
 

  

 

 

 

 

 

 
 
 
 
 
 
 
Introduction 
 

A loop, also called a coil, is a flexible segment of contiguous 
polypeptide chain that connects two secondary structure elements in a 
protein. The loop regions play critical roles in protein functions, such 
as involving in catalytic sites of enzymes [1], contributing to 
molecular recognition [2-4], and participating in ligand binding sites 
[5-7]. As a result, accurate prediction of the loop regions 
conformations in proteins is important for a variety of structural 
biology applications, including determining the surface loop regions 
in comparative modeling [8], defining segments in NMR 
spectroscopy experiments [9], designing antibodies [10], identifying 
function-associated motifs [11], and modeling the dynamics of ion 
channels [12, 13].  

According to the loop length distribution illustrated in Figure 1, 
93.2% of loops have lengths ranging from 2 to 16 residues, although 
sometimes loops can stretch much longer. Nevertheless, due to their 
high flexibility, loops regions are usually more difficult to model and 
analyze than the other secondary structures such as helices or strands. 
Indeed, in many (complete) protein models derived from 
computational methods, the loop regions, particularly the long ones, 
are the places contributing a lot of error [77]. At the early attempt of 
loop modeling, Flory [14] assumed that the backbone torsion angles 
corresponding to one residue are random, more precisely, statistically 
independent from the backbone torsions of its neighbors. However, 
more and more experimental [15], evolutional [16], and statistical 
[17] data have shown that loops are far from random and the nearby 
residue neighbors in sequence are sufficiently strong to account for 
substantial changes in the overall structure of loops. Figure 2 shows 

the ϕ-ψ propensity maps of Leucine in loops when the hydrophobic 
residues  (ILE  and  VAL)  are presented  as  neighbors  at  different  

 
 
 
 
 
 

 
 

distances. One can find that the backbone dihedral angle 
conformations of Leucine have strong correlation with the types of 
residues at the nearest and second nearest neighboring positions. 
However, such influences from residues at further positions are much 

weaker. The ϕ-ψ propensity maps of Leucine with ILE and VAL as 
two positions away neighbors are almost indistinguishable to the one 
of singlet Leucine, indicating that influences from neighboring loop 
residues two positions or further away are negligible. Moreover, 
studies have demonstrated that the identical peptide segments can 
adopt completely different structures in different proteins [18, 19]. 
Hence, in addition to the residues in a loop, the residues surrounding 
the loop structure are also important to determine its conformation, 
particularly for a loop deeply embedded in the protein structure. 
Furthermore, the distance between the anchor points in the rest of the 
protein that spans the loop likely influences the loop conformation as 
well, particularly when the loop is short. To facilitate studies on 3D 
structures of loops, the Protein Coil Library [20] maintains the 
structures of all loop segments derived from protein structures 
presented in Protein Data Banks (PDB).   
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Abstract:  Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand 
functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is 
usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable 
progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of 
known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop 
structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to 
obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup 
mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also 
summarized. 
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Figure 1. Distribution of loop lengths in the protein chain list generated by 
the PISCES server [21] on Aug. 28, 2012 containing 13255 chains with 2.0A 
resolution, 90% sequence identity, and 0.25 R-factor cutoff. 
 



 
 
 
 
 

 
In general, loop structure modeling methods can be categorized 

into template-based (database search) methods and template-free (ab 
initio) methods. The template-based methods [22-25] search PDB 
for loop structure templates that fit the geometric and topologic 
constraints of the loop stems. The template-based methods highly 
depend on the quality and number of known structures in the PDB. 
Due to the fact that the number of possible loop conformations 
grows exponentially with lengths, the template-based methods are 
limited to relatively short loops. In contrast, the template-free 
methods can avoid this problem by sampling loop conformation space 
guided by energy functions. In this mini-review, we focus on the 
template-free methods only. 

