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Asthma and influenza are two pathologic conditions of the respiratory tract that affect 
millions worldwide. Influenza virus of the 2009 pandemic was highly transmissible and 
caused severe respiratory disease in young and middle-aged individuals. Asthma was dis-
covered to be an underlying co-morbidity that led to hospitalizations during this influenza 
pandemic albeit with less severe outcomes. However, animal studies that investigated 
the relationship between allergic inflammation and pandemic (p)H1N1 infection, showed 
that while characteristics of allergic airways disease were exacerbated by this virus, 
governing immune responses that cause exacerbations may actually protect the host 
from severe outcomes associated with influenza. To better understand the relationship 
between asthma and severe influenza during the last pandemic, we conducted a sys-
tematic literature review of reports on hospitalized patients with asthma as a co-morbid 
condition during the pH1N1 season. Herein, we report that numerous other underlying 
conditions, such as cardiovascular, neurologic, and metabolic diseases may have been 
underplayed as major drivers of severe influenza during the 2009 pandemic. This review 
synopses, (1) asthma and influenza independently, (2) epidemiologic data surrounding 
asthma during the 2009 influenza pandemic, and (3) recent advances in our understand-
ing of allergic host–pathogen interactions in the context of allergic airways disease and 
influenza in mouse models. Our goal is to showcase possible immunological benefits 
of allergic airways inflammation as countermeasures for influenza virus infections as a 
learning tool to discover novel pathways that can enhance our ability to hinder influenza 
virus replication and host pathology induced thereof.

Keywords: allergic asthma, pandemic influenza, co-morbidity, eosinophils, mouse

iNTRODUCTiON

Of the organ systems in the body that are exposed to the external environment, the pulmonary 
system is the most vulnerable due to its large surface area that accommodates a total of 10,000 L 
of air (containing an array of biologically active and inactive particles) daily. The upper and lower 
segments of the respiratory tract are bound by common structural and immunological components, 
allowing some infectious agents and secreted proteins in the upper respiratory tract to be transmitted 
to the lower respiratory tract. Therefore, the respiratory system must be considered as a whole when 
investigating disease pathogenesis and treatments, which is the basis of the “one-airway” concept.

While physical barriers and innate immune defenses serve to protect the lungs from infec-
tions and damage, susceptible individuals may develop responses to (often) innocuous agents 
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over a period of time leading to the development of asthma, 
a major chronic disease of the airways (1, 2). Recent reports 
from the Centers of Disease Control and Prevention (CDC) 
estimate 1:11 children and 1:12 adults suffer from asthma (3). 
Sensitized airways dynamically react to inhaled agents as well 
as to respiratory pathogens, including viruses, that breach the 
barrier defenses.

Respiratory viruses, such as influenza A virus (IAV), respira-
tory syncytial virus (RSV), and rhinovirus (RV) are constantly 
circulating and can infect individuals of all ages, although the 
pediatric population is the most vulnerable (4). Simply based on 
high incidence of asthma, the probability of an asthmatic being 
infected with a respiratory virus is high, therefore, it is important 
to understand the host–pathogen interactions in an immuno-
logical background that is skewed toward type I hypersensitivity.  
A correlation between early-life infections with RSV (5, 6) and 
RV (7, 8) and the development of asthma has been demonstrated, 
albeit with caveats (9, 10). However, the interactions between IAV 
and asthma are less established, and therefore, the central focus 
of this review. This article is not meant to be a comprehensive 
review of either asthma immunology or that of influenza virus 
infections, but rather as a compilation of the state of the field 
surrounding co-pathogenesis of these immunologically distinct 
conditions that affect the respiratory system.

ASTHMA

Symptoms of asthma were described in the Chinese literature as 
early as the twenty-sixth century BC (11), while the term “asthma” 
is derived from a Greek word used by Hippocrates which means 
“to exhale with open mouth, pant” (12, 13). Jean van Helmont’s 
description of the clinical symptoms in 1662 as “the lungs are 
contracted and drawn together” (14), was broadened in 1668 by 
Sir John Floyer who described asthma signs and symptoms, as 
well as prevention and prognosis and emphasized the importance 
of clean air (15).

In spite of improved understanding of disease pathogenesis, 
the incidence of asthma in the western world has increased 
over the past 40 years, and it is now the most common chronic 
disease in the world (16) affecting over 235 million people 
globally (17). Asthmatics can experience symptoms, such as 
wheezing, coughing, shortness of breath, and chest pain several 
times per day or week (18), often requiring preventative medi-
cal care. Ineffective treatment regimens have contributed to 
approximately 250,000 asthma-related deaths, more than 80% 
of which occur in low and lower-middle income countries (17). 
The yearly economic burden of asthma is estimated at $56 bil-
lion in the US alone (19).

