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ABSTRACT: Photosynthetic water oxidation is catalyzed by a
manganese−calcium oxide cluster, which experiences five “S-states”
during a light-driven reaction cycle. The unique “distorted chair”-
like geometry of the Mn4CaO5(6) cluster shows structural flexibility
that has been frequently proposed to involve “open” and “closed”-
cubane forms from the S1 to S3 states. The isomers are
interconvertible in the S1 and S2 states, while in the S3 state, the
open-cubane structure is observed to dominate inThermosynecho-
coccus elongatus (cyanobacteria) samples. In this work, using
density functional theory calculations, we go beyond the S3

+Yz state
to the S3

nYz
• → S4

+Yz step, and report for the first time that the
reversible isomerism, which is suppressed in the S3

+Yz state, is fully
recovered in the ensuing S3

nYz
• state due to the proton release

from a manganese-bound water ligand. The altered coordination strength of the manganese−ligand facilitates formation of the
closed-cubane form, in a dynamic equilibrium with the open-cubane form. This tautomerism immediately preceding dioxygen
formation may constitute the rate limiting step for O2 formation, and exert a significant influence on the water oxidation mechanism
in photosystem II.

■ INTRODUCTION
Photosystem II (PSII) is a metalloenzyme that catalyzes water
splitting to molecular oxygen in cyanobacteria, algae, and
plants. It evolved about 3 billion years ago at the level of
ancient cyanobacteria (Figure 1a). The embedded “oxygen-
evolving complex (OEC)”, composed of a Mn4CaO5 cluster
surrounded by water and amino acid ligands (Figure 1b,c), acts
as a highly efficient water oxidation catalyst. Due to charge
separations in the reaction center of PSII, the OEC is initially
stepwise oxidized during the cyclic catalysis, so that it attains
four (meta)stable intermediates (S0, S1, S2, and S3) and one
transient S4 state, the latter of which initiates O2 formation.1−10

Accounting also for proton release and charge of the
Mn4CaO5(6) complex, the classical five-step “S-state cycle”11

can be refined to instead include nine intermediate states that
are separated by kinetically distinguishable proton and electron
transfer steps (Figure 1d).3,12−22

Structural polymorphism of the OEC has been proposed
and experimentally observed, mainly by electron paramagnetic
resonance (EPR) spectroscopy, for some decades.1,4,18,23−30

More recently, the first detailed theoretically models were
proposed for interpreting these findings.31,32 However, the
proposed alternative structures have thus far eluded verification
by structural methods such as protein crystallography.33−40

The structural flexibility in the S2 state is typically attributed to
the mobile μ-oxo bridge (O5) between Mn1 and Mn4,31,41

producing “open” (A) and “closed” cubane (B) forms of the

cluster (Figure 1e, see supplementary references in the
Supporting Information). As recently discovered by Pantazis
and co-workers, orientational Jahn−Teller isomerism in the
resting S1 state41 generates the precursors for the two
interconvertible A and B structures of the S2 state,31 which
give rise to the low-spin (S = 1/2) and high-spin (S = 5/2)
EPR signals in plant PSII at g = 2 and g ≈ 4.1, respectively, and
the latter g ≈ 4.1 (and similar signals around this value) can
only be produced by mutations or chemical treatments in
cyanobacteria.42 These authors also proposed that the closed-
cubane form is the entry to the S3 state,

43,44 in agreement with
molecular dynamics studies by Guidoni and co-workers.32,45

This closed-cubane interpretation for the S2 high-spin (S = 5/
2) state is widely accepted in the field and consistent with the
calculations in this report and will hence be employed in this
study. However, we note that two competing interpretations
exist. First, based on broken-symmetry density functional
theory (BS-DFT) calculations with focus on spectroscopic
parameter analysis, Corry and O’Malley proposed an isomer in
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the S2 state by W1 deprotonation to μ-O4 to rationalize the
high-spin (S = 5/2) form46 and, on this basis, further identified
a high-spin (S = 7/2) deprotonated intermediate with μ-
hydroxo O4 during the S2 → S3 transition, without invoking a
closed-cubane structure.47 Second, another model for the high-
spin (S = 5/2) S2 state assumes the early binding of a substrate
water to Mn1 as OH− originating from W3, as suggested by
Siegbahn48 and later by Pushkar et al.49 For a detailed
discussion of such models, see Text S6 in the Supporting
Information.
The open-cubane S3 structure contains an extra oxygen

ligand to Mn1 due to binding of an additional water molecule.
This was proposed first by Siegbahn on the basis of DFT
calculations50−53 that are found on the results from extended
X-ray absorption fine structure (EXAFS) experiments,54−56

showing that the S2−S3 transition involves the conversion of a
five-coordinate Mn(III) to a six-coordinate Mn(IV). Cox et al.
confirmed by advanced EPR that all Mn ions in the S3 state are
hexa-coordinate and that the “water-added” open-cubane S3
structure, S3

