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Several environmental, genetic, and immune factors create a “perfect storm” for the
development of coeliac disease: the antigen gluten, the strong association of coeliac
disease with HLA, the deamidation of gluten peptides by the enzyme transglutaminase 2
(TG2) generating peptides that bind strongly to the predisposing HLA-DQ2 or HLA-DQ8
molecules, and the ensuing unrestrained T cell response. T cell immunity is at the center of
the disease contributing to the inflammatory process through the loss of tolerance to
gluten and the differentiation of HLA-DQ2 or HLA-DQ8-restricted anti-gluten inflammatory
CD4+ T cells secreting pro-inflammatory cytokines and to the killing of intestinal epithelial
cells by cytotoxic intraepithelial CD8+ lymphocytes. However, recent studies emphasize
that the individual contribution of each of these cell subsets is not sufficient and that
interactions between these different populations of T cells and the simultaneous activation
of innate and adaptive immune pathways in distinct gut compartments are required to
promote disease immunopathology. In this review, we will discuss how tissue destruction
in the context of coeliac disease results from the complex interactions between gluten,
HLA molecules, TG2, and multiple innate and adaptive immune components.
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INTRODUCTION

Coeliac disease (CeD) is a multifactorial intestinal immune-mediated disorder with autoimmune
features that leads to inflammatory and destructive lesions in the proximal small intestine. CeD,
similar to other organ-specific autoimmune disorders, is marked by its complexity both at the
epidemiological and immunological levels, which translates into a spectrum of clinical
manifestations (1). CeD is characterized by an infiltration of intraepithelial lymphocytes in the
proximal part of the small intestine, crypt hyperplasia and the development of villous atrophy in the
latest stages of the disease. In addition, CeD patients produce highly disease-specific antibodies
against deamidated gluten peptides and the enzyme tissue transglutaminase 2 (TG2) (2–4). CeD is
triggered by gluten consumption in genetically susceptible individuals carrying certain major
histocompatibility complex (MHC) class II human leukocyte antigen (HLA) variants (5, 6). 90-95%
of CeD patients carry the HLA-DQ2.5 variant (DQA1*05:01, DQB1*02:01) that confers the highest
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risk of developing CeD while the remaining patients carry HLA-
DQ2.2 (DQA1*02:01, DQB1*02:02) or HLA-DQ8 (DQA1*03,
DQB1*03:02) (5, 7). However, while up to 40% of the general
population in Western countries express one of the predisposing
HLA molecules, the global prevalence of CeD is just 1% (8). This
finding suggests that these HLA variants contribute to, but are
not sufficient for, the development of the disease and that
additional genetic and environmental factors are needed to
mount a pathogenic immune response against gluten (9). In
fact, the HLA locus which is the main inherited genetic
susceptibility factor for CeD, only accounts for ~ 40% of the
genetic variance of the disease. Hence, non-MHC susceptibility
loci explaining ~ 15% of the disease risk (10–13), as well as
additional environmental factors other than gluten, are thought
to contribute to disease development. Among them are early life
gastrointestinal infections, which have been associated with an
increased risk of developing CeD in several cohorts of genetically
susceptible children (14–16). Of particular interest are enteric
viruses such as reovirus, norovirus and rotavirus, which are the
most common causes of diarrheal disease in early childhood.
Recurrent infections in young individuals with a permissive
genetic background could interfere with the maturation of the
mucosal immune system and the composition of the microbiome
(17), and thus favor the subsequent induction of an
inflammatory T cell responses and the loss of oral tolerance to
dietary gluten (18, 19). Although much less documented,
intestinal infections caused by bacteria such as Campylobacter
jejuni or parasites such as Giardia lamblia, could also contribute
to the onset or maintenance of the disease (20, 21). In strong
support of a role of the microbial environment in promoting the
development of CeD is the identification of microbially derived
mimics of gliadin epitopes that can activate HLA-DQ2.5-
restricted gliadin-specific T cells isolated from CeD patients (22).

