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Abstract. Fluorescence microphotolysis (recovery 
after photobleaching) was used to determine the lat- 
eral mobility of  the (Na+,K+)ATPase and a fluorescent 
lipid analogue in the plasma membrane of Madin- 
Darby canine kidney (MDCK) cells at different stages 
of  development. Fluorescein-conjugated Fab'  frag- 
ments prepared from rabbit anti-dog (Na+,K+)ATPase 
antibodies (IgG) and 5-(N-hexadecanoyl)amino- 
fluorescein (HEDAF) were used to label the plasma 
membrane of confluent and subconfluent cultures of 
MDCK cells. Fractional fluorescence recovery was 
50% and 80-90% for the protein and lipid probes, 
respectively, and was independent of developmental 
stage. The estimated diffusion constants of  the mobile 
fraction were - 5  × l0 -1° cm2/s for the 

(Na+,K+)ATPase and ~2 × 10 -9 cm2/s for HEDAF. 
Only HEDAF diffusion showed dependency on devel- 
opmental stage in that D for confluent cells was ap- 
proximately twice that for subconfluent cells. These 
results indicate that (Na+,K+)ATPase is 50% immobi- 
lized in all developmental stages, whereas lipids in 
confluent M D C K  cells are more mobile than in sub- 
confluent cells. They suggest, furthermore, that the 
degree of immobilization of the (Na+,K+)ATPase is 
insufficient to explain its polar distribution, and they 
support restricted mobility of  the ATPase through the 
tight junctions as the likely mechanism for preventing 
the diffusion of this protein into the apical domain of 
the plasma membrane in confluent cell cultures. 

T 
hE (Na*,K+)-dependent ATPase (EC3.6.1.3) is an in- 
tegral plasma membrane protein that catalyzes acti- 
vated co-transport ofNa + out and K + into cells coupled 

with the hydrolysis of ATP (39). The enzyme consists of an 
-, B dimer of 110 and 50 kD, respectively (20). This structural 
unit, referred to as the a, ~ protomer, is believed to also be 
the smallest functional unit of the enzyme capable of ion 
transport (10). 

Structural studies of this protein suggest that the a, f3 
protomer is 115 ~, in its longest direction, spanning the 
membrane and at most -50-60 A in diameter in a plane 
parallel to the membrane (44). The extracellular face of the 
protomer protrudes ~20 A, from the bilayer. The intracellular 
face protrudes -50 A from the bilayer and contains ATP 
binding sites (7, 25) and functional sulfhydryls significantly 
removed from the bilayer by ~30-40 A (16). These structural 
studies and others (18, 26) suggest that the a subunit has a 
sufficiently large cytoplasmic domain to permit it to interact 
directly with cytosolic proteins. Such interaction could pos- 
sibly be important in maintaining its distribution in the 
plasma membrane (1). 

Lateral asymmetric distribution of the (Na+,K+)ATPase has 
been observed in the plasma membranes of cells in a number 
of tissues, including those of epithelial, neuronal, and photo- 
receptor origin (see reference 1). It is believed that such 
asymmetric distributions are vital for the vectorial ion trans- 

port or ionic currents in these cells or for controlling the types 
of proteins in the membrane with which the enzyme can 
interact. The mechanism for the establishment and mainte- 
nance of such cell polarity is still unknown. 

The Madin-Darby canine kidney (MDCK) ~ cell line (35) 
has been used to investigate cell polarity (23). U and Evans- 
Layng (40) observed that the (Na+,K+)ATPase was confined 
to the apical surface in subconfluent monolayers and is redis- 
tributed to the basolateral surface in confluent layers. Several 
studies of surface proteins in MDCK cells have suggested that 
the cell polarity is the result of polarized vesicular transport 
of membrane proteins (6, 22, 24, 36) by membrane flow 
processes (27). In addition, the maintenance of the polarized 
distribution has been postulated to be due to restricted move- 
ment of the protein through the zona occludens or tight 
junctions (8, 40, 41). On the other hand, recent studies on 
the mobility of wheat germ agglutinin receptors in MDCK 
cells (11) indicated that these receptors were completely im- 
mobile on the basolateral and apical surfaces. This latter result 
suggested that cell polarity might be maintained via restricted 
mobility of the membrane proteins themselves. The inference 
is supported by evidence that indicates some proteins appear 
to pass through the zona occludens (14, 34), which suggests 

