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Background: At present, the simple prognostic models based on clinical information for predicting
the treatment outcomes of brain metastases (BMs) are subjective and delayed. Thus, we performed this
systematic review of multiple studies to assess the potential of quantitative magnetic resonance imaging
(MRI) biomarkers for the early prediction of treatment outcomes of brain metastases with stereotactic
radiosurgery (SRS).

Methods: We systematically searched the PubMed, Embase, Cochrane, Web of Science, and Clinical
Trials.gov databases for articles published between February 1, 1991, and April 11, 2022, with no language
restrictions. We included studies involving patients with BMs receiving SRS; the included patients were
required to have definite pathology of a primary tumor and complete imaging data (pre- and post-SRS).
We excluded the articles that included patients who had undergone previous surgery and those that did not
include regular follow-up or corresponding MRI scans.

Results: We identified 2,162 studies, of which 26 were included in our analysis, involving a total of 1,362
participants. All 26 studies explored the relevant MRI parameters to predict the prognosis of patients
with BMs who received SRS. The outcomes were generalized according to the relationships between the
anatomical/morphological, microstructural, vascular, and metabolic changes and SRS. Generally, with
traditional MRI, there are several quantitative prognostic models based on preradiosurgical radiomics that
predict the outcome of SRS treatment in local BM control. With the implementation of advanced MRI, the
relative apparent diffusion coefficient (ADC), perfusion fraction (f), relative cerebral blood volume (rCBV),
relative regional cerebral blood flow (rrCBF), interstitial fluid pressure (IFP), quadratic of time-dependent
leakage (K.,,,’), extracellular extravascular volume (v,), choline/creatine (Cho/Cr), nuclear Overhauser effect
(NOE) peak, and intraextracellular water exchange rate constant (k;;) were confirmed to be indicative of the
therapeutic effect of SRS for BMs.

Conclusions: Quantitative MRI biomarkers extracted from traditional or advanced MRI at different time
points, which can represent the anatomical/morphological, microstructural, vascular, and metabolic changes,
respectively, have been proposed as promising markers for the early prediction of SRS response in those with
BMs. There are some limitations in this review, including the risk of selection bias, the limited number of

study objects, the incomparability of the total data, and the subjectivity of the review process.
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Introduction

Brain metastasis (BM), which occurs frequently in non-small
cell lung cancer (NSCLC), breast cancer, and melanoma
(1,2), is associated with poor survival and presents distinct
clinical problems. At present, multiple treatments are
available, including neurosurgical resection, radiotherapy,
chemotherapy, and immunotherapy (1,3), making it difficult
to formulate a patient-specific treatment plan. Owing to the
anatomical location of BMs and the blood-brain barrier (4),
radiotherapy has become a particularly promising treatment
method for BM. Stereotactic radiosurgery (SRS), as opposed
to whole brain radiotherapy (WBRT), is recommended by
the American Society of Radiation Oncology (5) and the
International Stereotactic Radiosurgery Society consensus
guidelines (6) due to the absence of compromise in survival
outcomes as well as the absence of a significant increase in
neurocognitive toxicities (1,3,7).

Simple prognostic models based on clinical information
have been developed to help predict the prognosis of
patients with BM, including the recursive partitioning
analysis (8) scale and graded prognostic assessment (GPA) (9)
score. Moreover, in light of the increasing awareness of the
influence of primary tumor type and molecular alterations
on patient outcomes, disease-specific GPAs (DS-GPA) (10)
and/or relevant molecular updates (11-14), if available, are
presently used in both clinical practice and trial design.
Nevertheless, few studies have added advanced quantitative
imaging biomarkers in an attempt to improve these models.

Neuroimaging’s role in the diagnosis, treatment
planning, and posttherapy assessment of brain tumors is
continually evolving. Magnetic resonance imaging (MRI)
uses a strong magnetic field to provide high-resolution
anatomical information that allows for the easy identification
of blood vessels, masses, and adjacent soft tissues (15).
Furthermore, advanced MRI sequences are capable of further
characterizing tumor biology by providing quantitative
functional parameters that are known to have biological
significance, such as tissue cellularity, vascular perfusion or
permeability, and hypoxia (16). Most studies (17-23) tend
to use cerebral MRI to clarify aspects of tumor diagnosis,
including true progression, false progression, edema
zone, tumor hemorrhage, etc., while very few studies have
attempted (with limited success) to evaluate the treatment
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response using quantitative MRI within a few days after SRS.
In this article, we review the literature on the potential
of early quantitative MRI biomarkers to indicate the local
control or failure of patients with BMs undergoing SRS, and
discuss their potential utilities and limitations as imaging
biomarkers to guide treatment individualization for patients
with BMs. We believe that there is a promising future for
the clinical application of quantitative imaging biomarkers.
We present the following articles in accordance with the
PRISMA-ScR reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-412/rc).

