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and reliability of bone mineral density
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Abstract
Background: Periprosthetic bone loss is considered to be a potentially contributing factor in aseptic loosening of

acetabular hip components, but no studies have shown this association. The lack of association might be caused by

insufficient image quality because of metal artifacts and challenges in measuring bone density (BMD) in complex anatomic

structures which might be overcome using dual-energy computed tomography (DECT).

Purpose: To test inter- and intra-observer agreement and reliability of in-house segmentation software measuring BMD

adjacent to acetabular cup and to compare measurements performed with single-energy CT (SECT) and DECT in

cemented and cementless cups.

Material and Methods: Twenty-four acetabular cups inserted in porcine hip specimens were scanned with SECT and

DECT. Bone density was measured in a three-dimensional volume adjacent to the cup. Double measurements were

performed.

Results: BMD derived from SECT was approximately four times higher than that of DECT. In both scan modes,

intraclass correlation coefficient (ICC) was >0.90 with no differences between repeated measurements, except for

uncemented cups where a statistically significant difference of 11 mg/cm3 was found with DECT. DECT showed narrower

limits of agreement than SECT. Inter-observer analysis showed small differences.

Conclusion: BMD can be estimated with high intra- and inter-observer reliability with SECT and DECT around

acetabular cups using custom software. The intra- and inter-observer agreement of DECT is superior to that of

SECT and better in the cementless concept. Good intra- and inter-observer reliability can be obtained in both cemented

and cementless cups using the segmentation software. SECT and DECT cannot be used interchangeably.
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Introduction

Aseptic loosening of orthopedic implants is the most
common cause of failure after total hip arthroplasty
(THA) (1,2) and periprosthetic bone loss is considered
a predictor of aseptic loosening (3,4). To our know-
ledge, no studies have shown this association, but a
recent study found osteoporotic patients with low sys-
temic bone mineral density (BMD) to be at higher risk
of cup migration compared with patients with normal
BMD (5). Bone loss may occur around THA because of
stress shielding and may be located around both the
cup and stem (4,6). Most attention has been paid to
the femoral side (4), but cementless press-fitted cups
loading the acetabular rim may also cause stress shield-
ing of the central iliac bone (7). Bone loss occurs in all
compartments adjacent to the cup (8,9), but in cement-
less THA it occurs most often in the supra-acetabular
ileum (10) and often also in the medial wall in both
cemented and cementless cups (11). In cemented cup
systems, bone loss seems to be less substantial (12).
Bone loss must be considerable, i.e. 30–50%, before it
can be detected on radiographs (13) and furthermore
the sensitivity of radiographs is low which might
explain the lack of correlation between bone loss and
loosening of the prosthesis.

Dual X-ray absorptiometry (DXA) is widely used
for bone density measurements in osteoporosis, but
it is of limited value in the presence of metal because
it acquires two-dimensional (2D) images only and it
cannot obtain reliable measurements in the presence
of bone cement (14). Bone density changes adjacent
to acetabular hip implants have been studied with com-
puted tomography (CT) (12,15–18), but CT is chal-
lenged in visualizing the interface between bone and
implant due to metal artifacts (14), thus none of the
studies have focused solely on the interface. Dual-
energy CT (DECT) can theoretically remove or
reduce beam hardening artifacts (19–21) and has
shown promising results in bone density evaluation
adjacent to spinal implants (22,23) and better delinea-
tion of the acetabular bone-implant interface in
THA (24). In general, measuring BMD using CT in
the acetabular region is also difficult because of the
complex three-dimensional (3D) anatomic structure of
the bone.

The primary objective of the present study was to
test the intra- and inter-observer agreement and reli-
ability of an in-house 3D segmentation software solu-
tion that measures BMD in close proximity to the
acetabular cup with the use of volumetric CT images.
The secondary objective was to compare BMD meas-
urements performed with single-energy CT (SECT) and
DECT in cemented and cementless prosthetic acetabu-
lar cups. If measurements can be performed with suffi-
ciently high intra- and inter-observer reliability,

the method might contribute to further research in
bone loss and potentially impact the choice of acetab-
ular cup in future patients.

Material and Methods

Twenty-four fresh frozen female porcine hemi-pelvic
specimens were included. The animals were skeletally
mature sows with closed triradiate cartilage. The exact
age of the animals was unknown, but usually they are
slaughtered when they reach 2–4 years. One orthopedic
surgeon with more than ten years of experience in hip
replacement surgery inserted 12 cementless and 12
cemented cups in the specimens. The specimens were
stored at �25�C between surgery and the imaging
procedure.

