti-inflammation (Cherry 
et al., 2014). This is especially important after brain injury, 
in which the transition to the M2 state not only clears out 
inflammation, but also initiates brain repair, and a sup-
pressed M2 response results in greater lesion sizes follow-
ing both stroke and TBI (Xiong et al., 2011; Kumar et al., 
2013; Pérez-de Puig et al., 2013). In the hypothermia-treat-
ed stroke brain, there were decreased M1 type reactive 
factors including TNF-α, IL-1β, IL-12, IL-23, and inducible 
nitric oxide synthase (iNOS) and increased M2 mark-
ers such as IL-10, Fizz1, Ym1, and arginase-1 (Lee et al., 
2016b). Thus, hypothermia-related regulation of microglia 
can ameliorate the detrimental effects of a persistent M1 
type microglia, including retrograde delayed degeneration, 
axonal degeneration, and white matter tract injury (Wilson 
et al., 2004; Maxwell et al., 2006). 

Others
Blood-brain barrier (BBB)
Studies have shown that cerebral ischemia-reperfusion inju-
ry causes structural and functional breakdown of the BBB, 
resulting in increased BBB permeability, and the extent of 
disruption is directly correlated with the severity and dura-
tion of the insult (Latour et al., 2004; Chen et al., 2009). BBB 
breakdown not only causes brain edema and hemorrhage, 
but also increases various cytokines and chemokines, predis-
posing the brain to a secondary cascade of ischemic injury. 
BBB disruption after stroke, TBI, or other brain injuries is 
caused by structural and functional impairment of compo-
nents of the neurovascular unit, including tight-junction 
proteins, transport proteins, endothelial cells, astrocytes, and 
pericytes.

Hypothermia prevents the activation of proteases respon-
sible for degrading the extracellular matrix, such as the 
matrix metalloproteinases (MMPs) which are known to de-
grade tight-junction proteins  (Lakhan et al., 2013). The ac-
tivity of MMPs and the consequent degradation of vascular 
basement membrane proteins and the extracellular matrix 
proteins were reduced by hypothermia (Nagel et al., 2008; 
Baumann et al., 2009). In addition, hypothermia increases 
the expression of metalloproteinase inhibitor 2 (also known 
as TIMP2), an endogenous MMP inhibitor. 

Neurogenesis and angiogenesis
Recent reports have shown that hypothermia can affect re-
generative activities after stroke. Moderate low temperature 
(32°C) preserved the stemness of neural stem cells (NSCs) 
and prevented cell apoptosis. It is suggested that the protec-
tive effect of moderate hypothermia is partially associated 
with preservation of neural stem cells (Saito et al., 2010). 
Prolonged hypothermia positively interacts with post-isch-
emic repair processes, such as neurogenesis, resulting in 
improved functional outcome (Silasi and Colbourne, 2011). 
Additionally, a few studies have reported on the effect of 

hypothermia on angiogenesis (Xie et al., 2007). Hypother-
mia reduced total infarct volume and increased endogenous 
brain-derived neurotrophin factor (BDNF) level. The mi-
crovessel diameter, the number of vascular branches and the 
vessel surface area were significantly increased in the hypo-
thermia group, suggesting that mild hypothermia enhances 
angiogenesis in the ischemic brain. Despite the heightened 
proliferation of NSCs, other studies have suggested that en-
dogenous neurogenesis may not contribute significantly to 
neuronal repairs. For example, NSCs from pools such as the 
subventricular zone (SVZ) may be region-specific and com-
mitted to become distinct subtypes and thus will be limited 
in regenerative versatility (Merkle et al., 2007). However, 
the increased activity of NSCs may play other roles, such as 
promoting plasticity following injury (Quadrato et al., 2014; 
Obernier et al., 2015). 