Methods
Search strategy and selection criteria

This review was not registered, and the protocol was not
prepared. We selected relevant studies published between
February 1, 1991, and April 11, 2022, by searching the
PubMed, Embase, Cochrane, Web of Science, and Clinical
Trials.gov databases without language restrictions. We
used the following medical subject heading (Medical
Subject Headings, MeSH) terms: “Brain Metastases”,
“Radiosurgery”, “Imaging, Magnetic Resonance”, and
“Outcome, Treatment” or “Prognoses”. The complete
advanced search method used for PubMed is detailed in
Appendix 1. All potentially eligible studies were considered
for our review, regardless of the primary outcome or the
language. We also performed a manual search using the
English reference lists of the main articles.

Study selection and data extraction

A study was considered to be eligible if it was performed
on patients with BMs who had received brain SRS alone
or who received SRS combined with chemotherapy or
immunotherapy. The patients included in the study were also
required to have definitive pathological confirmation of the
primary tumor. Furthermore, all of the included patients were
followed up with regular brain MRI examinations before
and after SRS. The exclusion criteria were as follows: (I) not
treatise studies, (II) studies with fewer than 5 participants,
(III) studies incorporating patients who had undergone prior
surgery, and (IV) studies without reliable statistics.
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Figure 1 PRISMA flow diagram. BM, brain metastasis; SRS, stereotactic radiosurgery; MRI, magnetic resonance imaging.

The studies involving quantitative MRI (qMRI)
biomarkers as early prognostic indicators for patients
with BMs undergoing SRS were classified into 4 groups
according to the treatment-related changes after
radiotherapy. The outcomes were generalized according
to the following aspects: (I) the anatomical/morphological
changes in BMs following radiosurgery, (II) the relationship
between the microstructural changes and SRS, (III) the
relationship between the vascular changes and SRS, and (IV)
the metabolic changes in BMs following radiosurgery.

Two investigators (J Hu and X Hu) independently
reviewed study titles and abstracts and identified the studies
meeting the inclusion criteria for full-text assessment. In
cases of disagreement between these 2 investigators, another
senior physician (X Xie) was asked for her viewpoint. Trials

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

selected for detailed analysis were examined ulteriorly by 2
investigators (J] Hu and X Hu) independently. We extracted
the following data from each selected study: total number of
participants, age, primary tumor pathology, radiation dose,
time of radiological follow-up, magnetic field strength,
MRI sequences, the range, of accessed tissue, and the
quantitative biomarkers for predicting SRS response of
BMs. Subsequently, X Xie confirmed the main findings of
each selected study.

Results

We identified 2162 studies, of which 26 (published between
2003 and 2022) were included in our analysis (Figure I).
Given the thousands of gMRI parameters being extracted
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from different sequences, it is difficult to select the optimal
statistics of biomarkers for the early prediction of local
outcomes in metastatic brain tumors after stereotactic
radiotherapy. We aimed to review the current state of
research into the predictive imaging biomarkers for
delineating the treatment response of SRS-treated BMs
using traditional and advanced MRI techniques and to
summarize the findings inferred from MRI results regarding
the underlying biological changes. Tuble I provides an
overview of the accessible publications regarding gMRI
parameters predicting the prognosis of BMs after SRS.

The relationship between anatomical/morphological
changes and SRS

It is acknowledged that the traditional cranial MRI
techniques, including T1-weighted (T'1w), T2-weighted
(T2w), and contrast-enhanced images, can provide
legible anatomical or morphological information (15),
and these are consequently implemented clinically as
the standard modality for the diagnosis and follow-up
of BM. Researchers previously focused on the alteration
of tumor volume (TV) and heterogeneity, as well as the
perilesional edema (PE) in structural MRI, despite the
lack of quantitative measurements to assess the change in
metastatic brain tumors. With the development of imaging
and analysis technologies, gMRI biomarkers for predicting
treatment response have gradually been acquired.

