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Abstract 

Background:  Recently, Marcus et al. (Bioinformatics 30:3476–83, 2014) proposed to use a compressed de Bruijn 
graph to describe the relationship between the genomes of many individuals/strains of the same or closely related 
species. They devised an O(n log g) time algorithm called splitMEM that constructs this graph directly (i.e., without 
using the uncompressed de Bruijn graph) based on a suffix tree, where n is the total length of the genomes and g is 
the length of the longest genome. Baier et al. (Bioinformatics 32:497–504, 2016) improved their result.

Results:  In this paper, we propose a new space-efficient representation of the compressed de Bruijn graph that adds 
the possibility to search for a pattern (e.g. an allele—a variant form of a gene) within the pan-genome. The ability to 
search within the pan-genome graph is of utmost importance and is a design goal of pan-genome data structures.
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Background
Nowadays, next generation sequencers produce vast 
amounts of DNA sequence information and it is often the 
case that multiple genomes of the same or closely related 
species are available. An example is the 1000 Genomes 
Project, which started in 2008. Its goal was to sequence 
the genomes of at least 1000 humans from all over the 
world and to produce a catalog of all variations (SNPs, 
indels, etc.) in the human population. The genomic 
sequences together with this catalog is called the “pan-
genome” of the population. There are several approaches 
that try to capture variations between many individuals/
strains in a population graph; see e.g. [1–4]. These works 
all require a multi-alignment as input. By contrast, Mar-
cus et al. [5] use a compressed de Bruijn graph of maxi-
mal exact matches (MEMs) as a graphical representation 
of the relationship between genomes; this is basically a 
compressed version of the colored de Bruijn graph intro-
duced in [6]. They describe an O(n log g) time algorithm 
that directly computes the compressed de Bruijn graph 

on a suffix tree, where n is the total length of the genomes 
and g is the length of the longest genome. Marcus et al. 
write in [5, Section 4]: “Future work remains to improve 
splitMEM and further unify the family of sequence indi-
ces. Although ..., most desired are techniques to reduce 
the space consumption ...”

In [7] we presented two algorithms that construct the 
compressed de Bruijn graph using significantly less space 
(two orders of magnitude) and are faster than splitMEM: 
A1 with run time complexity O(n log n) and a linear-time 
algorithm called A2. We also mentioned a third algorithm 
A3 that reduces the space requirements further and 
needs O(n log σ) time, where σ is the size of the under-
lying alphabet. All of the three algorithms A1–A3 use an 
FM-index of the genomes and in practice A1 is the fast-
est and A3 is the most space-efficient algorithm among 
them. In [8] we presented A3 in detail together with a 
novel linear-time algorithm based on a compressed suf-
fix tree. In a comparison, it turned out that A3 requires 
less memory and is faster than the algorithm based on 
the compressed suffix tree. In this article, we present a 
modification of A1 that was inspired by A3. We call this 
new algorithm A4 and for the reader’s convenience we 
decided to explain it in full detail. The main contribution 
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of this paper is a new space-efficient representation of the 
compressed de Bruijn graph that can be calculated with 
A4. This new representation adds the possibility to search 
for a pattern (e.g. an allele—a variant form of a gene) 
within the pan-genome. More precisely, one can use the 
FM-index to search for the pattern and, if the pattern 
occurs in the pan-genome, one can start the exploration 
of the compressed de Bruijn graph at the nodes that cor-
respond to the pattern. The ability to search within the 
pan-genome graph is of utmost importance and is stated 
as a design goal of the data structure [9, p. 10]. Thus this 
article constitutes a significant improvement on previ-
ous work. We expect that the implicit representation will 
totally replace the explicit representation. If for some rea-
son an application will require both representations, the 
implicit representation can easily be transformed into the 
explicit representation (i.e., we also provide an efficient 
algorithm for this task). Finally, we show that the mem-
ory requirement of A4 can be further reduced by using 
compressed bit vectors.

The de Bruijn graph is also used in sequence assembly 
where an unknown long DNA sequence is reconstructed 
from a set of k-mers (strings of length k). A de Bruijn 
graph of order k stores a k-mer in each node. In sequence 
assembly, the de Bruijn graph has an edge between two 
nodes if the corresponding k-mers overlap exactly k − 1 
characters. In this paper, all k-mers originate from several 
longer strings and two nodes are connected by an edge if 
the corresponding k-mers occur consecutively in one of 
the strings. The difference can be seen in Fig. 1 for k = 3: 
Although TAC and ACT overlap k − 1 characters, there is 
no edge between them because they do not occur consecu-
tively in the string. Therefore, algorithms that construct de 
Bruijn graphs for assembly (see e.g. [10–13] and references 
therein) can not be used for our problem and vice versa.

Recently, [14] suggested to use a Bloom Filter Trie for 
pan-genome storage: They use a colored de Bruijn graph, 
where each stored k-mer has a color, but the condition 
for an edge is the same as in sequence assembly, i.e., the 
presence of an edge is independent of the color and the 
origin of the corresponding k-mers. Consequently, their 
algorithm can not be used in our application.

The contracted de Bruijn graph introduced by Cazaux 
et al. [15] is closely related but not identical to the com-
pressed de Bruijn graph. A node in the contracted de 
Bruijn graph is not necessarily a substring of one of the 
genomic sequences (see the remark following Definition 
3 in [15]). Thus the contracted de Bruijn graph, which can 
be constructed in linear time from the suffix tree [15], is 
not useful for our purposes.

Preliminaries
Let � be an ordered alphabet of size σ whose smallest ele-
ment is the sentinel character $. In the following, S is a 
string of length n on � having the sentinel character at 
the end (and nowhere else). In pan-genome analysis, S is 
the concatenation of multiple genomic sequences, where 
the different sequences are separated by special symbols 
(in practice, we use one separator symbol and treat the 
different occurrences of it as if they were different char-
acters; see “Computation of right-maximal k-mers and 
node identifiers” section). For 1 ≤ i ≤ n, S[i] denotes the 
character at position i in S. For i ≤ j, S[i..j] denotes the 
substring of S starting with the character at position i and 
ending with the character at position j. Furthermore, Si 
denotes the i-th suffix S[i..n] of S. The suffix array SA 
of the string S is an array of integers in the range 1 to n 
specifying the lexicographic ordering of the n suffixes of 
S, that is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n]; see 
Table 1 for an example. A suffix array can be constructed 
in linear time; see e.g. the overview article [16]. For every 
substring ω of S, the ω-interval is the suffix array interval 
[i..j] so that ω is a prefix of SSA[k] if and only if i ≤ k ≤ j.

The Burrows–Wheeler transform [17] converts S into 
the string BWT[1..n] defined by BWT[i] = S[SA[i] − 1] 
for all i with SA[i] �= 1 and BWT[i] = $ otherwise; see 
Table 1. Several semi-external and external memory algo-
rithms are known that construct the BWT directly (i.e., 
without constructing the suffix array); see e.g. [18–21].

The wavelet tree [22] of the BWT supports one back-
ward search step in O(log σ) time [23]: Given the ω
-interval [lb..rb] and a character c from the alphabet 
� , backwardSearch(c,  [lb..rb]) returns the cω-inter-
val [i..j] (i.e., i ≤ j if cω is a substring of S; otherwise 

Fig. 1  The de Bruijn graph for k = 3 and the string ACTACGTACGTACG$ is shown on the left, while its compressed counterpart is shown on the right
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i > j ). This crucially depends on the fact that a bit vec-
tor B can be preprocessed in linear time so that an arbi-
trary rank1(B, i) query (asks for the number of ones 
in B up to and including position i) can be answered 
in constant time [24]. Backward search can be gen-
eralized on the wavelet tree as follows: Given an ω
-interval [lb..rb], a slight modification of the proce-
dure getIntervals([lb..rb]) described in [25] returns the 
list [(c, [i..j]) | cω is a substring of S and [i..j] is the 
cω-interval], where the first component of an element 
(c,  [i..j]) must be a character. The worst-case time com-
plexity of the procedure getIntervals is O(z + z log(σ/z)) , 
where z is the number of elements in the output list; see 
[26, Lemma 3].