A,W (“W” denotes the extra water binding), is
consistent with their experimental data.57 Isobe et al.
constructed multiple S3 models58,59 that vary with regard to
total spin and Mn-valence and proposed that the closed-to-
open cubane transformation is possible in a stepwise process
involving an oxyl−oxo precursor.60 By contrast, Capone et al.61
and Shoji et al.62 showed different feasible pathways for a
direct closed-to-open cubane conversion. Regardless of the
mechanistic details, a consensus has been reached that the
OEC cluster in the S3 state (more precisely the S3

+Yz state, see
below) allows for unidirectional conversion from the water-
added closed (S3

B,W) to the open-cubane (S3
A,W) form, but not

vice versa (Figure 1e). S3
B,W (S = 3) is proposed to be the

precursor form of the final S3
A,W (S = 3) under the pivot/

carousel mechanism of water binding during the S2 → S3
transition.43,44,63 Importantly, the dominance of the open-
cubane Mn core topology is consistent with the S3 state
structures resolved by serial crystallography using X-ray free
electron lasers (XFELs).35−38

Nevertheless, alternative S3 state models that assume early
O−O bonding exist.1,23,64 For example, Corry and O’Malley
proposed a chemical equilibrium between “oxo-hydroxo” and
“peroxo” for O5−Ox in the S3 state, based on a comparison of
experimental and BS-DFT calculated geometries and magnetic
resonance properties.65−67 In higher-plant PSII, a recent
combined EPR and DFT study by Zahariou et al. provided
evidence, in PSII isolated from spinach for S3 being a mixed
state of S3

A,W (S = 3) and S3
B,unbound (S = 6) (“unbound”

denotes the unsaturated coordination of Mn4; “S3
B,unbound” is

used throughout to refer to the “S3
B” in its original publication,

and similarly S4
B,unbound for S4

B).68,69 Here, the dominant state
(∼80%) has been identified as the S3

B,unbound state, that is, a
closed-cubane S3 state with penta-coordinate Mn4(IV) without
additional bound water. In this view, it should be emphasized
that the structural isomerism in the S3 state introduced here
(and discussed later) should apply to that of cyanobacterial
PSII, and the less populated S3 form in higher plants.
Consistent with the abovementioned findings for the S3

+Yz
state, it is commonly assumed that the O−O bond formation
in the S4

+ state also occurs in the open-cubane (S4
A,W)

conformation.4,35,37,51,53,57,71−79 However, there have been also
several proposals based on a closed-cubane structure (S4

B,W or
S4

B,unbound),4,68,69,73,75,80−87 which is in sharp contrast in terms

Figure 1. (a) View of PSII dimer and the OEC location from Thermosynechococcus elongatus (PDB ID: 6W1O)38 (b) Mn4CaO5 cluster and its local
surroundings in its dark-stable S1 state. (c) Sketch map of atom labeling and connectivity of the first coordination sphere ligands in the Mn4CaO5
cluster. (d) Extended S-state cycle including nine intermediates with sequence of proton and electron transfer and kinetics between
transitions;3,13−15,17,21,22,70 the red phase is the main focus of this study. (e) Structural flexibility of the OEC cluster in the S1, S2, and S3 states,
marked with the reversibility between open (A) and closed (B) cubane structures (for references, see the main text).
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of geometric configuration. This motivates us to investigate if
structural heterogeneity exists just before the S4

+ state is
formed from the S3

n state via electron abstraction by Yz
•. In

this paper, we mainly focus on the possibility of structural
isomerization in the S3

nYz
• states (Scheme 1), employing DFT

calculations. The correlation of our results with experimental
observations and the implications for the mechanism of O−O
bond formation are discussed.