Several studies (24,25) focused on the quantification
of the peritumoral region before irradiation, while others
(26-35) developed optimal quantitative prognostic models
(with or without clinical data) by examining multiple
geometrical and textural features of MR images pre-SRS
with different sophisticated radiomics analysis frameworks
to predict early treatment response. However, since the
algorithms for image quantification were not standardized,
the robustness and reproducibility of the relevant results
were poor. In 2020, an image biomarker standardization
initiative (IBSI) was proposed to standardize radiomics
features. Generally speaking, it aims to standardize the
extraction of biomarkers from acquired imaging for high-
throughput quantitative image analysis (radiomics). The
current consensus is that the results based on this guideline
are considered more reliable (36).

Quantification of peritumoral region

Tini er al. (25) divided the maximal extent of peritumoral
edema in 42 patients with BM from NSCLC into minor
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(<10 mm) and major (10 mm) according to the classification
proposed by Schoenegger for glioblastoma (37). They
reported that minor edema was associated with a better
response to SRS treatment (range, 10-30 Gy) and a reduced
risk of developing new brain lesions. In a monocentric
retrospective study, Nardone et /. (24) analyzed 46 patients
with 1-2 BMs treated with SRS (range, 16-30 Gy) and
suggested that patients with BMs with a lower PE/gross
tumor volume (GTV) ratio (hazard ratio, HR 0.302) at
diagnosis are more prone to developing new brain lesions.
Additionally, patients with higher PE, GTV, and TV showed

worse overall survival (OS).

Quantitative prognostic models without clinical data

Some researchers have investigated ¢MRI biomarkers
through a radiomics analysis framework constructed using
various geometrical and textural features extracted from
T1w and T2w images within the tumor and edema regions
to predict the treatment outcome in patients with BM
treated with radiotherapy. Nardone ez al. (26) evaluated
the prognostic value of MRI texture analysis parameters
(mean, standard deviation, skewness, kurtosis, entropy,
and uniformity) of 38 patients with NSCLC with oligo-
metastases treated with SRS (range, 14-23 Gy) and
stereotactic radiation therapy (SRT; range, 18-24 Gy, in
3-5 fractions). They found that there was a significant
correlation between entropy, uniformity, and local
progression, while kurtosis was associated both with local
progression and new BMs. Another study by Park ez al. (27)
detected multiple textural features extracted from
pretreatment MRI scans in 279 BM patients treated with
SRS with a marginal dose ranging from 12 to 24 Gy. The
authors speculated that 2 independent textural features,
run-length nonuniformity and short-run emphasis values,
may provide valuable information regarding the underlying
tumor heterogeneity, radiosensitivity, and/or vascularization,
which could, in turn, be related to the SRS treatment
response. Karami ez 4/. (29) found that the optimal ¢qMRI
biomarkers consisted of 5 features for overall local control
or failure (LC/LF) outcomes and 4 features for the 6-month
and 12-month outcomes through a multistep feature
reduction and selection method in 100 patients with BM
treated with hypofractionated SRT (range, 25-35 Gy, in 5
fractions). The selected 13 features on pretreatment MRI
mainly characterize the heterogeneity in the surrounding
regions of the tumor, including edema, tumor margin, and
lesion margin. Similarly, Gutsche ez al. (28) retrospectively
analyzed the pretreatment T1w MR images of 150
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patients with BMs treated with SRS (range, 17-20 Gy).
They constructed an optimal radiomics model comprising
10 features that allowed for prediction of the early response
to SRS that outperformed the visual assessment of contrast
enhancement patterns.

Quantitative prognostic models with clinical data

As the IBSI guidelines were proposed in 2020, it is worth
mentioning a study from Kawahara ez 4/. (30). The authors
investigated the radiomics features extracted from the
radiotherapy planning MRI scans of 54 patients with
melanoma BM treated with gamma knife radiosurgery
(GKRS) at a dose of 24 Gy for TV <4.2 cc (cubic
centimeters), 18 Gy for TV >4.2 cc to <14.1 cc, and 15 Gy
for TV >14.1 cc. They proposed a promising neural
network (NN) model using the 7 selected radiomics features
of the tumor image from the planning MRI for predicting
the local response of BMs to GKRS, with an accuracy of
0.87. This study emphasized the importance of the IBSI
guidelines and precontrast T1 MR radiomics for predicting
the outcome of GKRS.