Although the differences and similarities in disease etiology 
are unclear, various types of asthma, such as allergic asthma, 
exercise-induced asthma, cough variant asthma, occupational 
asthma, nocturnal asthma, and brittle asthma have been identi-
fied. Further classifications can be made based on the immune 
profile associated with the exacerbation (20, 21) adding to the 
complexity of this pulmonary condition. Some individuals do not 
fall under the definition of asthma issued by the WHO/NHLBI in 
1995 to encompass the pathological and functional consequences 

of this condition (22). The most recent definition by Global 
Initiative for Asthma (GINA) is broader with more emphasis on 
symptoms rather than pathology (23) highlighting the shifted 
focus on heterogeneity of this complicated syndrome which 
has led to the stratification of patients by endotypes resulting in 
more personalized care. Allergic asthma is the most prevalent 
and results from exposures to extrinsic allergens (e.g., house dust 
mite and cockroach antigen, pollen, animal dander, and cigarette 
smoke). Airways sensitized to a particular allergen respond 
violently to subsequent exposures, resulting in asthma attacks, 
which can be fatal. Allergic asthma is characterized by eosinophilic 
airway inflammation (eosinophilia), airway hyperresponsiveness 
(AHR), and goblet cell metaplasia with associated increases in 
mucus production, epithelial shedding, and airway wall remod-
eling events (smooth muscle cell hyperplasia, subepithelial fibrosis, 
and angiogenesis) as depicted in Figure 1.

Allergic responses consist of an early phase which occurs 
immediately after allergen exposure, and a late phase which starts 
6–9 h following allergen provocation. The early phase reaction is 
initiated through localization and signaling of high affinity Fcε 
receptors on mast cells (and others) bound to antigen-loaded 
immunoglobulin E (IgE). IgE-mediated degranulation of these 
cells causes the release of histamine, prostaglandins, leukotrienes, 
and reactive oxygen species, all of which can result in smooth 
muscle cell contraction, mucus hypersecretion, and vasodilation. 
Vasodilation and microvascular leakage cause plasma protein 
exudation into the airways leading to edema. Furthermore, 
plasma proteins bypass epithelial tight junctions and accumulate 
in the airway lumen interfering with mucociliary clearance (24). 
Plasma proteins, mucus, inflammatory cells, and shed epithelia 
form viscid plugs that compromise the luminal space and obstruct 
normal airflow (25). The late phase reaction, which includes 
AHR, involves the recruitment of various leukocytes. The con-
tributions of each leukocyte to the pathogenesis of asthma have 
been characterized, but also a topic of ongoing investigations by 
various groups as reviewed in great detail elsewhere (26–30) and 
abridged in Figure 2.

The common symptomatologies of asthma (wheezing, chest 
tightness, cough, and breathlessness) can be generic and shared 
by other respiratory conditions, such as eosinophilic granu-
lomatosis with polyangiitis (31), allergic bronchopulmonary 
aspergillosis (32), and chronic obstructive pulmonary disease 
(COPD) (33). In addition, the various phenotypes of asthma may 
have different clinical presentations. Wheezing is not unique to 
asthma as it can occur as a result of bronchial obstruction from 
a number of reasons (34), and children tend to wheeze more 
than adults (35). Wheezing is a common manifestation of viral 
infections in children (36–38), but not all children that wheeze 
develop asthma (35, 39). A reliable asthma diagnosis must be 
meticulously made (often by a pulmonologist) using measures of 
lung function and full history of characteristic symptom patterns 
confirmed by bronchodilator reversibility testing (23). Such rigor-
ous testing required for a thorough diagnosis is often difficult 
to perform in children <5 years of age (40). Other confounders 
affecting the incidence and subsequent progression/alleviation 
include under- and over-diagnosis (41–43) and poor adherence 
to prescribed medication (40, 44).

https://www.frontiersin.org/Immunology/
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FiGURe 1 | Overview of characteristics of influenza and allergic asthma. Immunological and structural components differ between influenza and allergic asthma 
although some overlap may exist in the clinical presentation.
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Respiratory Barrier Responses in Allergic 
Asthma
Asthma endotypes explain the various cellular cascades/
pathways that manifest during different asthma phenotypes. 
The consensus between each endotype, however, is that the 
initiating trigger occurs at the bronchial epithelia (45, 46). 
The airway epithelium performs barrier and immune defense 
against foreign agents, such as allergens, viruses, or pollut-
ants through active secretion of cytokines like thymic stromal 
lymphopoietin, GM-CSF, IL-1, IL-25, and IL-33 that attract 
and activate immune cells (47, 48). Dendritic cells (DCs) 
that intersperse the epithelium and capture inhaled allergens 
become activated by these cytokines and initiate adaptive 
immune responses triggering a cascade of events that involve 
numerous mediators and cell types including structural cells 
(49) (Figure 2).

It has long been observed that eosinophil counts in periph-
eral blood and bronchoalveolar lavage (BAL) fluid are higher 
in asthmatics compared to healthy controls (50). BAL fluid 
from patients with atopic asthma contain elevated levels of TH2 
cytokines (51), including IL-5, which are strongly associated 
with eosinophilic inflammation (52). Eosinophils also serve as 
a source of numerous cytokines including IL-13 (53), that con-
tribute to disease pathophysiology through increased AHR and 
mucus hypersecretion (54, 55). IL-13 is also produced by TH2 
cells and type 2 innate lymphoid cells (ILC2s) that can produce 
amphiregulin (AREG) (56) a possible driver of wound healing 
responses in asthma. Lipid mediators, such as leukotrienes, con-
tained in eosinophil (and mast cell) lipid bodies promote AHR 
and mucus hypersecretion (57) (Figure 2). While eosinophilia 
can correlate with asthma severity (58), not all patients with 
severe asthma have eosinophilia (59), highlighting the multi-
faceted and complex nature of this disease. In fact, heightened 

neutrophilia is a common finding in patients with severe/fatal 
asthma (60, 61).

iNFLUeNZA viRUS

Influenza A, B, C, and D viruses are enveloped negative sense 
RNA viruses with segmented genomes that belong to the Ortho
myxoviridae family. These viruses are morphologically spherical 
to ovoid and can range between 80 and 120 nm in diameter (62). 
While all four viruses can infect humans, IAV is the most common 
and pathogenic type. The outer envelope, acquired from the host, 
contains the prominent viral glycoproteins hemagglutinin (HA) 
and neuraminidase (NA) at a 4:1 ratio. Immunity against IAV is 
complicated because the virus undergoes antigenic drifts due to a 
non-proofreading polymerase, and antigenic shifts due to hosts that 
serve as mixing vessels for IAV with different sialic acid specificities. 
These features of IAV have resulted in four major pandemics and 
>50 million deaths worldwide as expertly reviewed recently (63).