The LF-mapping (last-to-first-mapping) is defined 
as follows: If SA[i] = q, then LF(i) is the index j so that 
SA[j] = q − 1 (if SA[i] = 1, then LF(i) = 1). In other 
words, if the i-th entry in the suffix array is the suffix Sq , 
then LF(i) “points” to the entry at which the suffix Sq−1 
can be found; see Table 1. The function � is the inverse 
of the LF-mapping. Using the wavelet tree of the BWT, 
a value LF(i) or �(i) can be calculated in O(log σ) time. 
For later purposes, we recall how the LF-mapping can be 
computed from the BWT. First, the C-array is calculated, 
where for each c ∈ �, C[c] is the overall number of occur-
rences of characters in BWT that are strictly smaller than 
c. Second, if in a left-to-right scan of the BWT, where the 

loop-variable i varies from 1 to n, C[c] is incremented by 
one for c = BWT[i], then LF[i] = C[c].

The suffix array SA is often enhanced with the 
so-called LCP-array containing the lengths of long-
est common prefixes between consecutive suf-
fixes in SA; see Table  1. Formally, the LCP-array is 
an array so that LCP[1] = −1 = LCP[n+ 1] and 
LCP[i] =

∣

∣lcp(SSA[i−1], SSA[i])
∣

∣ for 2 ≤ i ≤ n, where 
lcp(u, v) denotes the longest common prefix between two 
strings u and v. The LCP-array can be computed in lin-
ear time from the suffix array and its inverse, but it is also 
possible to construct it directly from the wavelet tree of 
the BWT in O(n log σ) time with the help of the proce-
dure getIntervals [25].

A substring ω of S is a repeat if it occurs at least 
twice in S. Let ω be a repeat of length ℓ and let 
[i..j] be the ω-interval. The repeat ω is left-max-
imal if |{BWT[x] | i ≤ x ≤ j}| ≥ 2, i.e., the set 
{S[SA[x] − 1] | i ≤ x ≤ j} of all characters that precede at 
least one of the suffixes SSA[i], . . . , SSA[j] is not singleton 
(where S[0] := $). Analogously, the repeat ω is right-max-
imal if |{S[SA[x] + ℓ] | i ≤ x ≤ j}| ≥ 2. A left- and right-
maximal repeat is called maximal repeat. (Note that [5] 
use the term “maximal exact match” instead of the more 
common term “maximal repeat”. We will not use the term 
“maximal exact match” here). A detailed explanation of 
the techniques used here can be found in [27].

Table 1  Index data structures of the string ACTACGTACGTACG$

The suffix array SA  of the string ACTACGTACGTACG$ and related notions are defined in section "Preliminaries". The bit vectors Br and Bl for k = 3 are explained in 
section “Computation of right-maximal k-mers and node identifiers”

i SA LCP Br Bl LF � BWT SSA[i]

1 15 −1 0 0 10 5 G $

2 12 0 1 0 13 6 T ACG$

3 8 3 0 0 14 7 T ACGTACG$

4 4 7 1 0 15 8 T ACGTACGTACG$

5 1 2 0 0 1 9 $ ACTACGTACGTACG$

6 13 0 0 0 2 10 A CG$

7 9 2 0 0 3 11 A CGTACG$

8 5 6 0 0 4 12 A CGTACGTACG$

9 2 1 0 1 5 15 A CTACGTACGTACG$

10 14 0 0 0 6 1 C G$

11 10 1 0 0 7 13 C GTACG$

12 6 5 0 1 8 14 C GTACGTACG$

13 11 0 0 0 11 2 G TACG$

14 7 4 0 0 12 3 G TACGTACG$

15 3 8 0 0 9 4 C TACGTACGTACG$

16 −1
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Compressed de Bruijn graph
Given a string S of length n and a natural number k, the 
de Bruijn graph of S contains a node for each distinct 
length k substring of S, called a k-mer. Two nodes u 
and v are connected by a directed edge (u,  v) if u and 
v occur consecutively in S, i.e., u = S[i..i + k − 1] and 
v = S[i + 1..i + k]. Fig.  1 shows an example. Clearly, 
the graph contains at most n nodes and n edges. By 
construction, adjacent nodes will overlap by k − 1 
characters, and the graph can include multiple edges 
connecting the same pair of nodes or self-loops repre-
senting overlapping repeats. For every node, except for 
the start node (containing the first k characters of S) and 
the stop node (containing the last k characters of S), the 
in-degree coincides with the out-degree. A de Bruijn 
graph can be “compressed” by merging non-branching 
chains of nodes into a single node with a longer string. 
More precisely, if node u is the only predecessor of node 
v and v is the only successor of u (but there may be mul-
tiple edges (u,  v)), then u and v can be merged into a 
single node that has the predecessors of u and the suc-
cessors of v. After maximally compressing the graph, 
every node (apart from possibly the start node) has at 
least two different predecessors or its single predeces-
sor has at least two different successors and every node 
(apart from the stop node) has at least two different suc-
cessors or its single successor has at least two different 
predecessors; see Fig.  1. Of course, the compressed de 
Bruijn graph can be built from its uncompressed coun-
terpart (a much larger graph), but this is disadvanta-
geous because of the huge space consumption. That is 
why we will build it directly.

Figure  2 shows how splitMEM represents the com-
pressed de Bruijn graph G for k = 3 and the string 
S = ACTACGTACGTACG$. Each node corresponds 
to a substring ω of S and consists of the components 
(id,  len,  posList,  adjList), where id is a natural number 
that uniquely identifies the node, len is the length |ω| of 
ω, posList is the list of positions at which ω occurs in S 
(sorted in ascending order), and adjList is the list of the 
successors of the node (sorted in such a way that the walk 
through G that gives S is induced by the adjacency lists: if 
node G[id] is visited for the i-th time, then its successor 
is the node that can be found at position i in the adja-
cency list of G[id]).

The nodes in the compressed de Bruijn graph of a pan-
genome can be categorized as follows:

• • A uniqueNode represents a unique substring in the 
pan-genome and has a single start position (i.e., 
posList contains just one element)

• • A repeatNode represents a substring that occurs at 
least twice in the pan-genome, either as a repeat in 
a single genome or as a segment shared by multiple 
genomes.

In pan-genome analysis, S is the concatenation of multi-
ple genomic sequences, where the different sequences are 
separated by a special symbol #. (In theory, one could use 
pairwise different symbols to separate the sequences, but 
in practice this would blow up the alphabet.) This has the 
effect that # may be part of a repeat. In contrast to split-
MEM, our algorithm treats the different occurrences of # 
as if they were different characters. Consequently, # will 
not be a part of a repeat. In our approach, each occur-
rence of # will be the end of a stop node (i.e., there is a 
stop node for each sequence).

According to [5], the compressed de Bruijn graph is 
most suitable for pan-genome analysis: “This way the 
complete pan-genome will be represented in a com-
pact graphical representation such that the shared/
strain-specific status of any substring is immediately 
identifiable, along with the context of the flanking 
sequences. This strategy also enables powerful topo-
logical analysis of the pan-genome not possible from a 
linear representation.” It has one defect though: it is 
not possible to search efficiently for certain nodes and 
then to explore the graph in the vicinity of these nodes. 
A user might, for example, want to search for a certain 
allele in the pan-genome and—if it is present—to exam-
ine the neighborhood of that allele in the graph. Here, 
we propose a new space-efficient representation of 

Fig. 2  Explicit representation of the compressed de Bruijn graph 
from Fig. 1
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the compressed de Bruijn graph that adds exactly this 
functionality.