Surgical procedure

The specimens were partly thawed at room temperature
for approximately 3 h prior to surgery to ensure that
surgery was practically feasible yet avoiding the possi-
bility of decomposition of the specimens. Surgery was
performed with Stryker components and cement
(Stryker Corp., Kalamazoo, MI, USA). In the cement-
less concept 48-mm Trident� hemispherical acetabular
shells were used in combination with Trident� X3�

polyethylene liners. The acetabulum was reamed line-
to-line or under-reamed according to the surgeon’s
judgment. In the cemented concept, we used 48-mm
Contemporary� Hooded cups. The acetabulum was
over-reamed by 2mm according to the manufacturer’s
recommendations. Antibiotic Simplex� Bone Cement
was used. In both concepts, an Exeter stem was
placed in the cup for SECT and DECT examination.
In the cementless concept, a 32-mm steel head was used
and in the cemented concept a 28-mm head was used.
The divergence was due to the relatively small porcine
acetabulum, i.e. approximately 50mm. As the cemen-
ted concept demands over-reaming by 2mm, 48-mm
cups were used. However, this cup size can only contain
a 28-mm head. The stem was not fitted in the femoral
bone because the femoral side was beyond the scope of
the current study.

CT scanning

All scans were performed with a GE Discovery CT750
HD 64-channel scanner (GE Healthcare, Milwaukee,
WI, USA). DECT and SECT were performed with
the parameters shown in Table 1, and synthetic mono-
chromatic DECT images were reconstructed at
130 keV. The keV level was chosen because energy
levels above 110 keV provide stable density measure-
ments (23) with an optimum at 130 keV in presence of
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orthopedic metal devices (25,26). Double measure-
ments were achieved by dismantling and rebuilding
the experimental setup and repeating the scans. Each
specimen was positioned on a vacuum bag and a
calibration phantom (MINDWAYS� QCT Pro,
Mindways Software Inc., Austin, TX, USA) was
placed beneath the specimen. The phantom contains
five calibration rods with known densities. The mean
pixel value in each rod was measured and BMD in any
region of interest (ROI) could be derived (Fig. 1).

Quantitative image analysis

We used a custom in-house 3D Fiji plugin to perform
the image analysis. Fiji is a platform for biological
image analysis based on ImageJ (27). Using the
plugin we could draw free-hand ROIs slice by slice
and position circular ROIs in the phantom calibration
rods (Fig. 1). The plugin stacked the ROIs and seg-
mented a cup-shaped 3D ROI based on a user-defined
diameter and thickness, and the ROI was divided into
four quadrants (Fig. 2). In this study, a combination of
50-mm diameter and 5-mm thickness was used. The
plugin created a comma-separated file with the pixel
values of the ROIs. A Python script (Python Software
Foundation, Beaverton, OR, US) was then used to cal-
culate the mean pixel value of each ROI using a lower
pixel value threshold of –300 Hounsfield units to
exclude air deposits. Image analysis was performed by
a radiographer with more than 20 years of experience in
CT and image analysis (BM). In the cementless con-
cept, the analysis was repeated by a second observer
(KK) with no radiologic experience in order to assess
inter-observer agreement and reliability.

Statistical analysis

According to Kress et al. (16), we used a minimal rele-
vant difference of 5%. Based on a sample size calcula-
tion using an estimated SD of 15, a difference of 15mg/
cm3 (i.e. 5%) could be detected by the inclusion of ten
specimens in each group. All variables were continuous
and summarized by mean, number of observations, and
95% confidence intervals (CI). The differences between
repeated BMD measurements were estimated with
mixed effects regression modeling, using measurement
as fixed effect. The absolute agreement between the
methods and between the observers was analyzed with
Bland–Altman plots (28), including mean difference
and limits of agreement. The intra- and inter-observer
reliability was assessed by intraclass correlation coeffi-
cients (ICC) based on two-way random effects models
(29,30). The statistical significance of the difference
between SECT- and DECT-based BMD measure-
ments was assessed by comparing the 95% CIs.
Repeatability coefficients (RC) were calculated for the
repeated measurements according to Bartlett and Frost
(30). RC is an estimate below which the absolute dif-
ference would be expected to lie with 95% certainty
(30–32). To compare RC and the minimal clinically
relevant difference, the RCs were converted to percent-
ages by dividing RC with the mean BMD of measure-
ment 1. All analyses were performed using STATA/SE
14.0 (StataCorp. LP, College Station, TX, USA). The
study is reported in accordance with the Guidelines
for Reporting Reliability and Agreement Studies
(GRRAS) (33).

Fig. 1. Example of an axial DECT slice with the hemispherical

volume defined by the pixels included in the intersection

between the circles (red) and the borders of the free-hand drawn

area (blue). Underneath the specimen, five ROIs (yellow) are

positioned in the calibration phantom rods.