The template-free loop modeling problem is regarded as a “mini 
protein folding problem” [47] under geometric constraints, such as 
loop closure and avoidance of steric clashes with the remainder of the 
protein structure. Similar to the protein folding problem, modeling 
steps including coarse-grained sampling, filtering, clustering, fine-
grained refining, and ranking are often found in most loop structure 
prediction methods. During the coarse-grained sampling step, guided 
by knowledge- or physics-based energy functions, the loop 
conformation space is explored to produce a large ensemble of 
reasonable, coarse-grained models satisfying geometric constraints. 
These coarse-grained models usually use reduced representations for 

loop structures, such as ϕ-ψ angles, backbone atoms, Cα atoms only 
[59], or side chain centers of mass [68]. Afterward, the coarse-grained 
models are filtered to eliminate the unreasonable ones in the ensemble 
[60] and then the representative models are selected by a clustering 
algorithm to reduce redundancy. These representative models are used 
to build fine-grained models in the refining phase, usually guided by a 
more accurate energy function associated with more structural 
information such as side chains and hydrogen atoms. Finally, in the 
ranking phase, the final models are assessed and the top-ranked ones 
are determined as the predicted results [62]. Among all these 

modeling steps, the coarse-grained sampling phase is of particular 
importance – if the sampling process cannot reach conformations 
close enough to the native, it is unlikely to obtain a high-resolution 
near-native model eventually. Moreover, the success of sampling relies 
on the underlying energy (scoring) functions, which are required to 
provide not only accurate, but also sensitive guidance to the sampling 
process to explore the protein loop conformation space.   

There has been a lot of work done in modeling proteins loops 
since late 1960s. Limited by length, it is not our intention to provide 
a thorough review of loop modeling approaches in this mini review. 
Instead, we focus on the recent computational sampling approaches 
developed for protein loop structure prediction using template-free 
methods. We put our emphasis on the important factors that impact 
loop conformation sampling efficiency, including energy functions for 
modeling loops, loop buildup algorithms to satisfy geometric 
constraints, and coarse-grained sampling algorithms. The results of 
recent works in loop structure prediction are also summarized. 

 
Energy Functions for Loop Modeling 

 
According to Anfinsen’s thermodynamics hypothesis [26], the 

native protein structure having the native structure conformation has 
the minimum Gibbs free energy of all accessible conformations. 
Similar to the general protein folding problem, many efforts of loop 
modeling focus on minimizing the protein potential energy described 
by physics-based energy functions. Zhang et al. [27] designed a 
simplified soft-sphere potential to fast construct loops. Cui et al. [28] 
developed a grid-based force field for their Monte Carlo (MC) 
sampling approach. More recent works take advantage of the existing 
force fields and solvent models popularly used in molecular 
simulation. Rapp and Friesner [29] and de Bakker et al. [30] used the 
AMBER [31] force field with a Generalized Born solvent model. 

Figure 2. ϕ-ψ propensity maps of Leucine in the loops in presence of hydrophobic neighbors (ILE and VAL): (a) LEU as a singlet; (b, c, d) LEU with ILE and VAL as 
the nearest, one position away, and two positions away neighbors in sequence. The nearest and second nearest neighbors have strong influences to the 
backbone torsion angle conformations of Leucine and the influences from further neighbors are significantly weakened. 
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Spassov et al. [32] adopted the CHARMM [33] force field in their 
LOOPER algorithm. The Protein Local Optimization Program 
(PLOP) [34] developed by Jacobson et al. is based on the OPLS-AA 
[35] force field with Surface Generalized Born (SGB) solvent model. 
Rapp et al. [36] also used OPLS-AA/SGB to reproduce loop 
geometries in experimental solution structures. Zhu et al. [37] 
included a hydrophobic term in SGB solvation model and achieved 
accuracy improvement in long loops ranging from 11 to 13 residues. 
Felts et al. [38] incorporated Analytical Generalized Born plus Non-
Polar (AGBNP) [39] implicit solvent model into PLOP. Sellers et al. 
[40] used MM/GBSA (Molecular Mechanics/Generalized Born 
Surface Area) energy [41] for loop refinement in comparative 
modeling. Danielson and Lill [80] also used MM/GBSA to study 
flexible loops interacting with ligands. Fogolari and Tosatto [42] 
took advantage of the concept of “colony energy” by considering the 
loop entropy, an important component in flexible loops, as part of the 
total free energy.  