We store the graph in an array G of length N, where 
N is the number of nodes in the compressed de Bruijn 
graph. Moreover, we assign to each node a unique iden-
tifier id ∈ {1, . . . ,N }. A node G[id] now has the form 
(len, lb, size, suffix_lb), where

• •    The variable len is the length of the string ω = S[SA[lb].. 
SA[lb] + len− 1] that corresponds to the node with 
identifier id

• • [lb..lb+ size − 1] is the ω-interval, lb is its left bound-
ary, and size is its size

• • [suffix_lb..suffix_lb+ size − 1] is the interval of the k 
length suffix of ω

There is one exception though: the sentinel $ and each 
occurrence of the separator # will be the end of a stop 
node. Clearly, the suffix $ of S appears at index 1 in the 
suffix array because $ is the smallest character in the 
alphabet. The suffix array interval of $ is [1..1], so we set 
suffix_lb = 1. Analogously, a suffix of S that starts with # 
appears at an index j ∈ {2, . . . , d} in the suffix array (where 
d is the number of sequences in S) because # is the second 
smallest character in the alphabet, so we set suffix_lb = j.

Figure 3 shows an example. Henceforth this representa-
tion will be called implicit representation, while the repre-
sentation from Fig. 2 will be called explicit representation. 
It is clear that in the implicit representation the list of all 
positions at which ω occurs in S can be computed as fol-
lows: [SA[i] | lb ≤ i ≤ lb+ size − 1]. It will be explained 
later, how the graph can be traversed and how a pattern 
can be searched for. We shall see that this can be done 
efficiently by means of the fourth component suffix_lb.

Construction algorithm
We will build the implicit representation of the com-
pressed de Bruijn graph directly from an FM-index (the 
wavelet tree of the BWT) of S, using Lemma 1 (the simple 
proof is omitted).

Lemma 1  Let v be a node in the compressed de Bruijn 
graph and let ω be the string corresponding to v. If v is not 
the start node, then it has at least two different predeces-
sors if and only if the length k prefix of ω is a left-maximal 
repeat. It has at least two different successors if and only if 
the length k suffix of ω is a right-maximal repeat.

The general idea behind our algorithm is as follows. 
Compute the suffix array intervals of all right-maximal 
k-mers. For each such k-mer v, compute all cv-inter-
vals, where c ∈ �. Then, for each u = cv, compute all 
bu-intervals, where b ∈ �, etc. In other words, we start 
with all right-maximal k-mers and extend them as long 
as possible (and in all possible ways with the proce-
dure getIntervals), character by character, to the left. 
According to Lemma 1, the left-extension of a string ω 
must stop if (i) the length k prefix of ω is a left-maxi-
mal repeat (this is the case if the procedure getIntervals 
applied to the ω-interval returns a non-singleton list). 
It must also stop if (ii) the length k prefix v of cω is a 
right-maximal repeat for some c ∈ �; see Fig. 4. This is 
because by Lemma 1 there is a node uv, u ∈ �∗, in the 
compressed de Bruijn graph with at least two different 
successors (the length k suffix v of uv is a right-maximal 
repeat). Consequently, there must be a directed edge 
(uv,ω) in the compressed de Bruijn graph. In the follow-
ing, we will explain the different phases of the algorithm 
in detail.

Fig. 3  Implicit representation of the compressed de Bruijn graph 
from Fig. 1

Fig. 4  The string ω must be split if the length k prefix of cω is a right-
maximal repeat or the length k prefix of ω is a left-maximal repeat
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Computation of right‑maximal k‑mers and node identifiers
As explained above, there is a directed edge (v,ω) in the 
compressed de Bruijn graph if the k-length suffix of v is a 
right-maximal repeat or the k-length prefix of ω is a left-
maximal repeat. Since we proceed from right to left, we 
must be able to compute an identifier id of the node cor-
responding to v. In case that the k-length suffix of v is a 
right-maximal repeat, we will use the bit vector Br to com-
pute the identifier id. Br has the property that Br[i] = 1 
if and only if the k-mer u = S[SA[i]..SA[i] + k − 1] is a 
right-maximal repeat and SSA[i] is either the lexicographi-
cally smallest or the lexicographically largest suffix of S 
that has u as a prefix (in other words, the left- and right 
boundary of the u-interval in the suffix array is marked 
by a 1 in Br). In case that the k-length suffix of v is not a 

right-maximal repeat but the k-length prefix of ω is a left-
maximal repeat, we will use the bit vector Bl to compute 
the identifier id. Bl has the property that Bl[i] = 1 if and 
only if (i) the k-mer u = S[SA[i]..SA[i] + k − 1] is not a 
right-maximal repeat, (ii) SSA[i] is the lexicographically 
largest suffix of S that has u as a prefix (in other words, i 
is the right boundary of the u-interval in the suffix array), 
and the k-mer S[SA[i] + 1..SA[i] + k] is a left-maximal 
repeat.

To obtain the bit vector Br, we must compute all right-
maximal k-mers and their suffix array intervals. Let u be 
a right-maximal k-mer and consider the u-interval [lb..rb] 
in the suffix array. Note that (1) LCP[lb] < k and (2) 
LCP[rb+ 1] < k. Since u is right-maximal, u is the long-
est common prefix of all suffixes in the interval [lb..rb]. 
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This implies (3) LCP[j] ≥ k for all j with lb+ 1 ≤ j ≤ rb 
and (4) LCP[j] = k for at least one j with lb+ 1 ≤ j ≤ rb 
(in the terminology of [28], [lb..rb] is an lcp-interval of 
lcp-value k). It follows as a consequence that the bit vec-
tor Br can be calculated with the help of the LCP-array. 
Using the algorithm of [25], Algorithm 1 constructs the 
LCP-array directly from the BWT in O(n log σ) time, 
where σ is the size of the alphabet. It is not difficult to 
verify that lines 9–17 of Algorithm  1 compute all suffix 
array intervals of right-maximal k-mers. Furthermore, on 
lines 16 and 17 the boundaries lb and rb = i − 1 of the 
k-mer intervals are marked by setting the entries of Br at 
these positions to 1. On line 18, the node (lb, k , i − lb, lb) 
having the current value of the variable counter as identi-
fier is added to the graph G. In contrast to the last two 
components, the first two components of a node may 
change later (they will change when a left-extension is 
possible). On line 19, the node identifier is added to the 
queue Q and then counter is incremented by one.

We would like to stress that all right-maximal k-mers 
can be determined without the entire LCP-array. In order 
to verify whether or not an interval satisfies proper-
ties (1)–(4), it is sufficient to compute all entries ≤ k in 
the LCP-array (the others have a value >  k). Since the 
algorithm of [25] calculates entries in the LCP-array 
in ascending order, it is ideal for our purposes. We ini-
tialize an array L with values 2 and set L[1] = 0 and 
L[n+ 1] = 0. Two bits are enough to encode the case 
“< k” by 0, the case “= k” by 1, and the case “> k” by 2 (so 
initially all entries in the LCP-array are marked as being 
> k, except for L[1] and L[n+ 1], which are marked as 
being < k). Then, for ℓ from 0 to k − 1, the algorithm of 
[25] calculates all indices p with entries LCP[p] = ℓ and 
sets L[p] = 0. Furthermore, it continues to calculate all 
indices q with entries LCP[q] = k and sets L[q] = 1. Now 
the array L contains all the information that is needed to 
compute right-maximal k-mers.

As already mentioned, in pan-genome analysis 
S = S1#S2# . . . Sd−1#Sd$ is the concatenation of multi-
ple genomic sequences S1, . . . , Sd, separated by a special 
symbol #. Our algorithm treats the different occurrences 
of # as if they were different characters. Assuming that 
# is the second smallest character, this can be achieved 
as follows. As explained above, all right-maximal k-mers 
can be determined without the entire LCP-array if the 

algorithm in [25] is used. If there are d − 1 occurrences 
of # in total and this algorithm starts with d − 1 singleton 
intervals [s..s], 2 ≤ s ≤ d, instead of the #-interval [2..d], 
then the different occurrences of # are treated as if they 
were different characters.