Human infections result from influenza A and B viruses, with 
the former resulting in the majority of symptomatic infections. 
Viral transmission in humans largely depends on contact with 
viral particles contained in droplet nuclei released during sneezing 
or coughing. Droplet nuclei less than 5–10 µm containing infec-
tious viral particles, can remain suspended in ambient air thereby 
allowing long-range transmission (64). Viral replication begins 
with viral entry which is dependent on HA interaction with sialic 
acids (sugars bound by glycosidic linkages to glycans) on the host 
cell surface. The low pH of the endosomal compartment triggers 
a conformational change in HA inducing membrane fusion and 
release of the viral genome into the cytoplasm followed by translo-
cation of the viral RNA into the nucleus and hijacking of the host 
machinery to replicate its genome. Assembled virions bud off the 
host cell through actions of the viral NA activity. Functions of HA 
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FiGURe 2 | Schematic representation of basic immune responses in asthma. Epithelial cells release thymic stromal lymphopoietin, IL-25, and IL-33 activating 
allergen-activated dendritic cells to present antigen via MHC-II to T cell receptors of naïve T cells which convert to Th2 cells through expression of GATA-3 
transcription factor. IL-4 and IL-13 from TH2 cells activate B cells for IgE synthesis. IL-13 also promotes goblet cell metaplasia and smooth muscle constriction. TH2 
cells also control eosinophil development and survival through IL-5. Resident mast cells may become activated directly through allergen-specific IgE or indirectly 
through other myeloid cells and release cytokines, such as histamine, tryptase, leukotriene C4 (LTC4), and prostaglandin D2 (PGD2). Eosinophils release multiple 
growth factors and fibrogenic mediators that regulate architectural changes in the airways. Resident innate lymphoid cells (ILC) become activated to release 
amphiregulin (AREG) that may promote wound-healing or repair processes.
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and NA in viral binding and budding are crucial for host adapta-
tion and pathogenicity, while the antigenicity of HA is a criteria 
for novel strains with pandemic potential (65). Viral infection and 
replication cycle begins in the respiratory epithelium within 6 h, 
killing host cells within 12 h (66). Typically, in adult patients, viral 
replication peaks at 48–72 h post infection and clears after 1 week 
(66). Although influenza viruses circulate yearly, they effectively 
relegate host immunity by various immune evasion strategies as 
well as modifications to the genome.

Influenza includes both systemic (fever, malaise, and head-
ache) and respiratory (cough, rhinorrhea, and breathlessness) 
sym ptoms. The minor overlap of symptomologies between 
asthma and influenza are likely due to architectural reasons as 
immune responses vastly differ (Figure 1). Immune responses 
against influenza viruses range from primary mucociliary bar-
rier defenses to sophisticated adaptive immunity. Viral replica-
tion in the respiratory system can cause damage and induce 
death in epithelial cells which maintain the first line of defense 
against invading pathogens (67). Primary immune responses 
are initiated by epithelial cells and resident immune cells lead-
ing to the activation of adaptive immune responses that inhibit 
viral replication more effectively (68). While well-controlled 
immune responses are effective at viral clearance and regain-
ing tissue homeostasis, continuous viral replication-induced 
tissue damage and ineffective inflammatory responses can lead 

to acute respiratory distress syndrome (ARDS), pneumonia, 
bacterial infections, and death (63, 69).

immune Responses at the Respiratory 
Barrier During influenza virus infections
Influenza viruses infect the airway epithelium and hijack the 
eukaryotic cellular machinery for rapid replication triggering both 
innate and adaptive immune responses (67, 70–72). Epithelial-
derived inflammatory mediators as well as those produced by 
infiltrating leukocytes guide immune responses that ensue IAV 
infection (Figure 3). Functional responses of each cell type in the 
lung during IAV infection are interrelated by chemo/cytokine 
cues and antigen burden. Local interferons (IFN) are important to 
hinder viral replication; however, antiviral immunity can occur in 
the absence of IFN signaling (73). The release of cytokines tradition-
ally associated with wound-repair [transforming growth factor-β 
(TGF-β)], homeostasis (IL-10), and allergy (IL-13) also occurs in 
response to IAV infection (68). While these cytokines can enhance 
anti-influenza immune responses and, therefore, be beneficial to the 
host during the tissue-repair phase of influenza, continuous avail-
ability in the lungs that can prolong viral pneumonia (74, 75) and 
increase susceptibility to bacterial infections (76) and asthma (77).