■ RESULTS AND DISCUSSION
Unidirectional Structural Isomerization in the S3

+Yz
State. Unlike the structural interconversion simply caused by
O5 shuttling between Mn1 and Mn4 in the S2 state (the most
likely mechanism accounting for the EPR isomers, see Text S6
in the Supporting Information), isomerization in the S3

+Yz
state results from Mn3 ligand exchange between O5 and Ox.
We revisited this process by our quantum chemical model
(Figure S1 in the Supporting Information) and determined a
direct conversion pathway connecting the open and closed-

cubane structures. A notable phenomenon is that the
incidental proton transfer is directed toward the moiety
becoming a terminal ligand; protonation of the μ-oxo ligand is
impossible in either isomer (O5H in S3

A,W or OxH in S3
B,W),

which is justified by the relaxed potential energy scan for
proton translocation between Ox and O5 (Figure 2d, Text S1
in the Supporting Information).
In contrast to Capone et al.,61 where the formal oxidation

state of Mn3 is lowered from (IV) to (III), while Mn1 acquires
a partial radical character in the proximity of the transition
state (TS), our results show that the electronic configuration of
the OEC cluster essentially remains constant along the
minimum energy paths (MEPs). That means all Mn keep
valence (IV) throughout as reflected by the Mulliken spin
populations (Figure 2c, Text S2 and Table S2 in the
Supporting Information). The reason may be attributed to
the exclusion of structural and thermal fluctuations along the
MEPs, which are instead present during the molecular
dynamics simulations. Anyhow, consistent with Isobe et al.,60

Scheme 1. Structural Isomerization between S3
A,WYz

• (Left) and S3
B,WYz

• (Right) in the S3
nYz

• (W1 = OH−) State Explored in
the Present Studya

aAmino acid ligands are omitted for clarity.

Figure 2. (a) Relative Gibbs free energy profiles for the conversion between S3
A,WYz(W1H2O) and S3

B,WYz(W1H2O) in all the possible spin
states of the S3

+Yz state. Because of the close similarity to the other spin states, more information regarding the changes of (b) geometric structures,
(c) electronic configurations along the MEP, and (d) relaxed PES scan curve of proton transfer between Ox and O5 are exemplified in the highest
13-et/αααα spin state. Spin populations are displayed in yellow contours and key interatomic distances are given in Å.
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our calculated S3
A,W → S3

B,W barriers of 24.3−25.6 kcal/mol
and stabilization energies of 13.4−14.8 kcal/mol for the open-
cubane form (S3

A,W) on all the spin surfaces (Figure 2a,b,
Table S1 in the Supporting Information) show that the same
conclusion can be drawn, that is, conformational change in the
S3

+Yz state is essentially confined to the unidirectional closed-
to-open cubane conversion and forbidden reversely. Con-
sequently, the bidirectional structural flexibility prevalent in
both S1 and S2 states has disappeared in the following S3

+Yz
state, with an overwhelming preference for the open-cubane
structure.
It is worth mentioning that the abovementioned conclusion

is strictly only valid for the S3
+Yz state and does not apply for

the S2
+Yz

• state, which can be formed from the S3
+Yz state by

electron back donation from Yz to Mn under certain
conditions, as shown in some experimental findings.88−90

The structural equilibration in the S2
nYz

• state was suggested as
a requirement for water exchange in the S3

+Yz state,
91 in which

the open-to-closed conversion is involved and readily
reversible, but necessitates a Mn(III) center within the cluster.
Reversible Structural Isomerization in the S3

nYz
•

State. By various experimental approaches, it has been
established that O2 formation and release begins after the
flash-induced formation of the S3

+Yz
• state only after a lag

phase of about 200 μs.12,70−92 This lag phase has been assigned
to a deprotonation reaction in the S3

+ to S3
n transition, as

shown in Figure 1d. Since the initial deprotonation site has
been widely acknowledged as W1(H2O) (via the egress gate
Asp61 to the lumen) during the S3 → S4 transition,

52,53,78,93−96

this ligand was formulated as a hydroxide (OH−) in our S3
nYz

•

model, in agreement with a series of previous computational
work.52,53,94,96 In analogy to the abovementioned case of S3

+Yz,
redox-related events were not observed at any of the Mn
centers along the whole MEP (Figure 3c and Table S4 in the
Supporting Information) and various spin couplings do not
significantly affect the energetics even after Yz

• addition. The
redox-irrelevance and spin-insensitivity for such a ligand
exchange are understandable because the octahedral coordi-
nation geometry of Mn3(IV) basically maintains during the
simultaneous movements of O5 and Ox in opposite directions,
and the two oxygens never approach a bonding distance to
cause Mn reduction.
Interestingly, the obtained reaction landscapes of the

structural isomerization in the S3
nYz

• state is fundamentally
changed with regard to both thermodynamics and kinetics
(Figure 3a,b, Table S3 in the Supporting Information) as
compared to that of the S3

+Yz state (Tables S1 in the
Supporting Information), allowing for a dynamically reversible
isomerization S3

A,WYz
• ⇌ S3

B,WYz
• in chemical equilibrium.