Bit vector Bl is computed on lines 7–29 of Algo-
rithm  1 as follows: If the suffix array interval [lb..rb] 
of a repeat ω of length ≥ k is detected, then it must be 
checked whether or not ω is left-maximal (note that 
rb = i − 1). Recall that ω is a left-maximal repeat if and 
only if |{BWT[lb],BWT[lb+ 1], . . . ,BWT[rb]}| ≥ 2 . 
Algorithm  1 checks this condition by keeping track 
of the largest index lastdiff  at which the characters 
BWT[lastdiff − 1] and BWT[lastdiff ] differ; see lines 
28 and 29. Since lastdiff ≤ rb = i − 1, the characters 
BWT[lb],BWT[lb+ 1], . . . ,BWT[rb] are not all the same 
if and only if lastdiff > lb. If this condition on line 21 
evaluates to true, then for each c /∈ {#, $} in BWT[lb..rb] 
the algorithm sets Bl[LF[q]] to 1 in lines 23–25, where 
q is the index of the last occurrence of c ∈ BWT[lb..rb] 
and LF is the last-to-first mapping. How this is done by 
means of the C-array will be explained below. So a one 
in Bl marks a k-mer that precedes a left-maximal k-mer. 
Since we are only interested in those k-mers that are not 
right-maximal (right-maximal k-mers are already covered 
by bit vector Br), lines 30–38 of Algorithm 1 reset those 
one-bits in Bl to zero that mark a right-maximal k-mer.

It remains for us to explain the computation of the 
Bl vector with the C-array. After the computation of 
the C-array on line 3 of Algorithm  1, for each c ∈ � , 
C[c] is the overall number of occurrences of char-
acters in S that are strictly smaller than c. Moreo-
ver, after line 8 of Algorithm  1 was executed, we have 
C[BWT[i − 1]] = LF[i − 1] (to see this, recall from "Pre-
liminaries" section how the LF-mapping can be computed 
from the BWT). Thus, when the for-loop on lines 7–29 of 
Algorithm 1 is executed for a certain value of i, we have 
C[c] = LF[q] for each character c in BWT[1..i − 1], where 
q is the index of the last occurrence of c in BWT[1..i − 1]. 
Algorithm 1 uses this fact on line 25: C[c] = LF[q], where 
q is the index of the last occurrence of c in BWT[lb..i − 1].

Apart from the direct construction of the LCP-array 
from the BWT, which takes O(n log σ) time, Algorithm 1 
has a linear run-time. The overall run-time is therefore 
O(n log σ).
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Construction of the space‑efficient representation
Algorithm 2 constructs the implicit representation of the 
compressed de Bruijn graph. It calls Algorithm 1, which 
computes—besides the two bit vectors Br and Bl—the 
suffix array interval [lb..lb+ size − 1] of each right-maxi-
mal k-mer ω, stores the quadruple (k, lb, size, lb) at G[id], 
where id = (rank1(Br , lb)+ 1)/2 (this is because Algo-
rithm 1 computes right-maximal k-mer intervals in lexi-
cographical order), and adds id to the (initially empty) 
queue Q. The attributes G[id].size and G[id].suffix_lb 
will never change, but the attributes G[id].len and 
G[id].lb will change when a left-extension is possible. 
In the for-loop on lines 7–11, the stop nodes are added 
to G and their identifiers are added to Q. In the while-
loop on lines 12–31, as long as the queue Q is not empty, 
the algorithm removes an identifier id from Q and in a 
repeat-loop computes list = getIntervals([lb..rb]), where 
lb = G[id].lb and rb = lb+ G[id].size − 1. During the 
repeat-loop, the interval [lb..rb] is the suffix array inter-
val of some string ω of length G[id].len. In the body of 
the repeat-loop, a flag extendable is set to false. The 

procedure call getIntervals([lb..rb]) then returns the 
list list of all cω-intervals. At this point, the algorithm 
tests whether or not the length k prefix of cω is a right-
maximal repeat. It is not difficult to see that the length 
k prefix of cω is a right-maximal repeat if and only if 
the cω-interval [i..j] is a subinterval of a right-maximal 
k-mer interval. Here, the bit vector Br comes into play. 
At the beginning of Algorithm  2, all suffix array inter-
vals of right-maximal k-mers have been computed and 
their boundaries have been marked in Br. It is cru-
cial to note that these intervals are disjoint. Lemma 
2 shows how the bit vector Br can be used to test for 
non-right-maximality.

Lemma 2  The cω-interval [i..j] is not a subinterval of a 
right-maximal k-mer interval if and only if rank1(Br , i), 
the number of ones in Br up to (and including) position i, 
is even and Br[i] = 0.

Proof  “Only-if:” Suppose [i..j] is not a subinterval 
of a right-maximal k-mer interval. Since [i..j] cannot 
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overlap with a right-maximal k-mer interval, it follows 
that rank1(Br , i) must be even and Br[i..j] contains only 
zeros.

“if:” Suppose [i..j] is a subinterval of a right-maximal 
k-mer interval [p..q]. If i �= j, then rank1(Br , i) must be 
odd. If i = j, then rank1(Br , i) may be even. But in this 
case i must be the right boundary of the interval [p..q], so 
Br[i] = Br[q] = 1.� �

Now, the algorithm proceeds by case analysis. If the 
length k prefix of cω is a right-maximal repeat, there 
must be a node v that ends with the length k prefix of cω 
(note that cω[1..k] and ω have a suffix-prefix-overlap of 
k − 1 characters), and this node v will be detected by a 
computation that starts with the k-mer cω[1..k]. Conse-
quently, the computation stops here. If the length k prefix 
of cω is not a right-maximal repeat, one of the following 
two cases occurs:

1.	 If list contains just one element (c, [i..j]), then ω is not 
left-maximal. In this case, the algorithms sets extend-
able to true, G[id].lb to i, and increments G[id].len by 
one. Now G[id] represents the cω-interval [i..j] and 
the repeat-loop continues with this interval. Note 
that G[id].size = j − i + 1 because ω is not left-maxi-
mal.

2.	 Otherwise, ω is left-maximal. In this case, a split 
occurs (so the attributes of G[id] will not change 
any more) and Algorithm 2 must continue with the 
k-mer prefix x = cω[1..k] of cω. For the correct-
ness of the algorithm, it is important to note that 
the interval [i..j] is the x-interval; see Lemma 3. We 
use the bit vector Bl to assign the unique identifier 
newId = rightMax + rank1(Bl , i − 1)+ 1 to the next 
node, which corresponds to (or ends with) x (recall 
that rightMax is the number of all right-maximal 
k-mers and that x is not a right-maximal k-mer). So 
a quadruple (k , i, j − i + 1, i) is inserted at G[newId] 
and newId is added to Q.

Lemma 3  Consider the cω-interval [i..j] in Case 2 of 
Algorithm 2 (beginning at line 27). The interval [i..j] coin-
cides with the cω[1..k]-interval [p..q].

Proof  Clearly, [i..j] is a subinterval of [p..q] because 
cω[1..k] is a prefix of cω. For a proof by contradic-
tion, suppose that [i..j] �= [p..q]. Let cu be the longest 

common prefix of all suffixes in the interval [p..q]. Note 
that the length ℓ of cu is at least k. Since [i..j] �= [p..q], it 
follows that there must be a suffix in the interval [p..q] 
that has a prefix cub so that cu is a proper prefix of cω 
and b �= cω[ℓ+ 1]. Consequently, cu is a right-maximal 
repeat. Clearly, this implies that u is a right-maximal 
repeat as well. We consider two cases:

1.	 ℓ = k: In this case, Algorithm  2 stops (the length k 
prefix cu of cω is a right-maximal repeat), so it can-
not execute Case 2; a contradiction.