Moreover, several studies have succeeded in
incorporating radiomics features with clinical and
dosimetric features to improve the local response prediction
of SRS-treated BMs. Mouraviev et /. (31) extracted a
total of 440 radiomics features from the tumor core and
peritumoral regions using the baseline standard volumetric
postcontrast T'1 (T'1c) and volumetric T2 fluid-attenuated
inversion recovery MRI sequences in a cohort of 87 mixed-
histology BM patients treated with SRS (range, 14-25 Gy).
They found that the addition of the top 10 radiomics
features provided additional information regarding the
standard routinely available clinical variables for predicting
LF in BM following SRS. Similarly, Jaberipour et al. (32)
developed a predictive model using the pretreatment ¢gMRI
and clinical features of 100 patients, which was evaluated
using an independent test set with data from 20 patients. All
of the patients with BMs underwent SRT with a total dose
of 22.5-35 Gy over 5 fractions. The authors demonstrated
that the incorporation of a ¢qMRI biomarker, consisting of
4 features with 2 heterogenous features in the edema area,
1 characterizing intratumor heterogeneity and the other
describing tumor morphology, could improve the overall
performance of predicting LC/LF by up to 16% of the area
under the curve (AUC).

Zheng et al. (35) reported that pretreatment T1c-based
kurtosis combined with age provided better performance
for survival prediction in 81 patients with breast cancer BMs

© Quantitative Imaging in Medicine and Surgery. All rights reserved.
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undergoing GKRS (range, 15-20 Gy). Moreover, Wang
et al. (34) retrospectively reviewed a subset of 28 patients
who received single-fraction SRS with doses ranging
from 15 to 25 Gy. They stated that 10 radiomics features
(including 1 shape feature, 6 MR images, and 3 dose
distribution features) from planning MRIs and dose maps
showed promise for the early prediction of tumor LF in
SRS. Jiang er al. (33) retrospectively analyzed 137 patients
with lung cancer BMs (LCBMs) who received GKRS (range,
15-20 Gy). The authors extracted valuable radiomics
features of the tumor core and peritumoral edema from
pretreatment multimodality MRI images using random
forests. They finally developed a radiomics approach that
integrates the top 10 multimodality MRI-based radiomics
features and clinical factors (gender and histological
subtype) to predict the posttreatment response of LCBM
to GKRS.

The relationship between microstructural changes and SRS

A few studies have assessed the radiation-induced
microstructure changes of BM with diffusion imaging and
succeeded in identifying the optimal quantitative diffusion
MRI parameters to predict the radiobiological response (15).
A retrospective investigation by Chen ez /. (38) accessed a
diffusion index (DI) generated from the apparent diffusion
coefficient (ADC) and tumor volume at baseline and at
1 and 6 months post-SRS (range, 14-18 Gy) in a mixed-
histology cohort of 41 patients with BM. They proved
a lower DI at baseline and at 1 month could distinguish
responders from nonresponders. In a pilot study, Jakubovic
et al. (39) demonstrated that lower relative ADC values could
distinguish between radiation responders and nonresponders
as early as 1 week and 1 month posttherapy (SRS, SRT,
or WBRT) in 42 patients with histologically diverse BMs.
Additionally, Shah et 4l. (40) prospectively studied a mixed-
histology cohort of 16 patients with BM who received pre-
SRS MRI and early (within 72 h) post-SRS MRI, including
diffusion-weighted imaging (DWI) and dynamic contrast
enhancement (DCE), and analyzed the DWIs using the
monoexponential and intravoxel motion model. They
confirmed that higher perfusion fraction (f) values derived
from DWTI early post-SRS were predictive of responders
(in terms of stable disease, partial regression, and complete
regression). Consequently, a lower ADC (at 1 week and
1 month postradiation therapy) and DI (pre-SRS, 1 month
post-SRS) indicate responders, while higher f values
(72 h post-SRS) indicate nonresponders.
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The relationship between vascular changes and SRS

Radiation-induced vascular changes can be detected with
perfusion-weighted imaging (PWI) methods such as
dynamic susceptibility contrast (DSC), DCE, and arterial
spin labeling (ASL) (15).