Although innate immune cells are important in antiviral 
immunity (78), their overzealous responses and high abundance 
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FiGURe 3 | Schematic representation of immune mechanisms activated during influenza A virus (IAV) infection. IAV hemagglutinin binds to sialic acid residues on 
epithelial cells triggering immune responses. Natural killer cells that complex with antigens expressed on epithelial cells become activated to release type II interferon 
(IFN). Activated dendritic cells expressing CD11b+ CD103+ migrate to draining lymph nodes and prime T lymphocytes which differentiate into effector or memory 
cells. While CD8+ T cells directly kill virus-infected cells, CD4+ helper T cells direct the functions of resident/recruited cells through cytokine secretion. Transforming 
growth factor (TGF)-β produced by macrophages that are activated directly through TLR stimulation or indirectly by the local cytokine milieu and innate lymphoid cell 
(ILC)-driven amphiregulin (AREG) promote repair to the epithelial barrier. The damaged epithelial cells confer innate resistance by producing type I and type III 
interferons (IFNs) through stimulation of retinoic acid-inducible gene I.
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can lead to host injury during influenza (79). Activated DCs pre-
sent viral antigens to naïve/memory T cells initiating the adaptive 
immune cascade including antibody production by activated 
B cells (Figure 3). DC subsets have some diversity in their role 
as lymphocyte activators during influenza (68, 80). Macrophages 
reduce the viral burden by phagocytosis and efferocytosis of 
infected cells and also present antigen to boost adaptive immune 
responses. However, the reduction of macrophage numbers (81) 
and functions (82) in the lungs during influenza can occur as part 
of virus-induced inhibition of host defenses. Early neutrophil 
activation can reduce the antigen burden and improve adaptive 
immune responses (83). Cytotoxic T (84, 85) and natural killer 
(NK) (86) cells play a dominant role in controlling the infection 
and promoting viral clearance (Figure 3), after which inflamma-
tion resolves and tissue homeostasis can be regained.

iNFLUeNZA PANDeMiC OF THe  
TweNTY-FiRST CeNTURY

The first case of the 2009 “Swine Flu” (influenza) pandemic was 
identified in Mexico in mid-February, following which the CDC 

reported swine origin H1N1 influenza in two samples collected 
from patients in California (87). This virus replaced the circulat-
ing seasonal H1N1 virus and spread rapidly causing the WHO to 
declare this as the first influenza pandemic of the new millennium 
on June 11, 2009. The 2009 pandemic (p)H1N1 IAV is unique 
in that it arose in swine as a reassortant comprised of PB2 and 
PA genes from avian H3N2 virus, PB1 gene from human H3N2 
virus, HA, NP, and NS genes from classical H1N1 swine virus, 
and NA and M genes from Eurasian H1N1 swine virus (88). 
Mutations changed binding efficacy and transmissibility of the 
strain, although pH1N1 was not highly pathogenic like H5 IAVs. 
Some mutants of pH1N1 containing amino acid changes in the 
HA gene (D222G, D222E, and D222N) were speculated to occur 
more frequently in severe cases of influenza (89), although resist-
ance to oseltamivir (NA inhibitor) through H275Y mutation was 
not of significant health concern (90).

Unlike seasonal influenza strains to which infants and the 
elderly have the greatest susceptibility, pH1N1 virus caused more 
severe disease in school-aged children, adolescents, and adults 
ranging between 5 and 24  years of age (91). Although elderly 
individuals (>65 years of age) were less likely to become infected 
with this strain conceivably due to the presence of cross-reactive 
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FiGURe 4 | Overview of epidemiologic reports surrounding 2009 pandemic influenza in asthmatics. Epidemiologic findings reporting on the outcome of pandemic 
influenza in cohorts that included asthmatics were mined to calculate the percentages of patients with other reported diseases. Data from each manuscript were 
graphed to show the distribution of morbidities in patients hospitalized during the 2009 influenza pandemic. Values accounting for >100% indicate that patients 
within the cohort had multiple underlying disease conditions.
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antibodies (92, 93), once infected, disease manifestation was 
severe in this age group possibly due to ineffective cellular immu-
nity (91). Reported incubation period for pH1N1 was 1.4 days 
(94) when transmissibility was also greatest. Although viral 
infectivity decreased in adults between 3 and 5 days, symptoms 
associated with influenza (fever, malaise, headache, myalgia, 
cough, and rhinitis) presented between 5 and 10  days (95). 
Additional symptoms in children included otitis media, nausea, 
and vomiting (95). Although less severe than the past pandem-
ics, the 2009 influenza pandemic caused more hospitalizations 
and respiratory complications than seasonal influenza (96). The 
WHO reported ~18,500 deaths from laboratory-confirmed influ-
enza while recent estimates are as high as 203,000 deaths between 
March and December of 2009 (97). Mortality rates were lowest 
in children under 18 years (98) and the mean age at death was 
37.4 years (99). Age groups that were at high risk for mortality 
differed from seasonal influenza, wherein, 51% of total deaths 
occurred in 20–49-year-old patients (100).

Nearly half of the hospitalized patients with Swine Flu had no 
reported co-morbidity (101), while various conditions were iden-
tified in the remaining patient population as a single underlying 
disease or as several that complicated influenza pathogenesis and 
increased the rate of hospitalizations; asthma was among these. 

Other conditions included pregnancy, obesity, COPD, diabetes, 
neurologic, and cardiac diseases (101, 102). Associated complica-
tions included viral and bacterial pneumonia, and ARDS often 
requiring mechanical ventilation (103, 104). Approximately a 
quarter of the hospitalized patients were admitted to the intensive 
care unit (ICU) during this pandemic, and the co-occurrence of at 
least one underlying disease increased the risk of ICU admittance 
(105). For example, neurologic conditions were most common in 
ICU-admitted children, while asthma was prominent in adults 
admitted to the ICU and obesity was a co-morbidity in both 
children and adults during this pandemic (105, 106).