First, the relative thermodynamic stability of S3
B,WYz

• is greatly
enhanced to only 2.4−3.9 kcal/mol higher in free energy than
S3

A,WYz
• (vs 13.4−14.8 kcal/mol in the S3

+Yz state). Super-
ficially, according to the relationship between ΔG° and
equilibrium constant K, this energy difference would still
correspond to a major population of S3

A,WYz
• in the

equilibrium at room temperature; however, overemphasis on
the precise quantitative population of the isomers in the S3

nYz
•

state would be undesirable because of the calculated small

Figure 3. (a) Relative Gibbs free energy profiles for the conversion between S3
A,WYz

•(W1OH−) and S3
B,WYz

•(W1OH−) in all the possible spin
states of the S3

nYz
• state. Because of the close similarity to the other spin states, the highest 14-et/ααααα spin state was selected for visualizing

more information regarding the changes of (b) geometric structures and (c) electronic configurations along the MEP, and (d) relaxed PES scan
curve of proton transfer between Ox and O5.
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energy gap and the well-known intrinsic limitations in the
accuracy of DFT methodology,97−100 and the ambiguous
direction of the equilibrium shifting given the consumption of
S3

A,WYz
• and/or S3

B,WYz
• when proceeding to the S4 state.

Thus, the isomerism suggested here in S3
nYz

• resembles the
situations in the S1 and S2 states,31,32,41 where the closed-
cubane structures are also deemed important for the catalytic
progression despite the calculated slight energetic disadvan-
tages compared with the open-cubane forms, that is, +3.2 kcal/
mol for S1

B and +(1−2) kcal/mol for S2
B (see Text S3 in the

Support ing Informat ion for the deta i led analy-
sis).26,31,32,41,48,101−104 As a consequence of the markedly
closer energies of the isomers in the S3

nYz
• state, the

predominance of the open-cubane structure is undermined
and the significance of S3

B,WYz
• should be highlighted in

addition to S3
A,WYz

•. Strictly speaking, one should not overlook
the importance of either isomer in the S3

nYz
• state, considering

the aforementioned uncertain factors that would lead to an
indefinite identification of a dominant or most reactive
component.
Besides the thermodynamics, the free energy barriers from

S3
A,WYz

• to S3
B,WYz

• for all the possible spin states are
dramatically reduced to 14.8−16.2 kcal/mol (vs 24.3−25.6
kcal/mol in the S3

+Yz state), which allows for smooth
production of S3

B,WYz
• at a level of milliseconds kinetics (see

Text S4 in the Supporting Information for more details). It is
noteworthy that the direct reactant for the isomerization turns
out to involve the protonated O5H, which is reachable by
facile deprotonation from Ox and vice versa (Figure 3d); this
remarkably contrasts the situation in the S3

+Yz state, where
O5H is not achievable for S3

A,W (Figure 2d). These results
show a feasible pathway from S3

A,WYz
• to S3

B,WYz
• preceded by

Ox deprotonation and demonstrate that the structural
heterogeneity lost in the S3

+Yz state becomes available again
in the S3

nYz
• state. This leads to a more balanced constituent of

the isomers, as compared to the dominance of the S3
A,W

conformation and the high energetic barrier for isomerization
in the S3

+Yz state.
W1 Deprotonation Facilitates the Open-to-Closed

Isomerization. As shown above, a magnitude of ca. 10 kcal/
mol decrease in both barrier heights and relative energies from
S3

+Yz to S3
nYz

• has largely changed the equilibrium distribution
of the isomers. This is mainly manifested in the feasibility of

S3
A,WYz

• converting to S3
B,WYz

•, since B to A is attainable in
both the S3

+Yz and S3
nYz

• states. Quite evidently, the
S3

nYz
•(W1OH−) state is differentiated from S3

+Yz(W1
H2O) by its oxidized Yz

• unit and deprotonated W1 ligand,
that is, the asynchronous departure of an electron and a proton
from two separated sites. Thus, two virtual states S3