Table 1. Acquisition parameters for SECT and DECT.

Parameter Single-energy CT Dual-energy CT

kVp 120 80/140 dual

Tube current (mA) 300 375

Scan time (s) 0.5 0.6

Pitch 0.984:1 0.984:1

Collimation (mm) 40 40

Image acquisition

(mm)

64� 0.625 64� 0.625

Scan field of view Body large

(50 cm)

Body large

(50 cm)

Kernel ‘‘Bone’’ ‘‘Detail’’

ASIR 30% Not available

CTDIvol (mGy) 11.35 12.92

ASIR, adaptive statistical iterative reconstruction; CTDIvol, volumetric CT

dose index.
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Fig. 2. Example of a ROI divided into quadrants superimposed onto axial and coronal slices in SECT (left) and DECT (right). Beam

hardening artifacts are present in both scan modes, but appear slightly more prominent in SECT (arrow).

Table 2. Intra-observer analysis. Differences between repeated BMD measurements derived from SECT and DECT (units of mg

K2HPO4/cm3).

Scan mode Volume of interest

Mean BMD

measurement 1

Mean BMD

measurement 2 Difference 95% CI P value

Single-energy CT Cementless cups, n¼ 10

All quadrants 1188 1180 �8 �40 to 24 0.64

Superior quadrant 1351 1349 �2 �53 to 49 0.95

Inferior quadrant 1187 1211 24 �43 to 92 0.48

Anterior quadrant 1270 1220 �50 �93 to �8 0.02

Posterior quadrant 598 657 59 1�116 0.045

Cemented cups, n¼ 12

All quadrants 1282 1249 �33 �67 to 1 0.054

Superior quadrant 1334 1304 �30 �66 to 6 0.11

Inferior quadrant 1382 1300 �82 �160 to �5 0.04

Anterior quadrant 1476 1442 �34 �88 to 21 0.22

Posterior quadrant 962 921 �41 �106 to 24 0.21

Dual-energy CT Cementless cups, n¼ 10

All quadrants 295 297 2 �6 to 10 0.60

Superior quadrant 328 328 0 �7 to 8 0.93

Inferior quadrant 276 285 9 �11 to 30 0.38

(continued)
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Results

Two specimens with cementless cups were excluded
because of fractures which had occurred during the sur-
gical procedure, but remained undiscovered until

imaging had been performed. The repeated BMDmeas-
urements in the ‘‘all quadrants’’ ROI showed no statis-
tically significant differences in the cementless cups. In
the cemented concept, we found no significant differ-
ence in SECT, while DECT showed a difference of

Fig. 3. Bland–Altman-plots of repeated acetabular density measurements in the cementless cup derived from SECT (left) and DECT

(right). Horizontal lines indicate limits of agreement and the mean difference between the measurements. n¼ 10.

Table 2. Continued

Scan mode Volume of interest

Mean BMD

measurement 1

Mean BMD

measurement 2 Difference 95% CI P value

Anterior quadrant 336 328 �8 �19 to 2 0.13

Posterior quadrant 150 170 20 �3 to 44 0.08

Cemented cups, n¼ 12

All quadrants 305 294 �11 �21 to �2 0.014

Superior quadrant 309 310 1 �16 to 18 0.89

Inferior quadrant 312 281 �31 �60 to �2 0.037

Anterior quadrant 360 349 �11 �31 to 9 0.28

Posterior quadrant 251 232 �19 �42 to 4 0.10

Fig. 4. Bland–Altman-plots of repeated acetabular density measurements in the cemented cup derived from SECT (left) and DECT

(right). Horizontal lines indicate limits of agreement and the mean difference between the measurements. n¼ 12.
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11mg/cm3 (P¼ 0.014) between the measurements
(Table 2). The Bland–Altman plots (Figs. 3 and 4)
showed narrower limits of agreement in DECT (�21
to 44) compared with SECT (–86 to 153) and the
RCs (Table 3) were significantly smaller than those of
SECT. ICC and the corresponding 95% CI in SECT
was 0.90 (95% CI¼ 0.67–0.98) and 0.91 (95%
CI¼ 0.70–0.97) for the cementless and cemented con-
cept, respectively, while ICC in DECT was 0.91 (95%
CI¼ 0.69–0.98) for the cementless and 0.93 (95%
CI¼ 0.68–0.98) for the cemented concept. The results
of the inter-observer analysis are listed in Table 4 and
plotted in Fig. 5, with corresponding Bland–Altman
plots given in Fig. 6. The inter-observer ICC was 0.91
(95% CI¼ 0.47–0.98) and 0.93 (95% CI¼ 0.31–0.99)
for SECT and DECT, respectively.