ASTHMA AND THe 2009 SwiNe  
FLU PANDeMiC

Unlike other influenza viruses that negatively impact “immu-
nosuppressed” populations at either ends of the age spectrum, 
pH1N1 IAV strain caused hospitalizations in individuals between 
18 and 50 years of age (104, 107). While the majority of these indi-
viduals were otherwise healthy (108), approximately 40% [and as 
many as 78% (98)] of the hospitalized patients had at least one 
underlying medical condition (Figure 4). Since other respiratory 
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viruses (RSV and RV) clearly induce asthma exacerbations 
(109, 110), it came as no surprise when asthma was identified 
as a risk factor associated with hospitalization in both children 
and adults during the 2009 pandemic (104, 111, 112). Multiple 
investigations surrounding this pandemic reported on the inci-
dence of co-morbidities that have been identified by the Advisory 
Committee on Immunization Practices (ACIP) to increase the 
risk of influenza morbidity. We reviewed a number of these clini-
cal reports to obtain a better understanding of the frequency of 
common underlying diseases in hospitalized populations, and 
noted that asthma, obesity, and cardiac disease were among the 
most prevalent (Figure  4). While most other conditions have 
been noted previously, the identification that obesity increased 
the risk for severe outcome from influenza was novel (104, 113), 
and reproducible for this pandemic (Figure 4).

Asthma was an undisputed risk factor associated with hos-
pitalization (Figure  4) affecting 10–20% of the hospitalized 
populations worldwide (102), and approximately a quarter of 
the hospitalized patients in the United States during the Swine 
Flu pandemic (114, 115). The increase in hospitalization among 
asthmatics may be attributed to a variety of factors including 
altered health seeking behavior (and in parents of asthmatics), 
heightened awareness due to media coverage, accelerated tri-
age, and elevated physician precautions. Comparative analyses 
between seasonal and pandemic influenza concluded that the 
frequency of hospitalization and death as well as the profile of 
common underlying diseases, including asthma, were actually 
similar (116–119) although pH1N1 infections induced more 
severe disease in older age groups (120) and those with poorly 
controlled asthma (121) compared to seasonal strains. Therefore, 
greater attention to underlying diseases as risk factors during 
Swine Flu may have been due to the fact that pH1N1 induced 
more morbidity and mortality compared to the seasonal influenza 
virus strains that preceded it. Similarly, the 2017–2018 influenza 
season drew more attention based on the high mortality associ-
ated with this H3N2 virus strain compared to previous seasonal 
strains (122).

Lung diseases are often complex and multifactorial, and, can 
sometimes overlap. COPD was identified as a risk factor associ-
ated with worse outcomes (123). Asthma and COPD may share 
some phenotypic overlap in adults, but remain immunologically 
and physiologically distinct conditions. Therefore, influenza 
outcomes reported in combination for asthma and COPD may 
not necessarily reflect actual circumstances of either disease, 
unless categorized as asthma-COPD overlap syndrome (122). In 
one report, the physician diagnosis for asthma and ICD-9 code 
for acute asthma did not correlate (120), and the criteria for the 
identification of “asthma” in patients were not specified in most 
reports that focused on asthma incidence in their respective 
cohorts. Specific diagnosis for asthma requires common allergen 
testing, serum IgE testing, successfully executed spirometry at 
baseline and often after exercise, symptom reversal after treat-
ment with short acting beta agonists (40, 45) etc., that require 
a specialist. As such, data that relied on self-reporting or clini-
cian’s notes at triage must be carefully interpreted (124–126) as 
wheezing non-asthmatics may have been categorized incorrectly 
as asthmatics. Although environmental pollutants are known to 

complicate asthma (127) and influenza (128), information on 
tobacco smoke exposure was only provided in a small number 
of these reports (Figure  4). In addition, as noted in our com-
pilation of the previous literature, most patients had more than 
one underlying condition (Figure  4), although this was only 
considered by some authors (98, 111, 114, 129, 130). Complex 
interactions between asthma and other underlying conditions, 
including obesity (131), diabetes (132), and cardiac disease (133) 
for example, are only beginning to be elucidated. However, these 
disease–disease interactions are likely to impact host responses 
to IAV infection and thereby affect the patient’s medical outcome. 
Similarly, since IAV infections can induce exacerbations of the 
underlying disease (cardiac, diabetes, etc.), it may be likely 
that the number of severe cases due to influenza were actually 
underestimated as patients visiting medical practices may not 
have been tested for influenza when the primary complaints were 
non-respiratory.

The age of onset and endotype often determines the chronicity 
of asthma and maintenance medication use. Patients that were 
not on long-term therapeutics to control asthma symptoms had a 
higher incidence of pH1N1 infection (120, 121, 134, 135). While 
the pH1N1 virus did increase the number of asthma exacerba-
tions compared to seasonal strains (126), virus infection did not 
correlate to the severity of asthma symptoms (126). Higher rates of 
infection and hospitalization of children also corresponded with 
higher rates of admission to pediatric intensive care units (PICU) 
during the 2009 influenza pandemic. Lung disease (43.9%) and 
asthma (25%) were among the most common co-morbidities in 
these critically ill children (116). Torres et al. noted that asthma 
was among the risk factors associated with PICU admission and 
mortality in children under 24  months during the Swine Flu 
pandemic, as was co-infection with RSV (125). However, since 
it is difficult to diagnose asthma in children at this age (40, 45) as 
noted by other investigators (136), and RSV and IAV can induce 
wheezing in young children, the actual lung disease in these criti-
cally ill, very young, pediatric patients may not have been asthma.