Researchers have investigated the prognostic value of
quantitative perfusion MRI biomarkers for SRS response
in patients with BMs and consequently observed that a
reduction of relative cerebral blood volume (rCBV) (41),
relative regional cerebral blood flow (rrCBF) (42), quadratic
of time-dependent leakage (K..,,.") (43), and interstitial fluid
pressure (IFP) (44) is associated with tumor response after
SRS, while an increase of K™ (40,45,46) and extracellular
extravascular volume (v,) (40) is correlated with long-term
progressive disease.

DCE

Using DCE, Almeida-Freitas et al. (45) prospectively
observed a significant reduction in the K" values of
34 cerebral metastases from a mixed-histology cohort of
26 patients with BM 4-8 weeks after SRS. The researchers
reported that an early increase of 15% in K™ after SRS
(range, 12-25 Gy) was associated with an increased risk
of tumor progression at the midterm MRI follow-up
(mean 7.9+4.7 months). Jakubovic ez al. (43) prospectively
investigated the predictive capacity of early changes in rCBYV,
relative cerebral blood flow, and K,,,,.’ from DSC, and DCE
MRI in 70 histologically diverse BMs of 44 patients who
received either SRS or WBRT. The authors found that
early Kiuns reduction at 1 week posttreatment significantly
differentiated responders from nonresponders, whereas a
lower rCBV at 1 month could distinguish disease progression
from nonprogression. Taunk et a/. (46) retrospectively
calculated the K™, blood plasma volume, and v, for 53
NSCLC BMs treated with SRS (range, 18-21 Gy) from
41 patients. They demonstrated that a post-SRS K"
standard deviation cutoff value of 0.017 within 12 weeks was
highly sensitive (89%) for predicting long-term progressive
disease (PD) and non-PD. Additionally, Shah ez /. (40)
reported that higher v, and K™" values derived from DCE
MRI pre-SRS in a mixed-histology cohort of 16 BM patients
were associated with nonresponse. Another retrospective
study by Swinburne et al. (44) of 43 lung cancer BMs
subjected to SRS (range, 18-22 Gy) examined the correlation
between long-term local tumor control and early (within
12 weeks) intratumoral changes in IFP and interstitial fluid
velocity estimated from computational fluid modeling using

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

DCE MRI. They demonstrated that lower post-SRS tumor
heterogeneity represented by a reduction of IFP skewness
and kurtosis was associated with the objective response.

DSC

Using DSC, Essig et al. (41) observed a decrease in the
region CBV value of 18 patients with BM after single high-
dose SRT (range, 15-20 Gy) at the 6-week follow-up that
was highly sensitive for treatment outcome prediction.
Similarly, Weber et al. (42) reported a decrease in the rrCBF
value determined by DSC and ASL perfusion MRI at the
6-week follow-up in 25 patients with BM post-SRS (range,
16-20 Gy), which was capable of correctly predicting the
tumor response. Additionally, in a pilot study by Huang
et al. (47) that enrolled 16 patients with BM treated with
SRS (range, 17-21Gy) who received PWI 1 week pre- and
posttreatment, the authors found that a higher rCBV at
1 week 1 had a borderline association with shorter time to
local recurrence.

Contrary to the findings of Essig er a/. (41) and Huang
et al. (47), the results of Jakubovic ez al. (43) suggested that
a lower rCBV at 1 month post-SRS could predict disease
progression. The apparent discrepancy between these
studies is probably explained by the different times at which
rCBV was measured, given the fact that vascular changes
after radiation treatment have shown to be highly time-
dependent (48). In summary, lower rrCBF (6 weeks post-
SRS) and K., (1 week post-RT) portend tumor response,
while higher K™ (pre-SRS, 4-8 weeks post-SRS) and v,
(pre-SRS) are more likely to be indicative of nonresponse.

The relationship between metabolic changes and SRS

The development of advanced MRI techniques such as
magnetic resonance spectroscopy (MRS) and chemical
exchange saturation transfer (CEST) has provided an
opportunity for researchers to investigate the metabolic
and microenvironment changes of BMs after SRS on a
more micro scale, and subsequently identify their value for
predicting long-term treatment response.