J Abbreviations used in this paper: FITC, fluorescein isothiocyanate; FRAP. 
fluorescence recovery after photobleaching; HEDAF, 5-(N-hexadeca- 
noyl)aminofluorescein; MDCK, Madin-Darby canine kidney. 
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that the zona occludens does not impede the lateral mobility 
of at least some membrane proteins. 

To gain further insight into the mechanism of control of 
cell polarity, we have measured the lateral mobility of the 
(Na+,K+)ATPase, a wheat germ agglutinin binding protein 
(30), in MDCK cells using specific monovalent Fab' antibody 
probes. We report the results of the fluorescence micropho- 
tolysis (i.e., fluorescence recovery after photobleaching 
[FRAP]; see references 32 and 43) measurements of the lateral 
mobility of the (Na÷,K+)ATPase in the plasma membrane of 
confluent and subconfluent cultures of these cells. Our results 
suggest that the lateral motion of the (Na+,K+)ATPase is 
partially, but not totally restricted, demonstrating a popula- 
tion that is 50% mobile with a diffusion constant of 5 x 10 -]° 
cm2/s. This result is to be contrasted with previously reported 
studies using wheat germ agglutinin as a probe of cell surface 
mobility, which indicated that wheat germ agglutinin recep- 
tors were completely immobile. These results have been pre- 
viously reported in abstract form (17). 

Materials and Methods 

Cells 

The MDCK celI line was maintained exactly as described in Rindler etal .  (35) 
except that before cell passage and dilution 4-6 clean square cover glasses (22 
ram) were placed in the petri dishes to provide a substratum for cell growth 
that could easily be used for labeling, washing, media transfer, and observation. 

Antibodies 

Anti-dog (Na+,K+)ATPase antisera raised against pure (Na*,K*)ATPase (22) 
was the kind gift of Dr. Daniel Louvard. To prepare the IgG fraction, serum 
was dialyzed against 10 mM KH2PO4, pH 8.0, overnight with one change of 
buffer (1 liter/5 ml sera). The dialyzed serum was centrifuged to clarity at 
10,000 rpm in a Sorvall SS-34 rotor for 10 rain. The supernatant was then 
applied to a DEAE-cellulose (Whatman 52, Whatman Inc., Clifton, N J) column 
equilibrated in dialysis buffer. 60% of the total IgG was collected in the flow 
through as a pure fraction as judged by homogeneous heavy and light chains 
by reduced SDS PAGE. 

(Fab')2 fragments were prepared by 3% wt/wt pepsin digestion at pH 4.0 for 
18 h at 37*C. This step was followed by dialysis against phosphate-buffered 
saline (PBS), and centrifugation at 10,000 rpm for 10 rain at 4"C. SDS PAGE 
of the digests did not show undigested IgG. Fab' fragments were prepared by 
reducing (Fab')z in 20 mM dithiothreitol for 2 h at room temperature at pH 8 
and then alkylating with 20 mg/ml recrystallized iodoacetamide for 30 rain at 
4"C. Final Fab' sample was then dialyzed against PBS and was homogeneous 
in analyses by SDS PAGE. 

Fluorescein isothiocyanate (FITC, Sigma Chemical Co., St. Louis, MO) was 
used to conjugate Fab' fragments of anti-ATPase and normal rabbit serum. 
Conjugation was performed in a dialysis bag in carbonate buffer at pH 9.0 for 
18 h after which the free FITC was dialyzed out against PBS. The conjugate 
was centrifuged to clarity and chromatographed on a DE-52 column to isolate 
conjugates with a fluorescein/protein ratio of 3-4:1. 