The complexity of CeD is also reflected by the contribution of
multiple immune pathways for the induction of the disease and
intestinal tissue remodeling and destruction (23–25). It has been
known for decades that HLA-DQ2 and HLA-DQ8 present TG2-
deamidated gluten peptides to CD4+ T cells in the intestinal lamia
propria compartment, driving TH1 differentiation (26–31). These
gluten-specific TH1 cells contribute to the inflammatory process
through the production of the inflammatory cytokines Interferon
(IFN)-g (32) and Interleukin (IL)-21 (33). Yet, this gluten-specific
adaptive immunity is not sufficient to promote the licensing of
intraepithelial cytotoxic CD8+ T cells (IE-CTLs) that are
responsible for the destruction of distressed intestinal epithelial
cells. This lack of sufficiency can be seen in potential CeD
patients, who carry HLA-DQ2 or HLA-DQ8 and display
adaptive immune responses against gluten (proxied by anti-
TG2 and anti-endomysium antibodies) but lack villous atrophy
(6, 34). In particular, potential CeD patients do not display an
accumulation of IE-CTLs with an active killer phenotype
(upregulated granzyme B expression, upregulated activating NK
receptor expression, downregulated inhibitory NK receptor
expression) and also lack upregulation of the pro-inflammatory
cytokine IL-15 and the non-classical MHC class I stress molecules
MICA/B and HLA-E in intestinal epithelial cells (25, 35, 36),
Frontiers in Immunology | www.frontiersin.org 2
immune features that are both required for the development of
villous atrophy. Additionally no tissue destruction was observed
in HLA-DQ2 or HLA-DQ8 humanized mice that develop anti-
gluten immunity (37–39). Only in recent years has it become clear
that the interplay between gluten-specific CD4+ T cells and
intraepithelial cytotoxic CD8+ T cells, as well as the
simultaneous activation of innate immune pathways in distinct
gut compartments, are required to cause villous atrophy observed
in the active form of the disease (Figure 1).
KEY ROLES OF TRANSGLUTAMINASE 2
AND HLA IN THE INITIATION OF THE
GLUTEN-SPECIFIC ADAPTIVE
IMMUNE RESPONSE

The identification of HLA-DQ2 or HLA-DQ8 restricted CD4+ T
cells in the lamina propria of CeD patients (26, 40) that
preferentially recognize deamidated gluten peptides over native
gluten peptides (41) stressed the connection between gluten,
disease-associated HLA molecules and TG2 for the initiation of
the pathogenic immune response. The generation of such a
gluten-specific T cell response arises from the high affinity
binding of gluten peptides post-translationally modified by
TG2 to HLA-DQ2 or HLA-DQ8.

Two properties of gluten explain its ability to elicit a mucosal
immune response. First, the high content of proline in gluten
proteins makes the proteins resistant to degradation by intestinal
proteases in the gut lumen (42). Second, the long undigested
gluten-derived proteins are good substrates for the enzyme TG2,
an ubiquitous and multifunctional enzyme expressed in many
organs including the gut (43). It has been acknowledged for a
long time that TG2 plays a key role in CeD pathogenesis as the
enzyme is the target of autoantibodies that are highly-disease
specific and used for the diagnostic work-up (2, 4). In addition,
TG2 catalyzes the conversion of glutamine residues present in
gluten peptides into glutamate (28–30). This deamidation
process is key to initiate a pathogenic response in CeD as it
promotes the generation of immunogenic peptides with
negatively charged carboxylate residues that anchor with high
affinity in the positively charged pockets of HLA-DQ2 or HLA-
DQ8 binding grooves (5, 44).

In support of the role of TG2 in orchestrating mucosal immune
responses to dietary gluten, TG2 is mostly found catalytically
inactive in the intestine under physiological conditions but its
expression and activity are increased in inflamed tissues and in
cells with inflammatory stress (45). Interestingly, the administration
of poly(I:C) (Polyinosinic:polycytidylic acid), which results in the
rapid induction of villous atrophy that is the typical intestinal tissue
injury observed in CeD patients, promotes TG2 activation (46).
TG2 can be released into the gut lumen by small intestine
enterocyte shedding, allowing TG2 to become catalytically active
in the extracellular environment (47). This feature that allows the
TG2 to be in close vicinity of gluten peptides could explain the
formation of enzyme-substrate complexes between the two proteins
June 2021 | Volume 12 | Article 674313
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that can bind to the B cell receptor of TG2-specific B cells, hence
contributing to the generation of TG2-specific autoantibodies
(24, 48, 49). In addition, using T84 enterocytic cell line as a
model, it was shown that extracellular TG2 can be activated in a
phosphatidylinositol-3-kinase-dependent mechanism by IFN-g
(50), the pro-inflammatory cytokine abundantly produced by
gluten-specific T cells and released in the inflamed intestinal
mucosa of CeD patients (31, 32). In accordance with a role for
IFN-g in TG2 activation, TG2 enzymatic activity can be triggered by
the protein cofactor thioredoxin-1 (TRX) whose release from
monocytic cells is also elicited by IFN-g (51).