+Yz
•(W1

H2O)* and S3
nYz(W1OH−)* characterizing the single effect

were artificially fabricated in order to clarify the ultimate
reason for the observed difference. Since the spin state
selectivity is expected to bring little impact on the isomer-
ization, only the highest spin states were studied for a
comparison, as shown in Figure 4.
The situation for the virtual S3

+Yz
•(W1H2O)* and

S3
nYz(W1OH−)* states fairly coincides with that of the

S3
+Yz(W1H2O) and S3

nYz
•(W1OH−) states, respectively,

in terms of the reaction energetics and geometric parameters
(Tables S5−S8 in the Supporting Information), as well as the
proton mobility between Ox and O5 (Figures S2 and S3 in the
Supporting Information). The comparison clearly reveals that
it is the occurrence of W1(H2O) deprotonation, rather than
appearance of the Yz

• radical, that substantially promotes the A
to B isomerization in the S3

nYz
• state. This is reasonable

because the covalent bonding interactions within the
Mn4CaO6 cluster should be much more powerful than the
electrostatic effect brought by the distal Yz

• group. Specifically,
we expect that the strong σ donation from W1OH−

reinforces its coordination to Mn4 but considerably weakens
the O5−Mn4 bonding, due to the “structural trans effect” in
octahedral transition metal complexes.105−108 The diminished
overlap between the Mn4 3d and O5 2p orbitals can in turn
stabilize the O5 2p−H s covalency, increasing the basicity of
O5 and explaining the accessibility of O5 protonation in both
S3

A,WYz
•(W1OH−) and S3

A,WYz(W1OH−)*. Further-
more, the Mn3−O5 bond is weakened by the protonated
O5H, which therefore becomes easier to be substituted by Ox
(oxo). The altered bond strengths can be seen from variations
of the key bond lengths and Wiberg bond orders (Table S9 in
the Supporting Information). To sum up, the feasibility of the
open-to-closed isomerization in the S3

nYz
• state is directly

attributable to W1(H2O) deprotonation, which causes a series
of subtle changes in Mn−ligand interactions.
Although Yz

• itself produces little chemical effect on the
isomerization, its formation is necessary for the subsequent

Figure 4. Relative Gibbs free energy profiles for the conversions between the virtual states S3
A,WYz

•(W1H2O)* and S3
B,WYz

•(W1H2O)* (left)
and between the virtual states S3

A,WYz(W1OH−)* and S3
B,WYz(W1OH−)* (right) in their respective highest spin states; “*” denotes a virtual

state.
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W1(H2O) deprotonation. After the third flash given to dark-
adapted PSII, the S3

+Yz
• state forms accompanied by

deprotonation of the phenolic oxygen of Yz to the ε-nitrogen
of His190, and thus an extra positive charge accumulates
within the vicinity of the Mn4CaO6 cluster. Thereafter, the
Mn4-bound W1 serves as an ideal deprotonation site for
charge compensation because it is in strong hydrogen-bonding
interaction with the negatively charged D1-Asp61, which
connects further to the proton exit channel and the
lumen.39,52,56,81,95,109−114 Thereby, the occurrence of Yz
oxidation is an essential prerequisite for the reversible
structural isomerization in the S3Yz

• state, from a perspective
of the causal relationship.
It is noted that up to date, there is still no unambiguous/

conclusive assignment for the protonation states of the titrable
groups (especially W2 and Ox) of the OEC cluster in the S3

+Yz
and S3

nYz
• states; however, our models adopt the protonation

states suggested by Cox et al.,57 which reproduced the
experimental EPR and electron−nuclear double resonance
(ENDOR) and electron−electron double resonance-detected
nuclear magnetic resonance (EDNMR) of the S3 state, and are
in good agreement with most computational stud-
ies.51,60,61,91,94,115−118 Still, we have also performed extensive
additional computations and found that our conclusion still
holds even if different protonation state distributions were
considered (see Text S5 and Tables S10−S14 in the
Supporting Information for the details).
Alternative Computational S3 State Models. For the

S3
+Yz and S3

nYz
• states, Corry and O’Malley proposed “oxo−

hydroxo ⇌ oxo−oxo ⇌ peroxo” and “oxo−oxo ⇌ peroxo”
equilibria to describe the chemical nature of “O5−Ox” in S3