Cell Labeling and Immunofluorescenee 
To fluorescently label cells for FRAP measurements, coverslips were used from 
MDCK cultures 1-5 d after passage and dilution. After washing in Dulbecco's 
PBS + 0.5% bovine serum albumin (BSA), the cells were incubated with FITC- 
conjugated anti-(Na+,K*)ATPase Fab' fragments at 100-400 ~g/ml in Dul- 
becco's PBS -+ 20 mM NaN3 for 30 rain on ice, followed by two washes in 
Dulbecco's PBS + 0.5% BSA. Antibody labeling was judged specific in that it 
was not visible if cells were pretreated with unconjugated antibody or if  
fluorescein-conj ugated (fluorescein/protein ratio of 3-4:1) normal rabbit serum 
Fab' was used in the labeling procedure. 

To label ceils for immunofluorescence photography, coverslips with growing 
MDCK cells were rinsed in PBS two times and fixed in 2% paraformaldehyde 
for 20 rain at room temperature followed by 5-rain incubation in 0.1 M glycine 
in PBS and a wash in PBS. This preparation was then exposed to 100-400 #g/ 
ml anti-(Na*,K+)ATPase lgG and washed two times for 5 rain with 4 mg/ml 
BSA in PBS and one time with PBS. The preparation was then incubated for 

5 rain at 37"C with tetramethylrhodamine isothiocyanate-conjugated goat anti- 
rabbit lgG antibody and washed again as before. The preparation was then 
mounted in 90% glycerol in PBS by successive 5-rain immersions in 10, 30, 
60, and 90% glycerol PBS. Photography was performed on a Zeiss photomicro- 
scope (Carl Zeiss, Inc., Thornwood, NY) using 63 x 1.4 numerical aperture 
objective and Kodak Tri-X film processed with Accufine developer. 

FRAP 

FRAP measurements were done at room temperature as described by Woda et 
al. (42). 

Results 

The MDCK epithelial cell line forms monolayers of cells in 
culture that possess permeability and transport properties 
similar to in vivo transporting epithelia. After trypsinization 
of seed cultures, the replated cells grow to form islands of ceUs 
which in turn grow to confluence forming large sheets of  cells 
with tight junctions (8, 15, 35). The surfaces of  cells in these 
various stages were fluorescently labeled with HEDAF to 
assess the mobility of  the plasma membrane lipids at different 
growth stages. If the labeling was done in the presence of 
NAN3, then a greater number of  lateral mobility measure- 
ments could be made before internal labeling was apparent. 
Cells labeled with HEDAF were intensely fluorescent and 
appeared as reported previously by Dragsten et al. (11). 

FRAP determinations were made on the apical surfaces of 
both confluent and subconfluent cells labeled with HEDAF. 
Fig. 1 and Table I show the results of such determinations. 
Fluorescence recovery was 80-90% of the intensity before 
photobleaching in both types of  cells. The calculated diffusion 
constants were 6 and 20 x t0 -1° cm2/s for subconfluent and 
confluent cells, respectively. The latter figure agrees within 
experimental error with the value (4 + 2 × 10 -9 cm2/s) 
reported for HEDAF by Dragsten et al. (11) for the apical 
surfaces of confluent layers of  MDCK cells. 

When cells, fixed at different stages of  growth, were labeled 
with FITC-anti-dog (Na+,K+)ATPase IgG, it was evident that 
the distribution of the externally accessible antibody sites 
depended on the maturity of  the culture. Immature cultures 
that demonstrate isolated islands of MDCK cells are shown 
in Figs. 2 and 3, a and b. These islands were brightly fluores- 
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Figure 1. F RAP  of  H E D A F  in the apical surface o f  a confluent 
monolayer of  cultured M D C K  cells. Fluorescence was excited in a 
2.5-um-diam circular spot on the cell surface by a focused He-Cd 
laser microbeam (X~x = 451 nm) and measured through microscope 
optics by photon counting. From these curves, percent recovery, R, 
and half t ime of  recovery, t]/2, were used to determine the mobile 
fraction of  H E D A F  and its lateral diffusion constant, D. The results 
are summarized in Table I. 
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Table I. Lateral Mobility of MDCK Cell Plasma Membrane Components 