The requirement of gluten, predisposing HLA variant, TG2,
and CD4 T cells to elicit the disease was formally demonstrated
using a newly engineered DQ8-Dd-villin-IL-15tg mouse model
of CeD that develops villous atrophy upon gluten exposure (23).
Using this model, we showed that villous atrophy, anti-
deamidated gluten peptide antibodies and TH1 immunity
recede on a gluten free diet and reoccur after gluten
introduction. In addition, intestinal tissue destruction only
occurred in mice carrying HLA-DQ8 and depletion of CD4+ T
cells or administration of TG2 inhibitors in gluten-fed animals
prevented the development of villous atrophy (23). Hence, the
priming of a gluten-specific immune response depends on the
coordinated interaction between gluten, the coeliac predisposing
HLA-DQ8 molecule, activated TG2, and CD4+ T cells.

Interestingly, there is a gene dosage effect of the HLA-DQ2 or
HLA-DQ8 allotypes in CeD whereby disease susceptibility depends
on the HLA-DQ genotype and HLA homozygous individuals are at
higher risk of developing the disease (52, 53). The haplotype HLA-
DQ2.5 that binds and presents the full repertoire of gluten peptides,
with many proline-rich a- and w-gliadin-derived peptides that are
protected from the degradation by gastrointestinal enzymes, confers
Frontiers in Immunology | www.frontiersin.org 3
a higher risk of developing CeD as compared to HLA-DQ8 that
presents a smaller repertoire of immunogenic peptides more prone
to proteolytic degradation and HLA-DQ2.2 that can only bind and
present a few peptides (42, 54, 55). In addition, DQ2.5 has an
increased ability to retain its peptide cargo as compared to DQ2.2.
thanks to the presence of a polymorphism in the DQa chains
allowing DQ2.5 to establish a hydrogen bond to the peptide main
chain that stabilizes peptide-MHC complexes at the surface of
antigen-presenting cells leading to sustained gluten peptides
presentation to T cells (56). Interestingly, differences in the nature
of HLA-DQ2.2 or HLA-DQ2.5-bound epitopes translates into a
more diverse TCR repertoire generated in the context of HLA-
DQ2.2, as compared to HLA-DQ2.5-mediated CeD and with a
lower disease penetrance (57). Homozygosity for HLA-DQ2.5 that
is linked to a heightened expression of HLA-DQ2.5 on the surface
of antigen-presenting cells and increased antigen presentation is
also more strongly associated with CeD as compared to
heterozygosity (52, 55). Hence, the amounts of HLA-DQ-gluten
peptides complexes correlates with the magnitude and breadth of
the gluten-specific T cell response (52, 55). This suggests that CeD
development and the ensuing intestinal tissue destruction will only
occur when the T cell response has reached a certain magnitude to
become pathogenic (35).
CD4 T CELLS AND THE PRO-
INFLAMMATORY RESPONSE

Under homeostatic conditions, ingested dietary antigens induce
oral tolerance, a state of local and systemic immune ignorance
against orally ingested innocuous antigens (58, 59). However, in
patients harboring the CeD-predisposing HLA-DQ2 or HLA-
FIGURE 1 | Coeliac disease is a multifactorial complex autoimmune disorder that requires the interplay between genetics, innate and adaptive immunity, and
environmental triggers to cause tissue destruction. In individuals with HLA-DQ2/DQ8, induction of adaptive immune response against gluten and the loss of oral
tolerance to gluten can occur when there is environmentally triggered epithelial stress and IL-15 overexpression. This adaptive response to gluten and the associated
cytokine production promotes further tissue stress, leading to the licensing of cytotoxic CD8 T cells to lyse epithelial cells and cause villous atrophy. Additional
environmental triggers and immune factors yet to be determined are also thought to contribute to disease development.
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DQ8 molecules, orally ingested gluten can initiate a gluten-
specific pro-inflammatory TH1 response rather than a
tolerogenic response (35). In both adults and children, these
gluten-specific CD4 T cells produce high levels of the pro-
inflammatory cytokines IFN-g and IL-21, hallmarks of TH1
cells (32, 33, 60). As loss of oral tolerance to gluten is a
preceding event for the development of villous atrophy in CeD
patients (25, 32), much work has been done to uncover the
mechanisms behind this loss of tolerance against gluten and how
this pro-inflammatory TH1 CD4 T cell response leads to
villous atrophy.