MRS

MRS allows for the noninvasive detection of radiation-
induced metabolic changes in the brain. The metabolites
N-acetyl aspartate (a marker for neuronal viability), choline
(Cho; a marker of cell membrane turnover), and creatine (Cr;
a bioenergetic metabolite) have primarily been evaluated.
Some studies have also investigated changes in lactate
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(Lac) as a marker for anaerobic metabolism and changes in
lipids (Lip) as a marker for cell membrane disintegration.
Both the absolute metabolite values and ratios between the
metabolites have been considered (15,49-52).

In a retrospective analysis, Jia er al. (53)
investigated the qualitative and quantitative
parameters of baseline MRS metabolites to predict
the tumor response after SRT in a cohort of 68
patients with NSCLC with BM (range, 48-60 Gy
in 6-8 fractions). This study indicated that patients with
elevated Cho/Cr values (Cho/Cr >1.46) exhibited a poorer
prognosis than did those with Cho/Cr <1.46 [OS: P=0.002;
progression-free survival (PFS): P=0.001]. Lee ez al. (54)
retrospectively assessed the potential of hyperpolarized
“C MRI to predict radiation treatment failure by probing
Lac metabolism in vivo in 11 patients with intracranial
metastases. They found that the positive predictive value of
the "C-lactate signal measured pre-SRS for the prediction of
intracranial metastasis progression at 6 months post-SRS was
0.8 (P<0.05), and the AUC was 0.77 (P<0.05).

Chemical-water exchange
CEST is a new MRI technique that is sensitive to the
exchange of proton pools with bulk water protons, forming
an MRI image that may provide additional information as
a tumor response biomarker (55-57). Endogenous CEST
experimentation is sensitive to several chemical groups,
including the labile protons in proteins, metabolites,
and larger macromolecules (58). In a prospective study,
Desmond ez al. (59) compared the pre-SRS and 1-week
post-SRS CEST metrics with the changes in tumor volume
at 1 month in a mixed-histology cohort of 25 patients
with BM who had received a single dose of SRS at 18 to
20 Gy. The authors reported a positive association between
the changes in the nuclear Overhauser effect (NOE) peak
amplitude in NAWM (normal-appearing white matter, both
ipsi- and contralateral) at 1 week and the volume changes at
1 month. Additionally, they observed a negative correlation
between the absolute change in width of the NOE peak
between 1 week and the volume changes at 1 month.
Several techniques have been applied to measure the
water exchange rate constant between intracellular and
extracellular compartments (60-63). In a pilot study,
Mehrabian et 4l. (64) included 19 patients with histologically
diverse metastatic brain tumors who underwent SRS
with a single dose of 18 to 20 Gy. They constructed a
3-water-compartment tissue model, which consisted of
intracellular (I), extracellular-extracellular (E), and vascular

© Quantitative Imaging in Medicine and Surgery. All rights reserved.
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(V) compartments using DCE-MRI pre-SRS (within 48 h)
and post-SRS (either at 1 week or 1 month) to assess the
intraextracellular water exchange rate constant (k), efflux
rate constant, and water compartment volume fractions
My, M,z and M, ;). The researchers compared the change
in model parameters between the pre-SRS and 1-week post-
SRS MRI scans with the change in tumor volume between
the pre-SRS and 1-month post-SRS scans. Subsequently,
the researchers discovered that early changes in k;; (1 week
after SRS) were highly correlated with the long-term tumor
response and could predict the extent of tumor shrinkage at
1 month post-SRS.

In conclusion, higher k;; (1 week post-SRS), lower IFP
kurtosis, and mean (12 weeks post-SRS) may be regarded as
markers of tumor response, while "C-lactate signals (pre-
SRS) and higher Cho/Cr (preradiation therapy) might be
predictive of tumor progression. Moreover, the NOE peak
amplitude in NAWM and the tumor width at 1 week post-
SRS are associated with tumor volume changes at 1 month
post-SRS.

Discussion

"This review describes the current status of qMRI biomarkers
derived from radiation-induced anatomical, morphological,
and metabolic alteration for the prediction of treatment
response in patients with metastatic brain tumor after SRS.
These findings lend support to the implementation of MRI
parameters as biomarkers for the early prediction of SRS
response of BMs. Considering its significant morbidity and
mortality, as well as the limited utility of existing prognostic
models constructed by selective clinical data, BM remains a
considerable clinical challenge. With the widespread clinical
application of SRS for the treatment of cerebral tumors,
it is of vital importance for practitioners to construct a
promising quantifiable prognostic model that can provide
an early prediction of treatment outcome in patients
with BM after SRT. Moreover, multiple MRI techniques
quantifying the tumor volume, heterogeneity, margins,
vascular permeability, cytosis, and tumor microenvironment
of cerebral tumors should be developed that leverage the
opportunity to combine early noninvasive qMRI biomarkers
with the clinical data of patients to improve the prognostic
model for BMs treated with SRS.