Probe Cell stage Azide Percent recovery t v, +- SEM D No. trials 

R +_ SEM s cma/s 

HEDAF Subconfluent Yes 78 _+ 3 8 + 2 6 × 10 -~° 25 
Confluent Yes 92 _+ 2 3 + 0.5 2 × 10 -9 14 

Anti-(Na+,K+)ATPase lab'  Subconfluent No 51 _+ 0.4 26 _+ 0.4 2 x 10 -~° 59 
Subconfluent Yes 47 _+ 6 12 _+ 2 4 x 10 -~° 4 

Confluent  (basolateral Yes 50 _+ 1 l0  _+ 0.5 5 × 10 -~° 16 
only) 

cent from antibody labeling and showed punctate fluores- 
cence. The labeling of individual cells usually appeared about 
the same over small cell islands that contained less than 10- 
15 cells (not shown). As the islands enlarged or coalesced with 
others, labeling became heterogeneous (Fig. 2, c and e, and 
3 a) or was observable only at the outer perimeters of the layer 
(not shown). Fluorescence intensity decreased toward the 
center of these large clusters. 

Fully confluent cells showed virtually no fluorescent label- 
ing unless breaks in the layer were made and the basolateral 
surfaces were exposed by folding back the edge of a tear (Fig. 
3, c and d). Such regions were the most intensely stained of 
all the preparations. These results indicate that in the con- 
fluent cells, the (Na+,K÷)ATPase is confined to the basolateral 
surfaces and that cell-cell contact appears to be accompanied 
by loss of (Na+,K+)ATPase from the apical surface. The results 
are consistent with previous observations made by U and 
Evans-Layng (40) in MDCK cells. Identical distributions have 
been demonstrated for the 50,000-kD glycoprotein of MDCK 
cells localized by Herzlinger and Ojakian (15) and therefore 
suggest that the cells have achieved full polarity. 

To evaluate the role of lateral mobility in the establish- 
ment and maintenance of asymmetric distribution of 
(Na+,K+)ATPase at the cell surface, we made FRAP measure- 
ments on cells labeled with FITC-conjugated anti-dog 
(Na+,K÷)ATPase Fab' fragments. Cells labeled with the probe 
showed visually bright "ring" fluorescence characteristic of 
surface labeling. The fluorescence, however, was bleached 
rapidly by the excitation beam used for photography and was 
consequently not photographed. Specificity of labeling was 
therefore established by dark-adapted visual observation using 
control antibodies. Labeling was inferred to be specific in that 
it was not visible if cells were pre-exposed to unconjugated 
anti-dog (Na+,K+)ATPase Fab' fragments. In addition, label- 
ing was unaffected by exposure to normal rabbit serum Fab' 
fragments either before or after labeling with specific antibody 
fragments. 

The cells chosen for lateral mobility measurements were 
ones that clearly demonstrated bright specific fluorescence. 
These included brightly stained apical surfaces in subcon- 
fluent cells. In such subconfluent cell clusters, no attempt was 
made to label the surfaces attached to the coverslips because 
the distributions observed were in agreement with those of U 
and Evans-Layng (40), who reported in their electron micro- 
scopic studies that the (Na÷,K+)ATPase was confined only to 
the apical domain at this stage of culture development. No 
clear correlation emerged between the mobility properties of 
the (Na÷,K+)ATPase in cells on the edge of clusters or in the 
middle of such clusters. Consequently, all the mobility mea- 

surements on immature clusters of cells were grouped together 
and averaged. 

In confluent layers, only those cells exposed to labeling by 
tearing of the monolayer were used for the lateral mobility 
measurements. These regions were easily discernible because 
of their bright labeling and characteristic flaplike morphology 
(see region between arrows in Fig. 3, c and d). Table I and 
Fig. 4 show the results of these measurements. Clearly, the 
(Na+,K+)ATPase appeared 50% immobilized at the time of 
measurement. This fraction was also independent of the 
maturity of the culture and did not require metabolic energy 
for its maintenance as evidenced by its insensitivity to NAN3. 
The calculated diffusion constant of the mobile fraction (5 x 
l0 -~° cm2/s) was, however, dependent on the energy state of 
the subconfluent cells, which increased by a factor of two in 
cells treated with NAN3. Of interest is that in NaN3-treated 
subconfluent cells, the mobility of HEDAF was not signifi- 
cantly different from that of the (Na+,K÷)ATPase. 