2.	 ℓ > k: Note that u has length ℓ− 1 ≥ k. Since u is a 
right-maximal repeat, it is impossible that the proce-
dure getIntervals is applied to the ω-interval [lb..rb]. 
This contradiction proves the Lemma.� �

As an example, we apply Algorithm 2 to k = 3 and the 
LCP-array and the BWT of the string ACTACGTACG-
TACG$; see Table  1. There is only one right maximal k-
mer, ACG, so a node (len, lb, size, suffix_lb) = (3, 2, 3, 2) 
is inserted at G[1] and the identifier 1 is added to the 
queue Q in Algorithm  1. On line 9 of Algorithm  2 
the stop node is added to G. It has the identifier 
rightMax + leftMax + 1 = 1+ 2+ 1 = 4 , so G[4] is set to 
(1, 1, 1, 1) and 4 is added to Q. In the while-loop, the identi-
fier 1 of node (3, 2, 3, 2) is dequeued and the procedure call 
getIntervals([2..4]) returns a list that contains just one inter-
val, the TACG-interval [13..15]. Since rank1(Br , 13) = 2 
is even and Br[13] = 0, Case 1 applies. So extendable 
is set to true and G[1] is modified to (4,  13,  3,  2). In the 
next iteration of the repeat-loop, getIntervals([13..15]) 
returns the list [(C, [9..9]), (G, [11..12])], where [9..9] is 
the CTACG-interval and [11..12] is the GTACG-interval. 
It is readily verified that Case 2 applies in both cases. 
For the CTACG-interval [9..9] we obtain the identi-
fier rightMax + rank1(Bl , 9− 1)+ 1 = 1+ 0+ 1 = 2 , 
so G[2] is set to (3,  9,  1,  9). Analogously, the  
GTACG-interval [11..12] gets the identifier rightMax

+rank1(Bl , 11− 1)+ 1 = 1+ 1+ 1 = 3 and G[3] is set 
to (3,  11,  2,  11). Furthermore, the identifiers 2 and 3 are 
added to the queue Q. Next, the identifier 4 of the stop 
node (1, 1, 1, 1) is dequeued and the procedure call getIn-
tervals([1..1]) returns a list that contains just one interval, 
the G$-interval [10..10]. Case 1 applies, so G[4] is modified 
to (2, 10, 1, 1). In the second iteration of the repeat-loop, 
getIntervals([10..10]) returns the CG$-interval [6..6]. Again 
Case 1 applies and G[4] is modified to (3,  6,  1,  1). In the 
third iteration of the repeat-loop, getIntervals([6..6]) returns 
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the ACG$-interval [2..2]. This time, rank1(Br , 2) = 1 is odd 
and therefore the repeat-loop terminates. The computation 
continues until the queue Q is empty; the final compressed 
de Bruijn graph is shown in Fig. 3.

We claim that Algorithm 2 has a worst-case time com-
plexity of O(n log σ) and use an amortized analysis to 
prove this. Since the compressed de Bruijn graph has at 
most n nodes, it is an immediate consequence that at 
most n identifiers enter and leave the queue Q (this covers 
Case 2). Case 1 can occur at most n times because there 
are at most n left-extensions; so at most n intervals gener-
ated by the procedure getIntervals belong to this category. 
Each left-extension eventually ends; so at most n intervals 
generated by the procedure getIntervals belong to this cat-
egory because there are at most n left-extensions. In sum-
mary, at most 2n intervals are generated by the procedure 
getIntervals. Since this procedure takes O(log σ) time for 
each generated interval, the claim follows.

Construction of the explicit compressed de Bruijn graph
As already mentioned in "Background" section, we 
expect that the implicit representation will totally replace 
the explicit representation. In the unexpected case that 
a future application will require both representations, it 

might be good to know that the implicit representation 
can easily be turned into the explicit representation. For 
this reason, we next describe how this can be done.

If the pan-genome consists of d sequences, then 
S = S1#S2# . . . Sd−1#Sd$ and there are d stop nodes. Since 
the implicit representation allows for an efficient backward 
traversal, there is no need for start nodes. By contrast, the 
explicit graph must provide them. That is why Algorithm 3 
stores them in an array StartNodes of size d.

Algorithm 3 starts with the stop node of the last seque
nce Sd, which has identifier id = rightMax + leftMax + 1.  
Let ω be the string corresponding to node id. Since ω ends 
with $ and $ appears at position n in S, the start position 
of ω in S is pos = n− G[id].len+ 1. Consequently, pos 
is added to the front of G[id].posList on line 7 of Algo-
rithm  3. Next, we have to find the predecessor of node 
id. It is not difficult to see that idx = G[id].lb is the index 
in the suffix array at which the suffix Spos can be found 
(note that Spos has ω as a prefix). Clearly, i = LF(idx) is 
the index of the suffix Spos−1 in the suffix array. Note that 
Spos−1 has cω as a prefix, where c = BWT[idx]. If c is not 
a separator symbol (i.e., c /∈ {#, $}), then the predecessor 
of node id is the node newId whose corresponding string 
u ends with the k-mer prefix x = cω[1..k] of cω. If x is a 
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right-maximal k-mer, then newId is (rank1(Br , i)+ 1)/2 , 
otherwise it is rightMax + rank1(Bl , i − 1)+ 1 . Note that  
u ends at position pos − 1+ (k − 1) in S because u  
and ω overlap k − 1 characters. It follows as a  
consequence that u starts at position newPos =  
pos − 1+ k − 1− G[newId].len+ 1 = pos − 1− (G[newId].  
len− k) . So the position newPos is added to the front of 
the position list of G[newId]. Because node G[id] is the 
successor of node G[newId], the identifier id is added 
to the front of the adjacency list of G[newId]. To find 
the predecessor of node newId in the same fashion, we 
must find the index idx at which the suffix SnewPos can be 
found in the suffix array. According to Lemma 4, this is 
G[newId].lb+ (i − G[newId].suffix_lb). The while-loop 
repeats the search for a predecessor node until a separa-
tor symbol is found. In this case, a start node has been 
reached and its identifier is stored in an array StartNodes 
of size d. Since there are d separator symbols, the whole 
process is executed d times.

Lemma 4  Let G[id] = (len, lb, size, suffix_lb) be 
a node in the implicit representation of the com-
pressed de Bruijn graph. If G[id] is not a stop node 
and suffix Sp appears at index i in the interval  
[b..e] = [suffix_lb..suffix_lb+ size − 1] (i.e., SA[i] = p),  
then the suffix Sp+(len−k) appears at index 
lb+ (i − suffix_lb) in the interval [lb..lb+ size − 1].

Proof  Let u be the string corresponding to G[id] 
and let x be the k-mer suffix of u. By construction, 
[lb..lb+ size − 1] is the u-interval and [b..e] is the x-inter-
val in the suffix array. If u = x, then len = k, lb = suffix_lb , 
and there is nothing to show. So suppose u �= x and let c 
be the character that precedes x in u (recall that x is not 
left-maximal). Since SSA[b] < SSA[b+1] < · · · < SSA[e] , 
it follows that cSSA[b] < cSSA[b+1] < · · · < cSSA[e] . In  
other words, the cx-interval contains the suffixes 
SSA[b]−1 < SSA[b+1]−1 < · · · < SSA[e]−1. Consequently, if 
i is the q-th element of [b..e] and SA[i] = p, then LF(i) is 

the q-th element of the cx-interval and SA[LF(i)] = p− 1 
(this implies in particular that [LF(b)..LF(e)] is the cx-
interval). Iterating this argument len− k times yields the 
Lemma. � �

Algorithm  3 has a worst-case time complexity of 
O(N log σ), where N is the number of edges in the com-
pressed de Bruijn graph. This is because in each execu-
tion of the while-loop an edge is added to the graph and 
a value LF(idx) is computed in O(log σ) time (all other 
operations take only constant time). Since the uncom-
pressed de Bruijn graph has at most n edges, so does 
the compressed graph. Hence N ≤ n. In fact, N is much 
smaller than n in virtually all cases. It follows from the 
preceding section that N can be characterized in terms of 
left- and right-maximal k-mer repeats. We have seen that 
the number of nodes in the compressed de Bruijn graph 
equals |V1| + |V2| + d = rightMax + leftMax + d, where 
V1 = {ω | ω is a right-maximal k-mer repeat in S} and 
V2 = {ω | ∃i ∈ {1, . . . , n− k} : ω = S[i..i + k − 1] /∈ V1 
and S[i + 1..i + k] is a left-maximal k-mer repeat in S} ; 
the stop nodes are taken into account by adding  
d. The number N of edges in the compressed de 
Bruijn graph therefore is |{i | 1 ≤ i ≤ n− k and S[i..i

+k − 1] ∈ V1 ∪ V2}|.