+Yz
and S3

nYz
•, respectively.65,67 Early O−O bond formation in the

S3 state was also explored by Pushkar et al.64 and Isobe et
al.58,59 We note that the “oxo-hydroxo” model with all
octahedral Mn(IV) employed in this study adequately fits
the vast majority of results from EXAFS,5,116,119,120 EPR/
ENDOR/EDNMR, and X-ray absorption and emission
spectroscopies in the S3 state.57,118,121 In contrast, while it
still remains unclear if the “oxo−oxo” model is consistent with
these spectroscopic data, the “peroxo” model would produce
two anisotropic Mn(III) and thus is clearly inconsistent with
the experimental observations. It has been also ruled out by all
the latest XFEL experiments with updated essential details
(e.g., O5−O6/Ox distance),36−39 despite support from one
initial study.35 The calculated S = 4 ground state of the peroxo
model65 does not agree with the S = 3 signal observed
experimentally.57 On the basis of substrate-water ex-
change,24,122 although we cannot fully exclude the “peroxo”
model given the option of suitable structural/redox equilibria,
obviously a stable peroxide can be ruled out. From the aspect
of computational modeling, calculations by coupled cluster
theory, which is beyond traditional DFT, also strongly
disfavors the scenario based on an early-onset O−O bond
formation in the S3 state.

123

However, it remains possible that the “peroxo” form could
constitute part of the redox equilibria in the S3 state and it
might be catalytically relevant, but it should not represent the
dominant form in the S3 state. For the S3

nYz
• state, the

“peroxo” model was indeed considered as one possible option
because water exchange dramatically slows down as compared
to S3,

124 but the model was also ruled out by the authors in
that report because of the inconsistency with the results from
time-resolved X-ray experiments.3,70,124 Still, we have in detail

considered the “oxo−oxo” model in both the S3
+Yz and S3

nYz
•

states (Text S5 and Tables S12−S14 in the Supporting
Information), and we can conclude that it does not change the
basic conclusion of this study. Finally, we emphasize that the
“oxo-hydroxo” model should be adopted (for cyanobacterial
PSII) because of its representation of the most stable form of
the ground state in the dominant population of the S3

+Yz and
its derived S3

nYz
• states; for high-plants, the “oxo-hydroxo”

model is also valid in the novel closed-cubane S3 structure
according to Zahariou et al.,68 but the circumstances of the
structural isomerization, if exist in the water-unbound form,
would need further investigations.

Comparison to Experimental Observations. Since
experimental techniques probing into the S3 → S4 transition
remain difficult, so far there is very limited information
regarding the morphological changes of the Mn4CaO5(6)
cluster upon formation of the S3

nYz
• state. Therefore, the

structural isomerization found in this study should be seen as a
theoretical prediction pending experimental verification.
However, some suggestive evidence still exists in support of
our proposal.
Nilsson et al. discovered that substrate-water exchange is

arrested in the S3
nYz

• state because of the observed
dramatically slowed kinetics as compared to earlier S states.124

As discussed therein, the possible reasons include the
impossibility to generate a Mn(III) center that is required
for water exchange,91 H+ release that leads to much stronger
binding of the deprotonated group, and reconstruction of the
H-bonding network after proton-coupled electron transfer
upon Yz oxidation. Our proposed reversible isomerization is
compatible with the observation because, in contrast to the
S3

A,WYz ⇌ S2Yz
• equilibrium that supports water exchange in

the S3
+Yz state, the S3

A,WYz
• ⇌ S3

B,WYz
• equilibrium does not

facilitate water exchange due to the lack of Mn(III) formation.
In fact, the chemical equilibrium would cause extensive
rearrangement of the locations and H-bonding orientations
of water molecules and may thus even contribute to slowing
down the rate of substrate water exchange in the S3

nYz
• state.

Such changes in the H-bonding network have also been
suggested to affect the distribution of the conformational
microstates of water molecules and to thereby affect the rate of
the S3

nYz
• → S0Yz transition.
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Bao and Burnap studied the O2 release kinetics by site-
directed mutagenesis and found that both the lag and slow
phases during the S3

+Yz → S0
nYz transition are retarded. On

that basis, they suggested that “proton tautomerization” and/or
“structural isomerization” precede(s) dioxygen formation.93

Specifically, they suggested two interpretations. For proton
tautomerization, they proposed that it would be followed by
O−O bond formation via W3−W2 nucleophilic at-
tack,72,81,82,85 while in case of open-closed structural isomer-
ization, O−O bond formation by oxo−oxyl radical coupling
between W2 and O5 may occur, in line with previous
suggestions.80,83,84 We note that O−O bond formation via
water nucleophilic attack (WNA) appears less favorable on the
basis of recent experiments36,37,124 and theoretical calcula-
tions.71,126 Indeed, our present results provide further support
for the variant radical coupling mechanism using a closed-
cubane S4 structure for O2 evolution because our theoretical
finding shows that the S4