Since the main goal in loop structure prediction is to model loop 
conformation with high accuracy instead describing the underlying 
physics [47], an alternative approach to assess the correctness of a 
loop conformation is knowledge-based energy functions. The 
rationale of knowledge-based energy function is to obtain “pseudo 
energy” based on statistical preferences of conformations for different 
geometries as obtained from the database of known protein structures. 
Compared to the physics-based energy functions, the knowledge-
based energy functions have several attractive advantages. First of all, 
the knowledge-based energy functions implicitly capture interactions 
that are difficult to model in physics-based energy functions. 
Secondly, the knowledge-based scoring functions usually do not 
require all atom information of the loops, which is ideal to rapidly 
generate coarse-grained models. Thirdly, the knowledge-based 
potentials tend to be “softer” to tolerate structural imperfection – 
allowing better handling of uncertainties and deficiencies of the 
computer generated models. 

Sippl’s potentials of mean force approach [43] is one of the most 
notable methods to obtain knowledge-based energy functions. 
According to the inverse-Boltzmann theorem, the knowledge-based 

energy potential      for a feature f is calculated as 
 

          
       

       
  

 

where k is the Boltzmann constant, T is the temperature,         is 
the observed probability in the database of known structures, and 

        is the probability of the reference state. Possible features to 

which a pseudo-energy term can be assigned include pairwise atom 
distances, torsion angles, amino acid contacts, side chain orientation, 
solvent exposure, or hydrogen bond geometry. For example, DFIRE 
[44] and DOPE [45] energy functions are built on the statistics of 
distance of pair-wise atoms. The dipolar DFIRE (dFIRE) [46] adds 
orientation-dependent terms to DFIRE by treating each polar atom as 
a dipole. Rata et al. [17] developed a statistical potential for loops 

based on adjacent ϕ-ψ pair distribution in the context of all possible 
combinations of local residue types. Liang et al. (OSCAR-loop) [64] 
optimized the knowledge-based potential for backbone torsion angles 
as Fourier series. Galaktionov et al. [65] designed penalty functions 
based on residue-residue contact map representations to model loops 
over 20 residues. Burke and Deane [69] calculated a sequence-based 
scoring function to estimate the compatibility of a sequence with a 
certain loop class. 

In practice, physics- and knowledge-based energy terms are also 
often combined together to enhance the accuracy of the energy 

functions for loop prediction. Fiser et al. [47] used an energy function 
where stereochemical features are obtained from CHARMM-22 [33] 
force field while the non-bonded interactions, solvation, torsion angle 
preferences are derived from statistics. This energy function and the 
corresponding loop modeling method are adopted in the Modeller 
program. Rohl et al. [48] and later Mandell et al. [49] used the 
Rosetta scoring function [50], a hybrid scoring function which has 
demonstrated its effectiveness in CASP experiments. Xiang et al. [51] 
developed a combined energy function with force-field energy and 
RMSD (Root Mean Square Deviation) dependent terms, which is 
used in their LOOPY program.  
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(b) 

 
 
 
 
 

 
 

 
 
 
 

Figure 3. (a) Multiple energy functions coordinate plot of loop 
1btkA(14:24) decoys in Jacobson loop decoy set using 5 energy functions, 
including Rosetta, DOPE, dDFIRE, backbone torsion potential using triplets, 
and OPLS-AA. All scores are linearly normalized in [0, 1]. RMSD is 
calculated for all backbone atoms in the loop. None of these energy 
functions can identify a near native decoy (< 1.0A) with the lowest energy 
value. (b) Native loop (gold) and loop decoys with lowest scores in Rosetta 
(blue, 2.73A), DOPE and dDFIRE (green, 2.85A), Triplet (red, 2.34A), and 
OPLS-AA (purple 2.27A). 
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Although quite a few energy functions derived by different 
manners are available for loop structure modeling, currently there 
does not exist a superiorly accurate energy function that can always 
differentiate the near native structures from the other incorrect ones in 
all protein loops. Figure 3(a) depicts a coordinate plot of multiple 
energy functions on decoys of 1btkA(14:24) contained in Jacobson 
loop decoy set [63] using a variety of physics-based, knowledge-based, 
or hybrid energy functions, including OPLS-AA [35], Rosetta [50], 
DOPE [45], dDFIRE [46], and backbone torsion potential using 
triplets [17]. None of these energy functions can correctly identify a 
near native decoy (< 1.0A) with the lowest energy value, although 
some near-native decoys exhibit low energy values in various energy 
functions. Figure 3(b) shows the loop decoy structures with the 
lowest energy values in different energy functions.  