Operations on the compressed de Bruijn graph
It is our next goal to show how the combination of the 
implicit graph and the FM-index can be used to search 
for a pattern P of length m ≥ k. This is important, for 
example, if one wants to search for a certain allele in 
the pan-genome and—if it is present—to examine the 
neighborhood of that allele in the graph. Algorithm  4 
shows pseudo-code for such a search. The main diffi-
culty is to find the node of the k-length suffix of P in the 
implicit graph. Once we have found this node, we can use 
the method introduced in the previous section to con-
tinue the search (where backward search replaces the LF
-mapping).
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Using the FM-index, we first find the suffix array inter-
val [i..j] of the k-mer suffix P[m− k + 1..m] of P. If i ≤ j 
(i.e., P[m− k + 1..m] occurs in the pan-genome), we 
search for the node G[id] whose corresponding string ω 
contains P[m− k + 1..m]. If P[m− k + 1..m] is a suffix 
of ω, then the unknown identifier id can be determined 
by lines 9–13 in Algorithm  4. If it is not a suffix of ω, 
then there is a suffix u of ω that has P[m− k + 1..m] as 
prefix; see Fig. 5. The key observation is that [i..j] is the 
suffix array interval of u. Moreover, u can be written as 
c1c2 . . . cℓx, where cq ∈ � for q ∈ {1, . . . , ℓ} and x is the k-
mer suffix of u. Note that the value of ℓ is unknown. Since 
c2 . . . cℓx is not left-maximal, it follows that [�(i)..�(j)] 
is its suffix array interval (this can be proven by simi-
lar arguments as in the proof of Lemma 4). Algorithm 4 

iterates this process until either on line 18 the identifier 
of a stop node or on lines 9–13 the identifier of a non-
stop-node is found. In the latter case, there are ℓ char-
acters before the k-mer suffix x of u; so |u| = ℓ+ k and 
therefore G[id].len− ℓ− k characters precede u in ω (see 
line 21). In the former case, u = c1c2 . . . cℓ# has length 
ℓ+ 1 and thus G[id].len− ℓ− 1 characters precede u in 

Fig. 5  The string ω has u as suffix and u has P[m− k + 1..m] as prefix
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ω. To obtain this value on line 21, k is subtracted from 
ℓ+ 1 on line 20.

To summarize, after ℓ is set to its new value on line 
21 of Algorithm  4, we know that id is the identifier 
of the node whose corresponding string ω contains 
P[m− k + 1..m] and that there are ℓ characters pre-
ceding P[m− k + 1..m] in ω. On line 22 the list resList, 
which will eventually contain the nodes correspond-
ing to pattern P, is initialized with the element id. In the 
while-loop on lines 25–37, the backward search contin-
ues with the character P[pos] (where pos = m− k) and 
the P[m− k + 1..m]-interval [i..j]. As long as i ≤ j (i.e., 
the suffix P[pos + 1..m] occurs in the pan-genome) and 
pos > 0, backwardSearch(P[pos],  [i..j]) yields the suffix 
array interval of P[pos..m] and pos is decremented by one. 
Within the while-loop there is a case distinction:

1.	 If ℓ > 0, then the current prefix of P[pos..m] still 
belongs to the current node. In this case ℓ is decre-
mented by one.

2.	 If ℓ = 0, then the k-mer prefix of P[pos..m] belongs to 
the predecessor node of the current node. Its identi-
fier id is determined in the usual way and then added 
to the front of resList. The variable ℓ is set to the new 
value G[id].len− k because so many characters pre-
cede the k-mer prefix of P[pos..m] in the string cor-
responding to node G[id].

Algorithm  4 has a worst-case time complexity of 
O((m+ ℓ) log σ), where m = |P| and ℓ is the number 
of executions of the else-statement on line 14. This is 
because the overall number of backward search steps 
(each of which takes O(log σ) time) is m and the number 
of computations of �-values (each of which also takes 
O(log σ) time) is 2ℓ. Of course, ℓ is bounded by the length 
of the longest string corresponding to a node, but this 
can be proportional to n. As a matter of fact, the worst 
case occurs when the algorithm gets a de Bruijn sequence 
of order k on the alphabet � as input: this is a cyclic string 
of length n = σ k containing every length k string over � 
exactly once as a substring. For example, the string aaca-
gatccgctggtt is a de Bruijn sequence of order k = 2 on the 
alphabet � = {a, c, g , t}. The compressed de Bruijn graph 
for such a sequence has just one node and the corre-
sponding string is the de Bruijn sequence itself. In prac-
tice, however, ℓ is rather small; see end of “Experimental 
results” section.

Algorithm  4 finds the nodes in the compressed de 
Bruijn graph that correspond to a pattern P. In this con-
text, the following (and similar) questions arise:

• • In which sequences (or genomes) does pattern P (or 
node v) occur?

• • In how many sequences (or genomes) does pattern P 
(or node v) occur?

• • How often does pattern P (or node v) occur in a spe-
cific sequence (or genome)?

To answer these questions efficiently, we employ the doc-
ument array D of size n = |S|. An entry D[i] = j means 
that the suffix SSA[i] belongs to (or starts within) the 
sequence Sj, where j ∈ {1, . . . , d}. The document array 
can be constructed in linear time from the suffix array 
or the BWT; see e.g. [27, p. 347]. If we store the docu-
ment array in a wavelet tree, then the above-mentioned 
questions can be answered as follows: Given the suffix 
array interval [lb..rb] of pattern P (or node v), the proce-
dure call getIntervals([lb..rb]) on the wavelet tree of the 
document array returns a list consisting of all sequence 
numbers j in which P occurs plus the number of occur-
rences of P in Sj. The worst-case time complexity of the 
procedure getIntervals is O(z + z log(d/z)), where z is the 
number of elements in the output list; see "Preliminaries" 
section.

Experimental results
The experiments were conducted on a 64 bit Ubuntu 
14.04.1 LTS (Kernel 3.13) system equipped with two ten-
core Intel Xeon processors E5-2680v2 with 2.8 GHz and 
128GB of RAM (but no parallelism was used). All pro-
grams were compiled with g++ (version 4.8.2) using 
the provided makefile. As test files we used the E. coli 
genomes listed in the supplementary material of [5]. 
Additionally, we used 5 different assemblies of the human 
reference genome (UCSC Genome Browser assembly 
IDs: hg16, hg17, hg18, hg19, and hg38) as well as the 
maternal and paternal haplotype of individual NA12878 
(Utah female) of the 1000 Genomes Project; see [29]. 
Our software and test data are available at https://www.
uni-ulm.de/in/theo/research/seqana.html; splitMEM can 
be obtained from http://www.sourceforge.net/projects/
splitmem/.

We implemented the three algorithms A1–A3 described 
in the preliminary version of this article [7] and our new 
algorithm A4 using Simon Gog’s library sdsl [30]. Both 
A1 and A2 require at least n log n bits because the suffix 
array must be kept in main memory. Hence Yuta Mori’s 
fast algorithm divsufsort can be used to construct 
the suffix array without increasing the memory require-
ments. By contrast, A3 and A4 use a variant of the semi-
external algorithm described in [21] to construct the 
BWT. Both A3 and A4 store the BWT in a wavelet tree 
and use additional bit vectors; see “Computation of 
right-maximal k-mers and node identifiers” section. The 
variants of the algorithms that appear in Table  2 are as 
follows: A3compr1 and A4compr1 compress only the 

https://www.uni-ulm.de/in/theo/research/seqana.html
https://www.uni-ulm.de/in/theo/research/seqana.html
http://www.sourceforge.net/projects/splitmem/
http://www.sourceforge.net/projects/splitmem/
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additional bit vectors, A3compr2 and A4compr2 also 
compress the (bit vectors in the) wavelet tree, whereas 
A3 and A4 do not use these compression options at all. 
In contrast to the other algorithms, A4 (and its variants) 
constructs the implicit graph (instead of the explicit 
graph) and the wavelet tree of the document array. For a 

comparison with the other algorithms, we also measured 
(called A4+explicit) the construction of the implicit and 
the explicit graph (i.e., the combination of Algorithms 2 
and 3).