B,W structure could be obtainable via
the open-to-closed rearrangement in the S3

nYz
• state (rather

than in the S3
+Yz state as assumed in ref 84).
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Thus, the open-closed isomerization in the S3
nYz

• state may
correspond to the proposed “structural isomerization”
preceding dioxygen formation93 and to thereby constitute
the rate limiting 1−2 ms phase (slow phase) that follows a 200
μs lag phase (Figure 1d) and precedes the much more rapid O2
formation.3,12−22,92,127 According to the Eyring−Polanyi
equation of TS theory assuming a standard pre-exponential
factor,128−130 the 1−2 ms kinetics is calculated to correspond
to an activation free energy ∼14 kcal/mol at room temper-
ature. Given the limited errors from DFT methodology and
possibly experimental measurement, a safer quantity for the
barrier should be around 13−15 kcal/mol for a process that
occurs on a timescale of milliseconds.71 Siegbahn ascribed the
slow phase of O2 formation to an intramolecular proton
transfer step with 10.2 kcal/mol barrier,52 but as he pointed
out, considering a typical accuracy within 3−5 kcal/mol, which
normally overestimates barriers for a DFT hybrid func-
tional,51,97,98,131 it is far below the required limit for a
millisecond process.52 By comparison, our calculated barriers
of 14.8−16.2 kcal/mol for all the possible spin states are in
much better agreement with the experimental kinetics (see
Text S4 in the Supporting Information for more details). If the
open-to-closed transition in the S3

nYz
• state was indeed the

main rate limiting step for O2 formation, this would mean that

O2 formation would start exclusively from the S3
B,WYz

• state,
and radical coupling from the S3

A,WYz
• state would not be

possible for reasons still to be determined. Thus, at the current
stage of knowledge, we do not emphasize the proposed
isomerization as the only possibility taking place in S3

nYz
• →

S4
+Yz before compelling experimental evidence emerges;

however, the reversible open-to-closed structural rearrange-
ment should be regarded as a viable mechanism or at least as
part of processes responsible for the slow phase.

Implications for the Mechanism of O−O Bond
Formation. The proposed reversible open-closed intercon-
version in the S3

nYz
• state has important implications for the

mechanism of O−O bond formation in the S4 state. This is
illustrated in Scheme 2, which starts from the two structural
architectures S3

A,W and S3
B,unbound observed by XFEL35−38 and

EPR experiments,44,68 respectively. The first route (a) → (b)
from S3

A,W to S4
A,W-1 expresses Siegbahn’s oxo(O5)−oxyl(Ox)

coupling mechanism that he found to be energetically most
favorable.51,53,71,76 Here, the Mn1(IV)-bound Ox radical
couples with μ-O5 in an open-cubane structure. Alternatively,
the radical could be localized at W2 if it is deprotonated
instead of Ox, and its coupling with μ-O5 in S4

A,W-2 might be
an option, which, however, has not gained support from recent
DFT calculations.79,84

Scheme 2. Possible mechanisms of the S3 → S4 transition and O−O Bond formation in the S4 State
a

aS3
A,W and S3

B,unbound in gray stand for the two potential starting configurations in the S3 state, resolved in cyanobacteria and higher-plant PSII by
XFEL and EPR experiments, respectively.35−38,44,68 The process focused in this work is highlighted in the green dashed box. Candidate substrates
are encircled in red (favored) or blue (possible alternatives). Mn formal oxidation states (IV)(V) are displayed in different colors. The superscript
“W”/“unbound” means hexa/penta-coordinate Mn4 with a water bound/unbound water trans to O5. The annotations for sequence numbers: (a,g)
Yz oxidation followed by proton release; (b,d,h) intramolecular proton transfer followed by Ox/W2/O5/Mn4 oxidation; (c) reversible open-closed
rearrangement in the S3

nYz
● state, as proposed in this study; (e,i) reversible water binding to the five-coordinate Mn4(IV) in the closed-cubane

structure; and (f) irreversible closed-to-open conversion in the S3 state. Other proposed mechanisms are discussed in the text. It is noted that the
oxygen labeling for S3

B,W and S3
B,unbound (and their derivatives) is chosen for consistency with that established by serial crystallography for the