 
Loop Closure 

 
The computer-generated loop models during the sampling process 

must satisfy the loop closure condition, i.e., the endpoints (C- and N-
terminals) of a loop model must seamlessly bridge the anchored 
endpoints (C- and N-anchors) of the given protein structure. Figure 4 
depicts the loop closure problem.  

Computational methods enforcing loop models to satisfy loop 
closure constraints include energy penalty [52], finding analytical 
solutions [49, 53, 54], random tweak [55], wriggling [56], Cyclic 
Coordinate Descent (CCD) [57], or bi-directional inverse kinematics 
[58]. The energy penalty approach adds an additional term to the 
energy function to penalize deviations between the loop endpoints 
and the target anchor points [52]. The original method for obtaining 
analytical solutions is described in the pioneer work by Go and 
Scheraga [78]. Wedemeyer and Scheraga [53] derived the analytical 
solutions by determining the real roots of a polynomial, which lead to 
the solutions for closure of 6 backbone torsion angles in tripeptides. 
Coutsias et al. [54] and Mandell et al. [49] generalized the 
applicability of the analytical solutions to 6 not necessarily 
consecutive torsion angles in peptides of any length while small 
perturbations in bond angles and peptide torsion angles are also 
allowed. The random tweak method [55] is carried out by applying 

small random changes to ϕ-ψ angles and then using an iterated 
linearized Lagrange multiplier algorithm to satisfy the loop closure 
constraints with minimal conformational perturbations. Wriggling 
[56] takes advantage of the linear dependency of every four angles of 
rotation to keep the combined motion of loop localized. The CCD 
algorithm [57] treats the loop closure problem as an inverse 
kinematics problem, which fixes one loop endpoint at the one anchor 

and then iteratively modifies the ϕ-ψ angles in sequential order to 
minimize the distance between the other loop endpoint and the target 
anchor. The Full CCD (FCCD) algorithm [59] extends the 

applicability of CCD to a reduced loop representation with Cα atoms 
only by using a singular value decomposition-based optimization of a 
general rotation matrix. The bi-directional inverse kinematics method 
[58] adopts the “meet in the middle” strategy by generating half-
loops from both C- and N-anchors and then assembles the endpoints 
of the half loops, which is particularly suitable for modeling long 
loops. In [60], Soto et al. provided a comparison of effectiveness and 
computational performance among various loop closure algorithms. 

The above methods ensure loop closure, however, without 
considering the other geometric constraints such as steric clashes. 
Several methods have been proposed to account for additional 
geometric constraints in loop modeling. Xiang et al. [51] imposed a 
non-bonded energy term on the iterated Lagrange multiplier in the 
random tweak method to avoid steric clashes while satisfying loop 

closure simultaneously. Liu et al. [61] designed a self-organizing 
algorithm by performing fast weighted superimpositions of rigid 
fragments and adjusting distances between random atom pairs to 
resolve steric clashes, where not only loop closure, but also steric, 
planar, chiral, and even constraints derived from experiments can be 
satisfied simultaneously.  

 

 
 
 
 
 
Loop Conformation Sampling 

 
The loop conformation sampling is usually done by sampling 

backbone torsion angle conformations by deterministic or statistical 
sampling methods. In practice, it is not computationally feasible to 
sample all combinations of discretized torsion angles for a relatively 
long loop. Indeed, a large portion of these torsion angle combinations 
are infeasible due to steric clashes, unable to close, excluded volume 
for side chains, etc. In principle, both deterministic and statistical 
sampling techniques try to avoid these infeasible conformations as 
many as possible.  