Asthmatics are generally considered inept at countering virus  
infections effectively due to immune bias. Information largely 
focusing on RSV and RV have shown that asthmatics have 
reduced type I IFN responses during respiratory infection (137). 
Whether asthmatics were more likely to be infected by pH1N1 
than non-asthmatics, or whether there were differences in 
the viral replication or clearance once infected, were not clear 
during the pandemic, largely because most data were from the 
hospitalized populations without matched controls and because 
these questions are not easily addressed in studies not designed 
to do so. Kloepfer et  al. noted that children with asthma were 
more likely to become infected with pH1N1 virus (134). While 
this conclusion was drawn from the identification of pH1N1 in 
10% of the 346 nasal swabs collected from 193 children (with and 
without asthma), it should be noted that 62 and 12% of these sam-
ples tested positive for RV and enterovirus, respectively, and an 
additional 13% were positive for pH1N1 and RV (134). Similarly, 
RSV coinfections were found in 43% of children infected with 
pH1N1 (138). Since these respiratory viruses are known to 
exacerbate asthma, and asthma attacks were a salient reason for 
hospitalization (121, 129), coinfections could have escalated the 
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incidence of hospitalization of asthmatics during this pandemic. 
Although very few reports provided information on the rate of 
viral coinfections, seasonal overlap between RV, IAV, and RSV 
may promote virus–virus interactions thereby altering host–viral 
interactions that govern infection. Additionally, since pH1N1 
infectivity and replication in primary bronchial epithelial cells 
from adult asthmatics were similar to that in cells from healthy 
donors (139), it is possible that an age-related difference in 
pH1N1 may occur at the cellular level.

Disease severity during the Swine Flu pandemic was further 
marked by ICU admittance and death (140). Intriguingly, 
however, a number of reports suggested that asthmatics had 
less severe influenza morbidity compared to non-asthmatics 
(102, 105, 113, 115, 119, 129, 130, 136, 141, 142) with decreased 
risk of requiring ICU admittance, mechanical ventilation, and 
death. Analysis of data from 1,520 pH1N1 confirmed patients 
in the UK also showed that asthmatics had a reduced risk for 
severe outcome from influenza (143). Asthmatics were also 
more responsive to early antiviral (136) and corticosteroid (144) 
intervention. Although steroid use has been proposed as a reason 
for favorable outcome in asthmatics during the 2009 influenza 
pandemic (130), corticosteroid treatment has also been associ-
ated with increased risk of mortality, nosocomial infections, 
and prolonged mechanical ventilation and ICU length of stay  
(145, 146). Asthmatics that are on steroid therapy may have 
been at increased risk for pH1N1 infection due to their transient 
immunosuppressed state. Therefore, the impact of steroid treat-
ment during the 2009 influenza pandemic is ambiguous and may 
have enabled the likelihood of infection/complications or pro-
tection against severe influenza. Since patients with asthma and 
COPD were found among those admitted to the ICU (111, 114,  
116, 117, 136, 147), and among those that died (98, 100), it is clear 
that the interaction between asthma and pH1N1 was complex, 
and may have been altered by asthma phenotype and endotype 
as suggested by animal studies described below.

Vaccination and antivirals are available protectants prior to 
and during IAV infections. Annual vaccination against influenza 
infection is recommended by the WHO for all individuals but 
especially for pregnant women, children, and the elderly, and 
those with underlying health conditions. In spite of these recom-
mendations, less than ~50% of the US population seeks the 
annual influenza vaccine (148). While vaccine efficacy may vary 
based on viral evolution and individual immune status, vaccines 
are beneficial as they are effective for symptom resolution and 
may help to slow down the rate of disease progression through 
at least a polyclonal non-specific humoral response during infec-
tions, and as such, better sought than not. Antiviral medications 
are available to mitigate the impact of IAV, however, investiga-
tions into the use and effectiveness of these medications during 
Swine Flu are limited (149). In general, antivirals (primarily 
oseltamivir) were provided to >80% hospitalized patients and 
their use were similar between asthmatics and non-asthmatics 
during the last influenza pandemic (105, 113, 114, 125). As 
such, the observation that asthmatics were less likely to develop 
complications from pH1N1 infections (102, 105, 113, 115, 142) 
was unlikely due to changes in viral load. In support of this, 
Oshansky et  al. found no relationship between viral load and 

hospitalization in a pediatric patient population which included 
asthmatics (150).

The use of clinical data factors as both a strength and weak-
ness in exploring outcomes of infection. Variability in available 
and reported data can contribute to differences in conclusions as 
evident in the literature that focused on asthma in hospitalized 
patients during the 2009 influenza pandemic. Since the com-
bined percentages of diseases in some cohorts were over 100% 
(Figure 4), it should be noted that most hospitalized patients 
had more than one underlying health condition. Identification 
of high-risk patients and understanding the pathophysiology of 
disease and complications thereof during influenza are important 
for pandemic preparedness. However, misclassification, admin-
istration of controller medication to patients that may not have 
severe (eosinophilic) asthma, viral-induced exacerbations, coin-
fections, other underlying conditions, and environmental toxins 
may adversely affect the outcome of influenza in asthmatics.  
Most often, however, information on the phenotype and endo-
type of asthma, history of controller medications, time since 
last exacerbation, BMI, prominent granulocyte during disease 
(eosinophilic/neutrophilic/mixed/paucigranulocytic), tobacco 
smoke exposure, quality of air (pollutants, allergens, etc.), and 
influenza vaccination history, are not available in the clinical 
reports, and difficult to obtain for any epidemiologic report due 
to the nature of medical records, but would be ideal to provide 
a complete landscape of how asthmatics respond to circulating 
influenza viruses. As such, animal model systems are invaluable 
to delineate the mechanisms of host–pathogen interactions 
to understand disease interactions and outcomes in patients 
during the convergence of these two immunologically distinct 
diseases.