Growth factors
Neurotrophic factors in the brain can regulate neuronal syn-
aptic function and plasticity, cellular survival, differentiation 
and promote neural regeneration/repair (Wang et al., 2012; 
Bowling et al., 2016; Wurzelmann et al., 2017). There have 
been conflicting reports about the growth factor response to 
hypothermic treatment. Hypothermia showed strong neu-
roprotective effects following stroke via regulating BDNF, 
glial-derived neurotrophic factor (GDNF), and other neuro-
trophins (D’Cruz et al., 2002; Schmidt et al., 2004; Vosler et 
al., 2005). However, in a sheep model, hypothermia shortens 
the activity of insulin-like growth factor 1 (IGF-1) after hy-
poxia (Roelfsema et al., 2005). Furthermore, studies have 
reported that hypothermia may suppress the release of other 
growth factors, including vascular endothelial growth factor 
(VEGF) following in vitro hypoxia and nerve growth factor 
(NGF) in a mouse model of TBI (Goss et al., 1995; Coassin 
et al., 2010). These findings may be attributed to a decrease 
in overall metabolism of cells in response to hypothermia. 

Other putative mechanisms
Given the global coverage of the temperature reductions 
during therapeutic hypothermia, as well as the vast array of 
interconnected molecular pathways, there are various other 
putative mechanisms that contribute towards hypother-
mia’s neuroprotective effects. Other mechanisms include 
the impact of hypothermia on cerebral metabolism and 
consequently cerebral perfusion (Rosomoff and Holaday, 
1954). The reduction in temperatures may improve brain 
glucose consumption and reduce the lactate-glucose and 
lactate-pyruvate ratios after TBI as compared to normother-
mia controls (Wang et al., 2007). Another pathophysiology 
that arises after brain injuries like ischemic stroke is cerebral 
thermo-pooling, in which localized foci of the brain become 
hyperthermic after injury, thus making it an ideal target for 
hypothermia (Schwab et al., 1998b). Indeed, therapeutic 
hypothermia is effective at reducing thermo-pooling after 
ischemic stroke and in other pathological cases, such as 
influenza encephalitis (Hayashi et al., 1997; Hayashi, 2000; 
Faulds and Meekings, 2013). 
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Pharmacologically Induced Hypothermia: a 
Potential Therapeutic Strategy and 
Implication in Clinical Stage
Limitations of physical cooling
Therapeutic hypothermia has been proposed as a treatment 
for stroke and shown to be effective in preclinical and clin-
ical studies. However, despite the obvious beneficial effects 
of therapeutic hypothermia, its clinical application has been 
limited due to multiple shortcomings. For patients, current 
hypothermia protocols, including ice cooling or cooling 
pads, are generally slow (2–8 hours) and cumbersome, or 

invasive in the case of endovascular cooling. The long time-
course of surface cooling often requires the concomitant 
use of anesthetics and paralytics in order to curb shivering, 
which are performed with endotracheal intubation and ven-
tilation, which carry side effects, such as pulmonary infec-
tions (Hemmen and Lyden, 2007). The invasive nature of en-
dovascular cooling can result in increased risk of infections 
and bleeding, and is not as universally applicable, due to the 
need for a skilled medical personnel to perform the catheter 
placement (Glushakova et al., 2016). In addition, physical 
cooling (PC) evokes shivering responses, which is a defensive 
metabolic adaptation to cold, as well as peripheral vasocon-

Table 1 Major classes of pharmacological agents as putative candidates for pharmacologically induced hypothermia (PIH)

Pharmacological 
class Mechanisms of action

Efficacy for hypothermia-related 
neuroprotection

Side effects/
limitations References

Neurotensins Activation of neurotensin 
receptor 1 (NTR1) 

Rapid induction of hypothermia (~13 
minutes to reach 33°C) that can last for 
multiple hours (6–8 hours); effectively 
produce neuroprotection against both 
ischemic stroke and traumatic brain injury 
(TBI); decrease lesion volume and improve 
functional outcomes; HPI201 and HPI363 
abolish shivering response