Deterministic sampling intends to find all possible loop 
conformations with reasonable but diversified structures. Galaktionov 
et al. [65] built loops (up to 12 residues) based on all possible 
combinations of local minima of empirical conformational energy for 

ϕ-ψ angles of each residue. Jacobson et al. [34] and Zhu et al. [37] 
developed rotamer libraries in PLOP for backbone torsion angles 
from high-resolution protein structure database. Then, loops are built 
up from the rotamer libraries while a variety of screening criteria, 
including effective resolution, clashes, impossible closure, deviation 
from protein body, and space for side chains, are used during 
sampling to eliminate as many infeasible structures as possible. Zhao 
et al. [79] extended the rotamer libraries to dipeptide segments to 
model long loops over 13 residues. Spassov et al. [32] performed a 

systematic search of ϕ-ψ angles belonging to one of the low energy 
basins in the iso-energy contour of local interactions.  

Instead of attempting to generate all reasonable loop 
conformations, statistical sampling methods focus on the statistical 
favorability of conformations likely yielding low energy in the energy  

Figure 4. Addressing ϕ-ψ angles of a 4-residue loop to bridge the gap 
between the targeted anchored points 
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landscape. In Modeller [47] and LOOPY [51], a lot of random loop 
conformations are generated and then optimized by energy 
minimization. In RAPPER [66], an ensemble of conformations with 
pair-wise RMSD greater than 0.2A is collected using a round-robin 

algorithm, in which a suitable ϕ-ψ combination satisfying geometric 
constraints is selected to gradually grow the loops. Lee et al. [75] 
produced loop conformations by sequentially adding randomly 
chosen 7-residue fragments obtained from known structure database. 
Ring and Cohen [70] sampled loop conformations with Genetic 
Algorithms (GA). More popularly, the Markov Chain Monte Carlo 
(MCMC) method [27, 28, 48, 49, 52, 61, 63, 64, 67, 68] is adopted 
to explore loop conformation space. The fundamental idea of 
MCMC is to perform local MC moves to propose new loop 
conformations satisfying loop closure and other geometric constraints 
without disturbing the rest of the protein structures and then decide 
the acceptance according to Metropolis acceptance-rejection criterion 
[71]. Various techniques have been used to enhance MC sampling 

efficiency, including simulated annealing [27, 28, 48, 49, 52, 64], 
hierarchical MC [63], replica exchange [67], and configuration-biased 
MC [68].  

Generally, from algorithm point of view, GA is usually more 
effective than MC in terms of number of iteration steps to 
convergence, mainly due to better local minima escaping capability in 
GA when genetic operators such as crossover are employed [86]. 
However, in loop modeling, new conformations generated by 
crossover or mutation likely break the loop closure condition while 
potentially cause steric clashes. Additional quality control steps, 
potentially computationally costly, are necessary to correct these 
violations in geometric constraints [86]. In contrast, local MC moves 
in MCMC sampling guarantee satisfaction in geometric constraints 
and thus is more favorable in exploring loop conformation space. 

After sampling, a set of coarse-grained loop models exhibiting 
good geometric properties are generated. Refining loop models, 
usually guided by  a  more  accurate  and  sensitive  energy  potential  
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associated with more structural information such as side chain and 
hydrogen atoms, is needed to build fine-grained models. Similar to 
refining the complete protein structure, commonly used approaches to 
refine loop structures include local optimization [34], MC [81], and 
more often Molecular Dynamics (MD) simulations [82-85]. 
Furthermore, it is important to notice that coarse-grained and fine-
grained sampling can be combined together to enhance exploration of 
loop conformation space, as an example shown in [67] where MC and 
MD simulations are integrated by a replica exchange algorithm.  

Each loop modeling method has certain inevitable inaccuracy due 
to the limitation of sampling methods, uncertainty in energy 
functions, numerical errors, etc. A new strategy is to integrate 
different modeling methods to account for different sources of 
inaccuracy. Deane and Blundell [76] generated consensus predictions 
from two separate algorithms based on real fragments and computer 
generated fragments, respectively. Li et al. [72] developed a Pareto 
Optimal Sampling (POS) method based on the Multi-Objective 
Markov Chain Monte Carlo (MOMCMC) algorithm [73] to sample 
the function space of multiple knowledge- and physics-based energy 
functions to discover an ensemble of diversified structures yielding 
Pareto optimality. Jamroz and Kolinski [74] proposed a multi-
method approach using MODELLER, Rosetta, and a coarse-grained 
de novo modelling tool, which leads to better loop models than those 
generated by each individual method. 