The first part of Table  2 (in which the k column has 
the entries init) shows how much time (in seconds) an 

Table 2  Runtime and maximum main memory usage for the construction of the compressed de Bruijn graph

The first column shows the k-mer size (an entry init means that only the index data structure is constructed) and the second column specifies the algorithm used in 
the experiment. The remaining columns show the run-times in seconds and, in parentheses, the maximum main memory usage in bytes per base pair (including the 
construction) for the data sets described in the text. A minus indicates that the respective algorithm was not able to solve its task on our machine equipped with 128 
GB of RAM

k Algorithm 40 E. coli 62 E. coli 7 × Chr1 7 × HG

init SplitMEM 117 (315.25) 141 (317.00) − −
init A1, A2 38 (5.00) 64 (5.00) 380 (5.00) −
init A3, A4 131 (1.32) 202 (1.24) 1168 (1.24) 20,341 (1.24)

50 SplitMEM 2261 (572.19) − − −
50 A1 57 (5.22) 92 (5.34) 596 (6.20) −
50 A2 61 (8.49) 97 (8.78) 619 (9.98) −
50 A3 188 (2.23) 300 (2.26) 1733 (3.07) 29,816 (2.77)

50 A3compr1 208 (1.81) 346 (1.85) 1880 (2.66) 31,472 (2.36)

50 A3compr2 236 (1.63) 374 (1.66) 2318 (2.51) 39,366 (2.22)

50 A4 164 (1.75) 254 (1.82) 1419 (1.28) 25,574 (1.96)

50 A4compr1 167 (1.46) 257 (1.53) 1435 (1.28) 25,866 (1.66)

50 A4compr2 179 (1.32) 272 (1.24) 1526 (1.24) 27,365 (1.39)

50 A4+explicit 172 (3.26) 268 (3.35) 1515 (3.59) 27,619 (3.88)

50 A4compr1+explicit 176 (2.97) 271 (3.06) 1541 (3.31) 28,044 (3.64)

50 A4compr2+explicit 188 (2.66) 289 (2.74) 1629 (2.96) 29,517 (3.38)

100 SplitMEM 2568 (572.20) − − −
100 A1 59 (5.00) 95 (5.00) 595 (5.95) −
100 A2 62 (7.89) 99 (8.19) 605 (9.74) −
100 A3 188 (1.63) 299 (1.68) 1738 (2.74) 27,815 (2.23)

100 A3compr1 205 (1.50) 326 (1.49) 1839 (2.33) 30,401 (1.80)

100 A3compr2 232 (1.32) 411 (1.29) 2340 (2.14) 38,134 (1.66)

100 A4 174 (1.71) 261 (1.79) 1422 (1.28) 25,723 (1.94)

100 A4compr1 171 (1.42) 264 (1.50) 1439 (1.28) 26,040 (1.64)

100 A4compr2 185 (1.32) 289 (1.24) 1544 (1.24) 27,464 (1.37)

100 A4+explicit 178 (2.61) 270 (2.73) 1486 (3.21) 26,878 (3.36)

100 A4compr1+explicit 175 (2.32) 273 (2.44) 1500 (2.92) 26,999 (3.07)

100 A4compr2+explicit 190 (2.01) 299 (2.12) 1624 (2.68) 28,665 (2.80)

500 SplitMEM 2116 (570.84) − − −
500 A1 72 (5.00) 113 (5.00) 620 (5.83) −
500 A2 83 (7.17) 117 (7.43) 640 (9.66) −
500 A3 194 (1.50) 304 (1.49) 1752 (2.67) 28,548 (2.07)

500 A3compr1 216 (1.50) 325 (1.49) 1839 (2.19) 30,488 (1.65)

500 A3compr2 241 (1.32) 378 (1.29) 2319 (2.06) 36,993 (1.50)

500 A4 184 (1.65) 283 (1.74) 1453 (1.28) 26,362 (1.93)

500 A4compr1 197 (1.35) 287 (1.44) 1477 (1.28) 26,545 (1.63)

500 A4compr2 213 (1.32) 322 (1.24) 1622 (1.24) 28,501 (1.36)

500 A4+explicit 185 (1.81) 285 (1.90) 1509 (3.14) 27,285 (3.14)

500 A4compr1+explicit 198 (1.52) 288 (1.61) 1535 (2.83) 27,417 (2.79)

500 A4compr2+explicit 214 (1.32) 323 (1.29) 1694 (2.56) 29,283 (2.58)
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algorithm needs to construct the index data structure 
and its maximum main memory usage in bytes per base 
pair. In the experiments, we built compressed de Bruijn 
graphs for the 62 E. coli genomes (containing 310 mil-
lion base pairs) using the k-mer lengths 50, 100, and 500. 
Table 2 shows the results of these experiments. The run-
times include the construction of the index, but similar 
to splitMEM it is unnecessary to rebuild the index for a 
fixed data set and varying values of k. The peak memory 
usage reported in Table 2 includes the size of the index 
and the size of the compressed de Bruijn graph. Due to 
its large memory requirements, splitMEM was not able 
to build a compressed de Bruijn graph for all 62 strains 
of E. coli on our machine equipped with 128 GB of RAM. 
That is why we included a comparison based on the first 
40 E. coli genomes (containing 199 million base pairs) of 
the data set. The experimental results show that our algo-
rithms are more than an order of magnitude faster than 
splitMEM while using significantly less space (two orders 
of magnitude). To show the scalability of the new algo-
rithms, we applied them to different assemblies of the 
human genome (consisting of 23 chromosomes: the 22 
autosomes and the X-chromosome). The compressed de 
Bruijn graphs of their first chromosomes (7 × Chr1, con-
taining 1736 million base pairs) and the complete seven 
genomes (7 × HG, containing 21,201 million base pairs) 
were built for the k-mer lengths 50, 100, and 500. One 
can see from Table 2 that algorithms A1 and A2 are very 
fast, but 128 GB of RAM was not enough for them to suc-
cessfully build the graph for the seven human genomes 
(note that at least 5 bytes per base pair are required). So 
let us compare algorithms A3 and A4 (and their variants). 
The construction of the explicit graph with A4+explicit is 
faster than with A3, but A4+explicit seems to use much 
more space for this task. The space comparison, however, 
is not fair because A4 also constructs the wavelet tree of 
the document array and two select data structures for the 
wavelet tree of the BWT to calculate � values. These data 
structures are important for searches on the graph, but 
they are superfluous in the construction of the explicit 
graph. So in fact A4+explicit uses only a little more space 
for this task because the implicit representation of the 
graph, which must be kept in main memory, is rather 
small. Table 4 contains a detailed breakdown of the space 
usage of the variants of algorithm A4.

As the explicit compressed de Bruijn graph, the com-
bination of the implicit graph and the FM-index sup-
ports a graph traversal (albeit in backward direction). 
For this task the implicit graph and the FM-index use 
much less space than the explicit graph. This can be seen 
as follows. One can store the explicit representation by 
using—for each node—an integer for len and a pointer 
to posList/adjList. Additionally, each edge causes an 

entry in the posList and an entry in the adjList of a node. 
Altogether, this requires two integers per node and two 
integers per edge. In contrast, the implicit representa-
tion needs four integers per node (len, lb, size, suffix_lb) 
and (independent of the number of edges) the two bit 
vectors Bl and Br, both equipped with an additional data 
structure that supports rank queries in O(1) time. Table 3 
shows the measured space usage of the different repre-
sentations of the compressed de Bruijn graph.

In contrast to the explicit graph, our new data struc-
ture allows to search for a pattern P in the graph and to 
answer questions like: In how many sequences does P 
occur? It is this new functionality (notably the document 
array) that increases the memory usage again; cf. Table 4. 
Despite this new functionality, the overall space con-
sumption of A4 is in most cases less than that of A3; see 
Table 2.