Hyperglycemia, 
hypoinsulinemia, and 
hyperglucagonemia 
at high doses

Bissette et al., 1976; Torup 
et al., 2003; Katz et al., 
2004; Choi et al., 2012; 
Wei et al., 2013; Lee et al., 
2014, 2016b

Transient receptor 
potential vanilloid 
1 (TRPV1) 
receptor agonists

Activation of TRPV1 to 
regulate temperature

Can achieve appropriate hypothermic 
temperatures (33°C); Capsaicin 
produced neuroprotective effects; 
DHC induces hypothermia and confers 
neuroprotection after stroke; Rinvanil 
conferred neuroprotective effects specitic 
to hypothermia after ischemic stroke; 
reduces shivering possibly by raising the 
thermoregulatory set point

Transient 
hypotension; Rinvanil 
is ineffective at high 
doses

Adler et al., 1988; Xu et al., 
2011; Muzzi et al., 2012; 
Cao et al., 2014

Cannabinoids Activation of cognate 
receptors CB1 and CB2

Cannabinoids confer neuroprotection both 
dependent and independent of hypothermia; 
possibly also ameliorates excitotoxicity 
and modulation of inflammation; achieves 
appropriate hypothermic temperatures for 
the most part (33–35°C)

Hypotension and 
bradycardia

Gerdeman and Lovinger, 
2001; Rawls et al., 2002; 
Leker et al., 2003; Bonfils 
et al., 2006; Fernández-
López et al., 2012; Suzuki 
et al., 2012

Opioids Lowering the set point for 
cold response by depression 
of sympathetic tone

Κ-opioid and δ-opioid agonists are 
able to induce hypothermia and confer 
neuroprotective effects

δ-Opioid agonists 
– hypotension and 
arrhythmia

Benamar et al., 2002; Sigg 
et al., 2002; Zhang et al., 
2003; Drabek et al., 2008

Thyroxine 
derivatives

Decarboxylated thyroid 
hormone derivatives – 
partially mediated by 
TAAR1 activation

Rapid induction to target temperature (31°C) 
for 6–10 hours, leading to neuroprotective 
effects; notably eliminate cold response side 
effects, such as shivering and piloerection

Minimal Doyle et al., 2007; 
Ianculescu and Scanlan, 
2010; Zhang et al., 2013b

Dopamine 
receptor agonists

Activation of the 4 subtypes 
of dopamine receptors 
possibly modulates body’s 
thermoregulatory set point

Modest decreases in temperature (~1–2°C), 
but still resulted in neuroprotective effects; 
may be able to dampen the homeostatic cold 
response

Hypokalemia Colboc and Costentin, 
1980; Johansen et al., 2003, 
2013

Gaseous (xenon, 
H2S)

Xenon – anesthesia via 
NMDA inhibition 
H2S – inhibition of 
cytochrome c oxidase

Xenon – neuroprotective, but may be 
independent of hypothermia (mild 
temperature reduction – 1.3°C)
H2S – neuroprotective effect may be due 
to a variety of secondary effects, including 
hypothermia (reduced to 31°C)

Xenon – limited 
availability and high 
cost, inhibits tPA
H2S – low therapeutic 
index, and foul odor

David et al., 2009; 
Nicholson and Calvert, 
2010; Joseph et al., 2012; 
Sheng et al., 2012

Adenosine 
derivatives

Inconclusive Despite its ability to decrease temperatures 
(~33.2°C), ATP and AMP both failed to 
provide neuroprotection (although possibly 
the chosen doses were inappropriate for the 
brain, although myocardioprotection was 
observed)

Exacerbation of 
ischemic damage, 
severe hypotension, 
hyperglycemia, 
metabolic acidosis, 
hypocalcemia

Tao et al., 2011; Rittiner 
et al., 2012; Muzzi et al., 
2013; Zhang et al., 2013a