The mobility of the (Na÷,K+)ATPase on the basolateral 
surface of confluent cells was not significantly different from 
that on the apical surface of subconfluent cells. However, it 
was not possible to determine whether tearing the cell layer 
to expose the basolateral surface altered the mobility charac- 
teristics of the (Na÷,K+)ATPase. Nevertheless, it is unlikely 
that there was a major alteration since U and Evans-Layng 
reported the same distribution of (Na+,K÷)ATPase in their 
preparations and demonstrated that tight junctions and asym- 
metry in distribution of the (Na÷,K*)ATPase were preserved 
even when samples were processed as detached sheets. 

Discussion 

The results presented in this paper indicate that the 
(Na+,K+)ATPase is 50% immobilized in both subconfluent 
and confluent cultures of MDCK cells. The mobile fraction 
shows a relatively high diffusion constant, which suggests that 
half of the (Na÷,K+)ATPase molecules are freely diffusing in 
the plasma membrane. Addition of azide increases the rate of 
diffusion of the mobile fraction but has no effect on the size 
of the immobile fraction. Mobility measurements with the 
lipid probe HEDAF demonstrate near-complete FRAP, which 
is typical of lipids and indicates that the probe has a higher 
mobility in confluent cells and a diffusion coefficient that 
approaches that of the (Na+,K+)ATPase in subconfluent cells. 

Our results can be compared with those reported by Drag- 
sten et al. (11). The diffusion coefficient that we measured for 
HEDAF was not significantly different from their reported 
value of 4.2 + 1.8 × 10 -9 emZ/s for the same probe. In their 
study, however, wheat germ agglutinin receptors appeared to 
be completely immobile. Unfortunately, wheat germ agglu- 
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Figure 2. Immunofluorescence localization of the (Na*,K÷)ATPase by rabbit anti-dog (Na+,K+)ATPase on the apical surfaces subconfluent 
islands of MDCK cells. Different focal planes of observation show that peripheral cells are labeled most strongly in a, c, and e. Corresponding 
regions using Nomarski optics are shown in b, d, a n d f  Bar, 10 um. 
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Figure 3. Heterogeneity in immunofluorescence localization of the (Na+,K+)ATPase by rabbit anti-dog (Na+,K+)ATP ase on the apical surfaces 
of larger subconfluent regions of MDCK cells. A large cell island is shown in a and b. Arrows indicate cells that did not label strongly with 
antibody. The torn edge of an extended confluent region is shown in c and d. Area between arrowheads indicates an edge, folded back 
demonstrating that the basolateral surface (b.s.) is very brightly stained relative to the apical surface (a.s.). Region of the coverslip is denoted 
by c.s. Bar, 10 urn. 

tinin lacks specificity in that it recognizes N-acetylglucosa- 
mine, or sialic acid residues of a variety of  glycolipids and 
glycoproteins and, therefore, potentially can bind to all mem- 
brane components that contain these residues. In addition, 
since it is a multivalent ligand, it may cross-link mobile 

proteins or lipids and immobilize them or induce cytoskeletal 
associations by cross-linking previously mobile proteins (2, 
29). Consequently, it is difficult to determine from such results 
whether any particular species of membrane constituent rec- 
ognized by wheat germ agglutinin is indeed immobilized in 
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Figure 4. F R A P  o f  F I T C - c o n j u g a t e d  r a b b i t  a n t i - d o g  