Discussion

In this experimental ex-vivo study with porcine speci-
mens, we found that BMD estimates derived from
SECT were approximately four times higher than

those of DECT using segmentation software. The dif-
ference is supposedly caused by differences in the esti-
mation of BMD, i.e. the pixel values in the low-density
rods of the calibration phantom were comparable
between SECT and DECT, while the pixel values at
higher densities differed. Because the BMD estimation
is basically a regression maneuver, the difference will
cause SECT to result in higher BMD than DECT (34).

In the cemented concept, we found a statistically sig-
nificant difference between the repeated measurements
in DECT and a borderline significant difference in
SECT. The difference is probably caused by the rela-
tively low number of specimens. In all cases, the reli-
ability expressed by ICC was good and no statistically
significant difference was found between SECT
and DECT.

In both scan modes, the RCs were larger than the
minimal clinically relevant difference of 5%, i.e. 8% in
the cementless concept and 11% in the cemented
concept.

Measurements in the subdivided acetabular ROIs
returned small differences between the repeated meas-
urements and followed the same tendency between the
scan modes. However, the results of this analysis must
be considered explorative, because such sub-group ana-
lyses would supposedly require more specimens as
reflected in the variability of the P values.

The study has some limitations. The statistically sig-
nificant difference between the two observers may be
caused by the difference in experience between the
observers potentially leading to a consensus issue. The
choice of observers was made to create a worst-case
scenario in order not to overestimate the reliability
and agreement of the method. Even in this worst-case

Table 3. Repeatability coefficients and corresponding 95% CIs

in units of mg K2PO4/cm3 for repeated BMD measurements

performed with SECT and DECT. The absolute difference

between the measurements would be expected to lie below RC

with 95% certainty.

Volume of interest RCSECT RCDECT

Cementless cups, n¼ 10 101 (64–160) 25 (16–40)

Cemented cups, n¼ 12 117 (77–178) 32 (21–48)

Table 4. Inter-observer analysis. Differences between average BMD measurements in cementless cups for

observers 1 and 2 in SECT and DECT (units of mg K2HPO4/cm3). n¼ 10.

Volume of interest

Mean BMD

observer 1

Mean BMD

observer 2 Difference 95% CI P value

Single-energy CT

All quadrants 1188 1146 �42 �70 to �13 0.005

Superior quadrant 1351 1339 �12 �56 to 32 0.59

Inferior quadrant 1187 1047 �140 �193 to �86 <0.0001

Anterior quadrant 1270 1235 �35 �62 to �9 0.009

Posterior quadrant 598 620 22 �66 to 110 0.63

Dual-energy CT

All quadrants 295 285 �10 �14 to �5 <0.0001

Superior quadrant 328 324 �4 �10 to 1 0.14

Inferior quadrant 276 244 �32 �41 to �22 <0.0001

Anterior quadrant 336 331 �5 �11 to 1 0.09

Posterior quadrant 150 141 �9 �22 to 4 0.19
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scenario the absolute differences were small and most
likely not clinically relevant, but experienced observers
should perform all analyses in clinical studies. Further
steps should be taken to ensure consensus if the method
is to be used with multiple observers.

Because the study solely focused on agreement
between repeated measurements and not accuracy of
the BMD estimates, the external validity of the study
is limited. The implants were inserted in dead porcine
specimens. Thus, no biochemical reactions from the
implants could occur and the cement did not infiltrate
the bone tissue as much as it would do in living sub-
jects. Furthermore, the animals were young compared
with hip patients who are most often elderly with
degenerative changes and lower BMD. The anatomy
of porcine hips differs somewhat from human anatomy
and even though the specimens were kept at low tem-
perature there were small air deposits in the cancellous

bone. We also considered positioning the specimens in
a water tank to mimic the absorption of human tissue,
but it was not possible to obtain stable positioning
without movement during the scan procedure. Thus,
more image noise would be expected in a patient com-
pared to the experimental setup. However, the image
quality of both scan modes would supposedly decrease
similarly from this. Finally, the cemented cups could
not contain stem heads larger than 28mm compared
with the commonly used 32-mm heads. This may in
principle have caused fewer artifacts in the cemented
concept.

In conclusion, the present study suggests that the
intra-observer agreement of acetabular BMD measure-
ments performed with DECT is better than that of
SECT, while the intra-observer reliability is equally
high for both scan modes and cup types. The inter-
observer agreement was better in DECT while the
inter-observer reliability was equally high in SECT
and DECT. However, due to the difference in experi-
ence between the observers the results on inter-observer
reliability and agreement must be interpreted with cau-
tion. Thus, DECT may be beneficial as a research tool
for longitudinal studies of bone loss around acetabular
cups. Further experimental in vivo studies are needed
before the software can be used in longitudinal clinical
studies of bone loss.
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