This outline describes the currently known mechanisms of action for each of the major pharmacological classes of PIH, as well as their primary 
central nervous system (CNS) benefits and side effects. 
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striction. This systemic response makes effective and accu-
rate cooling difficult, and most often the cooling procedure 
has to be performed under general anesthesia or sedation 
reagents (Schwab et al., 1998a; Sessler, 2009). Another possi-
ble limitation of hypothermia is its association with systemic 
infections, including pneumonia and sepsis, although this 
side effect can be treatable (Hemmen et al., 2010; Geurts et 
al., 2014). Other potential side effects of hypothermic treat-
ment includes hypothermia-induced diuresis, resulting in 
hypovolemia and electrolyte depletion, thrombocytopenia, 
and bradycardia (Schwab et al., 2001). Furthermore, while 
clinical trials have shown hypothermia to be a feasible treat-
ment, there is conflicting data as to whether hypothermia 
can effectively improve functional outcomes (Krieger et al., 
2001; Schwab et al., 2001; Polderman et al., 2002; De Geor-
gia et al., 2004; Nielsen et al., 2013; Lyden et al., 2016). This 
is largely due to the plethora of parameters associated with 
TTM, aside from simply the temperature reduction. Even if 
patients undergo physical cooling to optimal temperatures of 
33–35°C, other factors that could affect the outcomes include 
the severity, location and subtypes of the injury, the time of 
intervation, the speed/duration of the cooling treatment, 
and finally other pharmacological agents (e.g., anesthetics or 
paralytics) administered (Wan et al., 2014; Subramaniam et 
al., 2015). All of these factors contribute to the inconsistent 
findings, but they also provide tremendous potential for op-
timization of therapeutic hypothermia in order to ensure its 
efficacy. 

Recent early pilot studies with clinical trials have pro-
vided modest evidence suggesting both the feasibility and 
efficacy of therapeutic hypothermia, especially when per-
formed in conjunction with thrombolysis (Hemmen et al., 
2010; Piironen et al., 2014). These studies have parlayed 
into a phase III multi-center randomized controlled trial, 
EuroHYP-1, and the results will have significant ramifica-
tions on the implementation of this clinical strategy (Worp 
et al., 2014). Nevertheless, considering the modest success 
associated with therapeutic hypothermia thus far, as well 
as the current ESO guidelines that discourage the use of 
current physical means of hypothermia to treat ischemic 
stroke, it is important to continue the exploration of other 
avenues that can induce hypothermia in safer and more ef-
ficient ways (Ntaios et al., 2015). This is important because 
it may be possible that the aforementioned limitations may 
be associated more or less with physical cooling, either with 
surface cooling or endovascular methods. Thus, increasing 
research attention has recently been drawn to pharmaco-
logical reagents that have shown cooling effects in animals 
and/or humans. 

Pharmacologically induced hypothermia
Pharmacologically induced hypothermia (PIH), which 
targets the peripheral or central thermoregulatory mecha-
nisms, has emerged as a more efficient and safer treatment 
for brain disorders (Choi et al., 2012; Wei et al., 2013; Cao 
et al., 2014; Lee et al., 2014). PIH allows for greater control 

of temperature changes necessary for TTM. More impor-
tantly, we have shown that a PIH therapy targeting the 
central thermoregulator may suppress external cooling-in-
duced shivering and tachycardia and achieve more rapid 
and effective hypothermia (Feketa et al., 2013; Lee et al., 
2016a). It is well known that shivering, as a physiological 
defense mechanism against body cooling, is a strong and 
troublesome reaction that is invariably coupled with phys-
ical cooling. This reaction often prevents effective and ac-
curate control of hypothermic treatment. Normally, general 
anesthesia and/or sedation have to be applied to battle with 
shivering during physical cooling. PIH using hypothermic 
drugs acting at the central or peripheral thermoregulatory 
receptors/channels provides a mechanism-based strategy to 
eliminate cooling-associated shivering and other responses. 
This unique effect creates multimodal benefits, including 
the administration of hypothermic treatment in awake 
patients without the need for general anesthesia and the 
avoidance of a number of side effects seen with convention-
al physical cooling methods.