Various gMRI biomarkers, which were constructed by
multiple imaging features derived from conventional MRI
sequences before SRS, have been reported as promising
markers for predicting treatment response. Advanced MRI
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techniques facilitate the visualization of tissue changes that
are not detectable with common T1- and T2-weighted
MRI and can highlight early tissue alteration. The effect of
irradiation on the tissue microstructure has been evaluated
using DWI and revealed early imaging parameters such
as lower relative ADC and higher f values as indicative
of response. In PWI, rCBV, rrCBF, IFP, K., and v, are
indicative of the therapeutic effect of SRS. Furthermore,
metabolic changes of Cho/Cr, NOE peak, and k;; obtained
by MRS and CEST are related to the long-term response
of SRS.

Correlation analysis and prognostic models are two
different methods used in these biomarker studies.
Correlation analysis is a statistical method for determining
the relevance between 2 or more sets of variables, while
a prognostic model is a type of clinical prediction model
that uses multivariate models to estimate the probability
of an outcome occurring in the future and is often applied
to cohort studies. There are similarities and differences
between these two approaches. First, the prognostic model
is based on correlation analysis; only if the variables in
question are highly correlated does it make sense to seek
the specific the form of their correlation by performing
regression analysis or machine learning. Second, the
relationship between variables in predictive models is not
reciprocal due to the distinction between the independent
and dependent variables; however, this is not the case for
correlation analysis.

There are differences between the time points for
obtaining imaging biomarkers. Some (DI, K™", v., Cho/Cr,
and "C-lactate) are obtained before treatment, some (ADC,
DL f, K,,..’, ki, and NOE) in the early posttreatment phase
(<1 month), and others (rrCBF, K™, and IFP) in the later
stage of the disease course (>1 month). Therefore, it makes
sense to differentiate the quantitative imaging markers
according to the time points (Figure S1). The markers
obtained before radiotherapy potentially influence the
decision regarding whether or not to use SRS, while the
markers obtained shortly after radiation help to predict the
later outcomes, allowing for the salvaging of treatment in a
timely manner.

There are 5 limitations in the current study that should
be noted. First, most articles cited in our review were
retrospective studies, and a potential risk of selection
bias was inevitable. Second, a small sample size that only
included a defined tumor type limit the generalizability of
the results to brain metastatic lesions originating from other
primary tumors. Third, the single-center studies included

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

in this analysis used inconsistent imaging protocols and
processing methods, resulting in the incomparability of the
results of these studies. Fourth, the number of the searched
websites was limited. Finally, despite the relatively complete
selection criteria, there was subjectivity in the review
processes.

Based on the reviewed results, future studies on gqMRI
biomarkers should incorporate a few improvements. First,
when investigating the optimal gMRI biomarkers for
predicting LC or the long-term outcome of BMs after
SRS, increased attention should be paid to the selection of
the patients with BM, especially the number, pathological
types, and additional treatments (other than SRS). Second,
the magnet strength of the post-SRS MRIs should be
consistent with the baseline MRIs for further analysis of
the serial comparisons. Third, given the growing popularity
of tumorous molecular biomarkers, incorporating cellular
and/or molecular information into the prognostic model
may be a sensible future development. Fourth, to improve
future publications on early prognostic qMRI biomarkers,
we suggest a more comprehensive description of the time-
dependent vascular changes and relevant parametric
changes. Finally, we speculate that the individualized gMRI
biomarkers are also capable of predicting other treatment
outcomes, such as chemo-, targeted, and immuno-therapy.

Conclusions

In the era of conformal photon beam techniques, in which
the availability of proton and particle beam therapy is
increasing, advanced MRI may provide objective measures
for the selection of patients with BM. This review illustrates
the potential of MRI in BM response assessment after
SRS, and thus, this technique should be included in future
prospective clinical trials.
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