PROPOSeD MeCHANiSTiC iNSiGHTS ON 
THe PATHOGeNeSiS OF ASTHMA AND 
iNFLUeNZA FROM ANiMAL MODeLS

Lower respiratory tract infection by 2009 pH1N1 virus has been 
associated with asthma exacerbations as well as viral pneumo-
nia (135, 151). Patients who developed acute pneumonia from 
pH1N1 infection had markedly greater levels of TH2 cytokines 
(IL-4, IL-5, and IL-13) in the serum compared to those that did 
not (152). The increase in these canonical TH2 cytokines may 
suggest the initiation of the wound healing process as media-
tors associated with TH2 responses are transiently elevated in 
the lungs at the conclusion of the H1N1 infection cycle in mice 
(139, 153). Complications with acute pneumonia also produced 
bronchial mucus plugs with elevated levels of eosinophils and 
neutrophils, even in patients without allergy (154). Bronchial 
epithelia are susceptible to IAV infection and can become 
apoptotic with increased viral burden. Interestingly, primary 
bronchial epithelial cells from asthmatic donors were resistant to 
the cytopathology induced by pH1N1 while those from healthy 
donors were not (139). As such, the interactions that may occur 
between influenza virus and the allergic host may depend on a 
variety of factors, including the endotype of asthma, the immune 
status, other underlying diseases, and the architectural state of the 
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airways at the time of virus infection. Furthermore, healthy air-
ways, allergen sensitized airways, and airways that were recently 
exposed to allergens are three independently unique landscapes 
that would differ in response to IAV infection. Most animal 
studies of asthma and influenza have focused on the impact of 
IAV as a trigger for subsequent allergic responses (77, 155–157). 
However, asthma and influenza are complicated diseases that 
involve numerous immune and structural cells of the respiratory 
tract as depicted in Figures 2 and 3. Furthermore, since asthma 
is multifaceted and dynamic with structural changes that can 
occur between exacerbations, the way in which an asthmatic 
would react to viral infections cannot be effectively predicted 
without animal models that can recapitulate the clinical findings 
both showing asthma exacerbations induced by IAV infection as 
well as the protection from virus-induced severe complications 
as discussed above.

The number of mouse models that use mice with established 
allergic inflammation for subsequent infection with IAV are 
limited (139, 158–161), but have already provided important 
information regarding the pathogenesis of IAV in asthma relevant 

to the Swine Flu pandemic (Figure 5). Ishikawa et al. found that 
ovalbumin-induced asthma protected mice from influenza, a 
phenomenon that they attributed to NK cells (161) (Figure 5). 
Using a clinically relevant mouse model of severe asthma with 
fungal sensitization, we showed that acute allergic inflammation 
induced by allergen provocation protected mice from pH1N1-
induced influenza, while chronic remodeling that resulted from 
fungal challenge made mice susceptible to influenza morbidity 
and host pathology (139) highlighting the impact of the temporal 
association between allergen provocation and viral infection in 
disease outcome during asthma and influenza. The discovery 
that mice with heightened allergic responses in the lungs had 
less severe influenza were later confirmed by other groups (158,  
160, 162) all using different allergens suggesting that this out-
come is common to allergic asthma. Ovalbumin-induced allergic 
airways disease was resistant to lethal pH1N1 infections (158) 
through mechanisms that involved the TGF-β pathway (163) 
(Figure 5). As a mediator of remodeling, TGF-β is involved in 
tissue repair and re-modeling of the respiratory tract through 
stimulation of matrix protein production, epithelial proliferation 
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and differentiation (164). It is also an immunoregulator that pro-
motes differentiation of Tregs that suppress (165) or enhance (166)  
adaptive immunity to influenza viruses. These model systems 
now provide an avenue to explore the epidemiologic findings 
surrounding asthma during the Swine Flu pandemic. However, 
further advances are necessary to investigate the function of 
genetic factors influencing asthma and subsequent viral infec-
tions to investigate the gene:environment impact on co-morbidity 
that could have influenced some asthmatics during the Swine Flu 
pandemic.

Animal models described above have been able to contribute 
mechanistic insights into the complex interactions between 
allergic inflammation and IAV infections. Viral clearance is a 
crucial step in initiating recovery from influenza. The role of 
CD8+ T  cells as mediators of viral clearance through targeted 
removal of infected epithelia is well established (85). Our charac-
terization of antiviral responses in hosts with acute and chronic 
asthma showed that viral clearance was enhanced in mice with 
acute allergic asthma which also had elevated influenza-specific 
CD8+ T  cells (139), which we subsequently determined to be 
due to putative antigen-presenting functions in eosinophils 
that enhanced cellular immunity (167) (Figure 5). Others have 
shown that CD11b+ DCs are better at CD8+ T cell activation in 
context of asthma and influenza co-morbidity (160) (Figure 5). 
Neutrophils provide additional support for cellular immune 
responses during influenza by guiding the migration of CD8+ 
T cells into the lungs (168). While the function of neutrophils in 
asthma and influenza co-morbidity has not been investigated to 
date, it is an area of interest especially in consideration of severe 
asthmatics with neutrophilia. Similarly, since the role of CD8+ 
T cells in the pathogenesis of asthma is not fully elucidated (169), 
the development and characterization of CD8+ T cell responses 
in the context of asthma and viral infections in humans would 
be of great interest.