In our next experiment, we measured how long it takes 
to find the nodes in the graph that correspond to a pat-
tern P. Since the median protein length in E. coli is 278 
and a single amino acid is coded by three nucleotides, 
we decided to use a pattern length of 900. Table 5 shows 
the results for 10,000 patterns that occur in the pan-
genome (if patterns do not occur in the pan-genome, the 
search will be even faster; data not shown). Furthermore, 
we measured how long it takes to determine to which 
sequences each node belongs (using the procedure get-
Intervals on the wavelet tree of the document array as 
described at the end of "Operations on the compressed 
de Bruijn graph" section). Table  6 shows the results for 

Table 3  Space in bytes per input base pair for the explicit 
and  the implicit representation of  the compressed de 
Bruijn graph

The numbers for the explicit representation include the input and the numbers 
for the implicit representation include the BWT stored in a wavelet tree. The 
suffix -c1 means that the bit vectors Bl and Br of the implicit representation are 
compressed, and the suffix -c2 means that additionally the (bit vectors in the) 
wavelet tree are compressed

k ds 40 E. coli 62 E. coli 7 × Chr1 7 × HG

50 Explicit 1.80 1.89 2.80 2.57

50 Implicit 0.84 0.82 0.77 0.76

50 Implicit-c1 0.55 0.53 0.47 0.47

50 Implicit-c2 0.30 0.27 0.25 0.26

100 Explicit 1.46 1.51 2.55 2.12

100 Implicit 0.80 0.79 0.75 0.74

100 Implicit-c1 0.51 0.50 0.46 0.45

100 Implicit-c2 0.26 0.24 0.23 0.24

500 Explicit 1.07 1.08 2.50 2.01

500 Implicit 0.74 0.74 0.75 0.74

500 Implicit-c1 0.44 0.44 0.45 0.44

500 Implicit-c2 0.20 0.18 0.23 0.23
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graph. This is important because the worst-case search 
time depends on this length; see end of "Construction 
of the explicit compressed de Bruijn graph" section. The 
results can be found in Table 7.

Conclusions
We have presented a space-efficient method to build the 
compressed de Bruijn graph from scratch. An experi-
mental comparison with splitMEM showed that our 
algorithm is more than an order of magnitude faster than 
splitMEM while using significantly less space (two orders 
of magnitude). To demonstrate its scalability, we suc-
cessfully applied it to seven complete human genomes. 
Consequently, it is now possible to use the compressed 
de Bruijn graph for much larger pan-genomes than 
before (consisting e.g. of hundreds or even thousands of 
different strains of bacteria). Moreover, the combination 
of the implicit graph and the FM-index can be used to 
search for a pattern P in the graph (and to traverse the 
graph).

Future work includes a parallel implementation of the 
construction algorithm. Moreover, it should be worth-
while to investigate the time-space trade-off if one uses 

Table 4  Breakdown of  the space usage of  the variants 
of algorithm A4

The first column shows the algorithm used in the experiment (the k-mer size 
is 50). The second column specifies the different data structures used: wt-bwt 
stands for the wavelet tree of the BWT (including rank and select support), 
nodes stands for the array of nodes (the implicit graph representation), BVr and 
BVl are the bit vectors described in "Computation of right-maximal k-mers" 
section (including rank support), and wt-doc stands for the wavelet tree of the 
document array. The remaining columns show the memory usage in bytes per 
base pair and, in parentheses, their percentage

Algo Part 62 E. coli 7 × Chr1 7 × HG

A4 Wt-bwt 0.42 (23.83 %) 0.44 (36.23 %) 0.43 
(22.68 %)

A4 Nodes 0.10 (5.94 %) 0.03 (2.61 %) 0.04 (2.02 %)

A4 Br 0.16 (8.93 %) 0.16 (12.86 %) 0.16 (8.25 %)

A4 Bl 0.14 (8.04 %) 0.14 (11.57 %) 0.14 (7.42 %)

A4 Wt-doc 0.93 (53.26 %) 0.45 (36.73 %) 1.13 
(59.63 %)

A4compr1 Wt-bwt 0.42 (28.57 %) 0.44 (47.83 %) 0.43 
(26.85 %)

A4compr1 Nodes 0.10 (7.12 %) 0.03 (3.44 %) 0.04 (2.39 %)

A4compr1 Br 0.00 (0.23 %) 0.00 (0.12 %) 0.00 (0.09 %)

A4compr1 Bl 0.00 (0.23 %) 0.00 (0.12 %) 0.00 (0.08 %)

A4compr1 Wt-doc 0.93 (63.85 %) 0.45 (48.49 %) 1.13 
(70.59 %)

A4compr2 Wt-bwt 0.16 (13.03 %) 0.22 (31.01 %) 0.22 
(15.62 %)

A4compr2 Nodes 0.10 (8.67 %) 0.03 (4.55 %) 0.04 (2.76 %)

A4compr2 Br 0.00 (0.28 %) 0.00 (0.16 %) 0.00 (0.10 %)

A4compr2 Bl 0.00 (0.28 %) 0.00 (0.16 %) 0.00 (0.10 %)

A4compr2 Wt-doc 0.93 (77.74 %) 0.45 (64.11 %) 1.13 
(81.42 %)

Table 5  Runtime and  main memory usage for  finding 
nodes

The first column shows the k-mer size and the second column specifies the 
algorithm used in the experiment. The remaining columns show the run-times 
in seconds for finding the nodes corresponding to 10,000 patterns of length 
900 (that occur in the pan-genome) and, in parentheses, the maximum main 
memory usage in bytes per base pair for the data sets described in the text

k 62 E. coli 7 × Chr1 7 × HG

50 A4 3 (1.81) 9 (1.28) 9 (1.96)

50 A4compr1 3 (1.52) 9 (0.98) 11 (1.66)

50 A4compr2 6 (1.20) 20 (0.70) 29 (1.39)

100 A4 3 (1.78) 12 (1.26) 27 (1.94)

100 A4compr1 3 (1.49) 15 (0.97) 19 (1.64)

100 A4compr2 6 (1.17) 31 (0.68) 51 (1.37)

500 A4 9 (1.73) 20 (1.26) 22 (1.93)

500 A4compr1 12 (1.43) 24 (0.96) 27 (1.63)

500 A4compr2 17 (1.11) 55 (0.67) 74 (1.36)

Table 6  Runtime and  main memory usage for  finding 
sequences that correspond to given nodes

The first column shows the k-mer size and the second column specifies the 
algorithm used in the experiment. The remaining columns show the run-times 
in seconds for finding out to which sequences each of the nodes belongs (where 
the nodes correspond to 10,000 patterns of length 900 that occur in the pan-
genome) and, in parentheses, the maximum main memory usage in bytes per 
base pair for the data sets described in the text

k 62 E. coli 7 × Chr1 7 × HG

50 A4 10.84 (1.81) 3.31 (1.28) 15.33 (1.96)

50 A4compr1 10.91 (1.52) 3.17 (0.98) 14.88 (1.66)

50 A4compr2 11.02 (1.20) 3.07 (0.70) 13.02 (1.39)

100 A4 8.31 (1.78) 2.72 (1.26) 10.99 (1.94)

100 A4compr1 8.11 (1.49) 2.83 (0.97) 9.10 (1.64)

100 A4compr2 8.23 (1.17) 2.84 (0.68) 9.25 (1.37)

500 A4 2.43 (1.73) 1.32 (1.26) 4.51 (1.93)

500 A4compr1 2.78 (1.43) 1.32 (0.96) 4.22 (1.63)

500 A4compr2 2.32 (1.11) 1.29 (0.67) 4.30 (1.36)

Table 7  Length of  the longest string corresponding to  a 
node

The first column specifies the k-mer size and the remaining columns show the 
length of the longest string corresponding to a node in the compressed  
de Bruijn graph

k 62 E. coli 7 x Chr1 7 x HG

50 79,967 41,571 36,579

100 173,366 85,773 203,398

500 179,671 2,283,980 1,402,896
the nodes corresponding to 10,000 patterns that occur in 
the pan-genome.

Finally, we determined the length of the longest string 
corresponding to a node in the compressed de Bruijn 
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data structures that are optimized for highly repetitive 
texts; see [31] and the references therein.
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