S3
A,W36,38,39 and for convenience to describe all the transitions uniformly. These labels do not reflect the origin of the oxygens with regard to the S1

and S2 states because several options for water insertion during the S2 → S3 transition are still discussed;6,7,32,38,43,48,52,62,82,101,120,132−139 an
alternative nomenclature based on S3

B,unbound and the pivot/carousel water insertion is shown in Figure S4 in the Supporting Information.
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For the intermediate S3
A,WYz

• state prior to S4, our present
results provide the first theoretical basis for the (reversible)
conversion to S3

B,WYz
• by route (c), thereby diversifying

alternative pathways leading to O−O bond formation in the S4
state with a closed-cubane type. Specifically, S3

B,WYz
• with the

octahedral Mn4(IV) coordination may proceed to S4 by O5 or
Mn4 oxidation through route (d), producing the O5 radical in
S4

B,W-1, or alternatively, Mn4(V) in S4
B,W-2. Both options,

W2−O5 coupling (blue) on Mn4 and O5−Ox coupling
involving multiple metal (Mn and Ca) centers (red), are worth
considering. It is noted that O5−Ox coupling in the S4

B,W-1
state resembles the variant oxyl−oxo mechanism by Li and
Siegbahn,84 which was based on previous experimental
proposals.4,80,124

The S3
B,unbound state may either evolve to S3

A,W via S3
B,W after

(reversible) water binding by the “pivot“ or “carousel”
mechanism43,44,120,132−134 through the route (e) → (f) and
then advance to the O2 formation routes described above, or,
as suggested by Pantazis and collaborators, directly proceed to
S4

B,unbound without water binding by the route (g)→ (h).68,69,87

The latter pathway involves a penta-coordinate Mn4(IV)
center and would lead to Mn4(V) where nucleophilic Ox-O5
coupling68,69,87 or hydroxo-oxo coupling between W2 and O5
might be possible. We note that the finding in the present
study can provide an additional route (a) → (c) → (i) → (h)
from S3

A,W to S4
B,unbound (other than from S3

B,unbound).
Alternative mechanisms proposed in the literature include

WNA from Ca-bound W3 onto the electron-deficient Mn4-
(V)O (W2)6,72,81,85 and oxyl-oxo coupling between W1 and
μ-oxo O4.78 Both appear inconsistent with mass spectrometric
and EPR-based substrate water exchange data, which show that
both substrates are bound to Mn(IV) in the S3

+Yz and S3Yz
•

states (excluding WNA),122,124 and are best consistent with O5
as the slow exchanging substrate water.4,24,80,83,122,124,140−143

Nevertheless, these suggestions will also be further scrutinized
in future DFT calculations.
Since S3

A,WYz
• and S3

B,WYz
• are nearly isoenergetic and for

both states, low-energy routes for O−O bond formation via
radical coupling have been determined,51,84 the intriguing
possibility arises from the results of this study that O−O bond
formation may occur via two routes, or even more, if also the
S3

B,unboundYz
• → S4

B,unboundYz → S0Yz path in “water-deficient”
catalytic sites is taken into account.68,69 While recent water
exchange experiments in the S2 state have reported first
evidence for two possible fast exchanging water sub-
strates,24,122 the current water exchange data in the S3 state
are best consistent with only one set of substrate waters. This
would favor that either S4

B,W/S4
B,unbound (substrates: W2 and

O5) or S4
A,W (substrates: Ox and O5) would be involved.

However, the present study suggests that the energetic and
kinetic differences between these possible routes are so small
that minor differences between species or experimental
conditions could favor one or the other pathway.

■ CONCLUSIONS
In summary, we have identified a reversible open-to-closed
isomerization for the S3

nYz
• state, in contrast to the

unidirectional conversion in the S3
+Yz state. This isomerization

immediately before O2 formation is activated by deprotonation
of a Mn-bound water (W1) after tyrosine Yz oxidation. The
structural rearrangement may constitute or contribute to the
slow kinetic phase that prepares the Mn4CaO6 cluster for O2
formation. Thus, the restored structural heterogeneity prior to

the S4 state diversifies the viable options for O−O bond
formation in PSII. In this way, the availability of both open and
closed-cubane structures in the S4 state may reflect a “two-
pronged” arrangement of the OEC, allowing for efficient and
robust water oxidation, and may have contributed to its
evolutionary development. The elegant structural reversibility
triggered by proton release in the natural enzyme may provide
a useful reference for designs of artificial catalysts.
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