The rapid antigenic changes in circulating influenza viruses 
reduce natural immunity against these viruses and hinder the 
development of effective vaccinations. Although the influenza 
vaccine is highly recommended for patients with asthma per 
ACIP and the WHO, compliance low. While total B cell num-
bers in the pulmonary mucosa are similar between allergic and 
non-allergic mice after pH1N1 infection (158), allergy-specific 
antibodies dominate over anti-influenza antibodies in the 
serum and mucosa of allergen-exposed pH1N1-infected mice 
(170) suggesting that pre-existing allergy does not readily 
promote antiviral humoral immune responses (Figure 5). B cell 
populations in lymphoid organs were not markedly different 
between virus-infected mice with/without allergic airways 
disease, however, antibody producing B cells in the lungs were 
elevated in co-morbid mice (170) indicating the importance of 
in situ mucosal immune responses in pulmonary co-morbidity. 
Therefore, examining the development and function of B  cell 
responses during asthma and influenza co-morbidity may help 
to delineate effective vaccination strategies for patients with 
underlying chronic lung diseases.

The intricate acute and chronic changes in airways that occur 
over time make asthma a difficult syndrome to model in mice. 
As such, most mouse models of asthma rely on exposures (often 

initiated through adjuvants) localized to the lungs to initiate 
acute features of asthma largely relying on granulocytic inflam-
mation as a hallmark. The above referenced mouse models 
of asthma and influenza also predominantly focused on IAV 
infections in mice with “acute asthma” primarily because they 
were built to reproduce the clinical findings that asthmatics 
with exacerbations were protected from severe influenza 
disease. Very few mouse models are able to produce airway 
wall remodeling as a chronic feature of asthma (171). We have 
also shown the opposite clinical finding that some asthmatics 
(including COPD patients) did suffer from severe influenza 
requiring ICU admittance using a mouse model of chronic 
asthma and influenza (139) underscoring the importance of 
attention to temporal associations. Additional mouse models 
and mechanistic evidence exploring chronic asthma and influ-
enza are necessary in order to fully elucidate the full spectrum 
of disease–disease interactions.

The strong gene:environment association that occurs in 
asthma also contributes to disease pathogenesis and response 
to viruses. For example, a single nucleotide polymorphism 
in ORMDL3 has been linked to increase susceptibility to 
RV-induced wheezing and subsequent asthma diagnosis (172). 
However, a model of RV-infection using a transgenic mouse 
showed that ORMDL3 overexpression improved antiviral 
defense thereby limiting viral replication and reducing inflam-
mation (173), suggesting that the gene:environment interac-
tions may be abstruse even for genes identified by genome-wide 
association studies. Recognition of similar genetic involvement 
in the pathogenesis of influenza in allergic hosts may be 
important to delineate why some patients fair better/worse 
during influenza virus infections. The common perception that 
asthmatics are unable to launch effective TH1 responses against 
respiratory viruses stems largely from investigations surround-
ing RV (174). A mixed cytokine profile has been demonstrated 
in allergic mice that are infected with pH1N1 wherein these 
animals had TH1, TH2, and TH9 responses (158). Immune 
responses to a respiratory virus are dictated by a sophisticated 
amalgamation of genetic, immune memory (past experience), 
and topography of the pulmonary milieu, and unlikely to be 
of comparable strength and phenotype between viruses. While 
the 2009 pH1N1 infections resulted in asthma exacerbations 
(similar to other viruses), the less severe influenza disease 
outcomes suggest that the cytokine storm induced was protec-
tive against viral pathologies further emphasizing that antiviral 
immune responses and consequences thereof are unique and 
situation-dependent.

CONCLUSiON

Asthma and influenza are common conditions that affect mil-
lions worldwide. Although pathogens like RSV and RV are 
known to initiate and exacerbate asthma, the relationship 
between asthma and influenza was ambiguous. The recognition 
that asthma was a risk factor associated with hospitalization 
during the 2009 influenza pandemic put these two diseases 
in the spotlight as a duo for poor outcomes. The notion that 
hypersensitivity-based immune responses may be protective 
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to the host during pathogen encounters was first suggested 
by Arthur Varner (175), and confirmed during the Swine Flu 
pandemic wherein asthmatics were less likely to suffer from 
complications related to severe influenza. Mechanisms that 
may have resulted in this unexpected outcome were identi-
fied using mouse model systems wherein the immune profile 
associated with acute allergic exacerbation was found to have 
enhanced antiviral properties. In this review, we focused on the 
complexities of these immunologically distinct diseases both 
independently and together to highlight the intricacies associ-
ated with understanding health conditions that presently affect 
the population. As new discoveries are made that emphasize 
different endotypes of asthma, it is important to investigate how 
these immune responses impact invading pathogens as these 
contextual investigations will benefit our goal of improving 
personalized medicine.
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