 
Recent Loop Prediction Results 

 
Table 1 summarizes the energy functions, sampling methods, and 

loop closure mechanisms and Table 2 lists the loop prediction 
accuracies in recently (since 2000) published works. Due to advances 
in computational loop modeling methods, highly accurate models 
with resolution comparable to experimental results have been achieved 
in quite a few methods shown in Table 2 for loops less than 8 
residues. Several recent methods [37, 49, 72] can predict loop 
conformations within or close to 1A RMSD for loop targets up to 13 
residues. Another important factor leading to loop modeling 
improvement is the stable growth of the number of known structures 
in PDB, which allows one to derive more sensitive knowledge-based 
energy functions, calibrate physics-based energy functions to achieve 
higher accuracy, and obtain richer loop fragments or rotamer libraries. 
Nevertheless, for the very long loops, for example, those over 18 
residues, significant breakthrough has not been reported yet. 
According to Galaktionov et al. [65], modeling very long loops is a 
“different problem” due to their significantly higher flexibility 
compared to relatively short loops, which demands “different 
methodological approaches.”  

It is also important to notice that Table 2 does not serve the 
purpose of comparing prediction accuracy between different methods. 
First of all, the prediction accuracies in different methods are reported 
on different loop targets. Some loop targets are significantly “harder” 
than the others due to strong external influences from ions, ligands, 
disulfide bonds, and/or interactions with external chains or other 
units in the crystallographic unit cell. Several difficult loop targets 
(1poa(79:83), 1eok(A147:A159), 1hxh(A87:A99), and 
1qqp(2_161:2_173)) are analyzed in [62]. Secondly, different criteria 
have been used to measure the accuracies of their prediction results in 
different methods. The RMSD calculations may be adopted very 

differently – either based on all heavy atoms, backbone atoms, or Cα 
atoms only. Moreover, the RMSD comparison may be directly carried 
out between the predicted model and the native structure, between the 
model and the relaxed native structure minimized by a force field, or 
between structures after global superimposition. Thirdly, loops are 

modeled under different assumptions in different methods. For 
example, Rosetta repacks all side chains of the protein [48, 49] while 
most of the other methods keep the native side chain conformations 
in the rest of the protein during the loop modeling process. 
Therefore, Table 2 does not form a fair base for comparing 
performance among different loop prediction methods, but is instead 
used to reflect the recent progress in loop modeling. 

 
Summary 
 

Loops play a critical role in performing important biological 
functions of proteins. However, due to their high flexibility and 
variability, modeling the 3D structures of loops is more difficult than 
other secondary structures. Loop structure modeling is regarded as a 
“mini protein folding problem” under geometric constraints such as 
loop closure and steric clashes. The computational loop modeling 
methods can be categorized into template-based and template-free 
methods. The template-based methods rely on database search, which 
is limited by the number of known structures in PDB, particularly 
when modeling relatively long loops. In comparison, the template-free 
methods can avoid this problem by diversely sampling loop 
conformation space to search for appropriate structures. Hence, 
sampling loop conformation space is the cornerstone of the template-
free methods. Successful sampling methods rely on accurate and 
sensitive energy functions, fast buildup mechanism to generate 
reasonable loop models satisfying geometric constraints, and efficient 
sampling algorithms. 

There has been remarkable advancement in template-free loop 
structure modeling in the past decade, mainly due to new 
computational methods as well as increasing number of known 
structures available in PDB. Quite a few loop modeling methods with 
various strategies have successfully predicted short loops (< 8 
residues) with resolution comparable to experimental results. Several 
recent methods have even achieved near sub-angstrom accuracy in 
longer loops up to 13 residues. However, modeling very long loops 
over 18 residues is a challenge remaining unaccomplished. Recent 
study by Raval et al. [87] on protein structure refinement using very 

long (>100μs) MD simulations has shown that inaccuracy in current 
force fields limits MD-based protein structure refinement. Similarly, 
given loop modeling as a “mini protein folding problem,” for difficult 
or long loop targets, while sampling is no longer a critical issue [87], 
development of more precise energy functions is now the key.   
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