(Na+,K+)ATPase Fab' fragments specifically labeling the apical sur- 
faces of subconfluent culture MDCK cells. Fluorescence was excited 
in a 2.5-um-diam circular spot on the cell surface by a focused He- 
Cd laser microbeam (~x = 451 nm) and measured through micro- 
scopic optics by photon counting for several seconds at 15- to 45-s 
intervals. From such curves, the percent recovery, R, and half time 
of recovery, t:/2, were used to determine the mobile fraction and 
lateral diffusion constant of the (Na+,K +) ATPase. 

the native state of the cell. 
Since the (Na+,K÷)ATPase is itself a wheat germ binding 

protein (30), our study using a monovalent anti- 
(Na+,K+)ATPase antibody label indicates that at least one 
membrane wheat germ agglutinin binding protein is not 
completely immobile. The sizeable (50%) mobile fraction of 
the (Na+,K+)ATPase exhibited a diffusion constant of 2-5 × 
10 -~° cmZ/s, which is only a factor of 5-10 smaller than 
rhodopsin, the most rapidly diffusing integral membrane pro- 
tein yet measured. It must be cautioned, however, that the 
measurements on confluent cells involved tearing of the cell 
layer to gain access to the basolateral surface. These measure- 
ments, therefore, may not be representative of the true mo- 
bility of the protein in the basolateral membrane of the intact 
cell layer if some metabolic or regulatory functions of the cell 
had been sufficiently perturbed. However, as stated in the 
Results section, it is unlikely that major alterations have 
occurred based on the results of U and Evans-Layng (40). 

What, then, could be the functional significance of the 
observed immobilization of a major fraction of an integral 
membrane transport protein such as the (Na+,K÷)ATPase? 
Since the protein has been fully purified and functionally 
reconstituted, it is clear that it can be active without being 
immobilized. Antibodies directed to its large cytoplasmic 
domain, however, can be inhibitory (21). One possibility is 
that its immobilization might be due to binding of regulatory 
proteins. Alternatively, the immobilization could be related 
to the transfer of the (Na÷,K+)ATPase to and from hypothet- 
ical plasma membrane-cytoskeletal "loading docks" where it 
would be delivered or received from the endomembrane 
system. The latter hypothesis receives support from recent 
experiments suggest that the cytoskeleton is involved in po- 
larized delivery of membrane proteins to the plasma mem- 
brane from the Golgi apparatus (19, 22, 36), and in their 
endocytosis via the coated pit mechanism (4, 37). 

Our results are, however, of significance with respect to 
understanding how a cell establishes and maintains an asym- 
metric distribution of its plasma membrane protein compo- 
nents (1, 3, 13). There are at least three mechanisms for 
maintaining such polarity. These are (a) immobilization; (b) 

barriers to diffusion such as tight junctions or closely spaced 
and immobilized proteins on or in the membrane (12); (c) 
polarized insertion and rapid endocytosis (5). The first mech- 
anism may be mediated by association of plasma membrane 
proteins with a polarized network of cytoskeletal proteins (2, 
19). Such an association may be involved in immobilizing 
half of the (Na+,K+)ATPase to the basolateral surface of the 
cell. It must be noted, however, that there is no direct evidence 
for such an association and that lateral immobilization in 
microscopic domains of the order of the FRAP measuring 
beam dimension do not preclude unrestricted lateral protein 
mobility in smaller lateral domains. Support for this view is 
derived from experiments that show that certain membrane 
proteins are restricted in their lateral diffusion but are rota- 
tionally unconstrained in the plane of the membrane (9, 33). 

This latter dichotomy in membrane mobilifies has lead to 
proposal of molecular barriers to lateral diffusion (12, 28, 38). 
Such barriers in the form of molecular networks distributed 
in the plane of the membrane or localized to tight junctions 
could serve as the basis for the second mechanism for main- 
raining the polarity of the mobile fraction of the 
(Na+,K÷)ATPase. 