Currently, there are several major classes of pharmacolog-
ical agents that are categorized based on their mechanisms 
of action and thermoregulation target: neurotensin, tran-
sient receptor potential vanilloid 1 (TRPV1), cannabinoid, 
opioid, thyroxine derivatives, dopamine, gas, and adenosine 
derivatives (Table 1). Other drugs, such as non-steroidal 
anti-inflammatory drugs (NSAIDs) that show mild TTM ac-
tion have also been investigated in the context of therapeutic 
hypothermia but are not as effective for inducing and main-
taining the minimum temperature reductions (Feigin et al., 
2002).

Our group has developed the second generation of hy-
pothermic compounds acting as a selective neurotensin 
receptor 1 (NTR1) agonist that can pass through the BBB 
and efficiently reduce the body and brain temperature in a 
dose-dependent manner (Choi et al., 2012). For example, 
HPI-201 and HPI-363 (also known as ABS-201, ABS-363) 
are NTR1 agonists acting at the hypothalamic thermoregu-
latory set point. It possesses a high affinity for human NTR1, 
exhibits BBB permeability, and effectively induces regulated 
hypothermia in rodents, resulting in protective effects and 
improved functional recovery after ischemic or hemor-
rhagic stroke or TBI in mice (Hadden et al., 2005; Choi et 
al., 2012; Wei et al., 2013; Lee et al., 2014, 2016a, b). Other 
groups showed that an agonist at transient receptor potential 
cation channel subfamily vanilloid member 1 (TRPV1) can 
decrease temperature via regulation of the peripheral tem-
perature sensitive channel and confer neuroprotective effects 
after stroke in animals (Feketa et al., 2013; Cao et al., 2014).

Overall, PIH confers several significant advantages over 
physical cooling that allow for more feasible clinical imple-
mentation. These include the targeting of the thermoregula-
tory center in the hypothalamus in order to decrease the cold 
set point to reduce compensatory physiological responses 
to hypothermia. These effects, such as shivering, piloerec-
tion, and vasoconstriction, cause discomfort for the patients 
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and reduces the efficacy of hypothermia (Díaz and Becker, 
2010). Importantly, PIH and physical cooling are not mu-
tually exclusive, and the best paradigm may ultimately be a 
combination therapy of the two in order to create a reliable 
regimen that uses a lower minimum pharmacological dose 
(to mitigate potential side effects) to induce hypothermia, 
but that also dulls the cold response (Muzzi et al., 2013; Liu 
et al., 2016). Preliminary data has already suggested that 
combination therapy can provide synergistic effects that 
augment the benefits of either treatment alone (Lee et al., 
2016a).

Conclusion
Therapeutic hypothermia is one of the most promising 
therapies for neuroprotection against brain injuries such 
as stroke. The mechanism of action is multifaceted. Ther-
apeutic hypothermia provides a global brain protection 
rather than targeting a single pathways or a single gene. 
Therapeutic hypothermia can regulate multiple pathways 
including excitoxicity, oxidative stress, apoptosis, autopha-
gy and promote regenerative activites. We expect that these 
actions can be utilized to show synergistic effects with 
other neuroprotective treatments such as tPA and help to 
develop combinatory stroke therapy for clinical treatments. 
To this end, PIH has been demonstrated to be an effective 
and more efficient hypothermic therapy that shows high 
feasibility and translational potential for clinical applica-
tions. Further study will be needed to have an in-depth un-
derstanding of the multiple mechanisms underlying thera-
peutic hypothermia and reinforced efforts are necessary to 
verify the efficacy of PIH compounds in large animals such 
as non-human primates. It is expected that safer and more 
effective hypothermia therapies may help develop more 
clinical treatments for stroke and other intractable brain 
disorders. 
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