The third alternative relies on continuous and spatially 
asymmetric vesicular delivery of the (Na+,K+)ATPase to the 
plasma membrane. Such delivery would be followed by rapid 
internalization. In this case, a spatial gradient of the ATPase 
could be maintained without the necessity for a barrier to 
diffusion or for anchorage. This third mechanism for main- 
taining polarity has been recently discussed by Almers and 
Stirling (1). They have presented an expression h = (TD) m, 
which estimates the mean diffusion distance, ~,, of a laterally 
mobile molecule having a diffusion constant, D, inserted in 
the plasma membrane at time t -- 0, and removed at t = T 
by an internalization event. If we assume that insertion occurs 
at a lateral domain of the plasma membrane, close to the 
trans-Golgi apparatus as has been demonstrated for viral 
proteins in infected MDCK cells (36), then endocytosis would 
have to occur by the time the molecules would diffuse to the 
region of the tight junctions where the abrupt change in 
surface density of the (Na÷,K+)ATPase occurs (40). 

An estimate for an upper limit for this distance would 
assume delivery of the (Na+,K*)ATPase to lateral membrane 
most proximal to the basal surface. Morphometric determi- 
nation of apical surface area at 214 #m 2 and total surface area 
of 1,840 ttm 2 (31) suggests that deposition of protein on the 
basolateral edge of a cuboidal cell would interpose a maxi- 
mum diffusion distance o f - 2 4  gm to the apical-lateral edge. 
Given this distance the maximum surface residency time 
calculated from the expression given above is - 3  h. If, how- 
ever, delivery of the (Na+,K+)ATPase is closer to the tight 
junctions as the relatively uniform distribution of the 
(Na+,K+)ATPase over the basolateral domain (40) suggests, 
then residency times would have to be much shorter. A 1-ttm 
diffusion distance would require a residency time of only 20 
S. 

Several observations indicate the existence of asymmetric 
insertion and removal of membrane proteins in MDCK cells. 
Rindler et al. (36) have shown that at 37°C and 15 rain after 
viral G protein is observed in the Golgi apparatus of vitally 
infected MDCK cells, it is inserted at any place, along the 
apical to basal dimension in the lateral plasma membrane, 
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which include regions adjacent to the tight junctions. The 
protein achieves a relatively uniform basolateral distribution 
similar to that of the (Na+,K*)ATPase (40) by 45 min after 
observation in the Golgi apparatus. Similar patterns and 
kinetics for the G protein have also been reported by Marlin 
and Sirnons (24) and Pfeiffer et at. (31). By inference, delivery 
of this protein must be balanced by an equivalent rate of 
removal by endocytosis. Equivalent rates have been demon- 
strated by Louvard (22) for the endocytosis of aminopeptidase 
from the apical surface of MDCK cells. 

Although these results are for proteins other than the 
(Na+,K+)ATPase (6), they indicate that the cells are capable 
of such turnover. Indeed recent evidence suggests similar 
processes in the case of the (Na*,K+)ATPase. Additional 
evidence in support of this view has come from our observa- 
tion that cells on slides kept at room temperature for lateral 
mobility studies for longer than 45 min to 1 h developed 
visible internal fluorescence that could be blocked by the 
metabolic inhibitor NAN3. Such internal fluorescence might, 
therefore, be a manifestation of endocytosis of the 
(Na+,K*)ATPase-Fab ' complex and would therefore not dif- 
fer significantly in kinetics to that inferred for the G protein 
system. Thus, if ATPase is delivered to the lateral membrane 
in regions close to the tight junction ( -  1-5 #M) there would 
be insufficient time for its removal by endocytosis to prevent 
its diffusion across the region delineated by the tight junctions. 

In summary, our results suggest that the immobilization of 
the (Na+,K+)ATPase can be only partially responsible for 
maintenance of the polarity of its distribution in MDCK cells. 
The uniformity of its distribution in the lateral domain, the 
fidelity of its exclusion from the apical domain, and the 
incompatibility of its rapid diffusion with the insertion and 
rapid removal mechanism suggest that localized restricted 
diffusion at tight junctions ( 12, 41) is probably the most likely 
mechanism for maintaining the polarity of the mobile fraction 
of the (Na+,K÷)ATPase. Clearly many questions still remain 
about the relationship between vesicular membrane flow and 
lateral control of membrane proteins. These will provide 
interesting areas for further study. 
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