One of the early culprits implicated in promoting an
inflammatory vs tolerogenic T cell response to gluten is the
cytokine interferon-a (IFN-a). IFN-a is a Type-1 interferon that
is produced by almost all cells as an innate response to viral
infection (61). Among its many immune effector-promoting
roles, it has been shown to drive pro-inflammatory dendritic
cells activation as well as to promote the differentiation of CD4 T
cells to the TH1 lineage (61, 62). The connection between IFN-a
and CeD was made by Monteleone and colleagues, who
identified a CeD-like enteropathy with villous atrophy and
high intraepithelial lymphocytes infiltration in a chronic
myeloid leukemia patient receiving an IFN-a treatment (63).
The association between high expression of IFN-a and high
levels of IFN-g in CeD patients compared to controls suggested
that IFN-a in CeD patients may be one factor leading to
induction of a TH1 response against gluten. It remains unclear
what directly is driving the increase in IFN-a production, but
recent studies have also implicated viral infection as a driver for
loss of oral tolerance.

While viral infections, such as with adenovirus or hepatitis C,
have long been known to be associated with a higher risk of
developing CeD (64), only recently have viral infections been
mechanistically shown to induce loss of oral tolerance to gluten
and dietary antigens. Using the Type-I Lang (T1L) reovirus
strain, and murine norovirus (MNV) that both infect the gut,
Bouziat and colleagues demonstrated that both viruses were
capable of mediating TH1 responses to dietary antigens (18,
19). Type-1 IFN signaling was required for the blockade of
peripheral regulatory T cells conversion while Interferon
Regulatory Factor (IRF)1 expression was required for the
induction of a TH1 immunity characterized by the
differentiation of IL-12p40-producing dendritic cells,
the production of gluten-specific IgG2c antibodies in the
serum, TG2 activation in the proximal small intestine and a
delayed type hypersensitivity reaction to gluten, all hallmarks of
loss of oral tolerance to gluten in virus-infected HLA-DQ8
transgenic mice (18, 19). Taken together, these studies
demonstrated that viral infections can be triggers for loss of
oral tolerance towards dietary antigens and TH1-skewed
responses to gluten.

Another major player implicated in the loss of oral tolerance
to gluten is IL-15. The first signs that IL-15 may have been
involved in the proinflammatory TH1 response to gluten came
with the finding that IL-15 is heavily upregulated in the lamina
propria of active CeD patients, the effector site where dendritic
Frontiers in Immunology | www.frontiersin.org 4
cells will encounter gluten peptides (65, 66). Using HLA-DQ8
transgenic mice that overexpressed IL-15 in the lamina propria
and mesenteric lymph nodes (DQ8-Dd-IL15tg mice) but not in
the intestinal epithelium (38), we demonstrated that IL-15
overexpression in combination with retinoic acid altered the
tolerogenic phenotype of intestinal dendritic cells and endowed
them with a pro-inflammatory phenotype, hindering the
development of Foxp3+ regulatory T cells and instead
promoting the differentiation of IFNg-producing TH1 cells.
Additionally, these gluten-fed DQ8-Dd-IL15tg mice displayed
elevated levels of anti-gliadin and anti-TG2 antibodies,
mimicking potential CeD patients who display a loss of oral
tolerance and the development of a TH1 response to gluten in the
absence of villous atrophy (38). In addition, IL-15 can block the
immunosuppressive effects of TGF-b on CD4 and CD8 T cells by
inhibiting Smad3-signalling and additionally render effector
CD4 and CD8 T cells resistant to regulatory T cells-mediated
suppression by activating PI3K-signaling (67, 68). Whether
Foxp3+ regulatory T cells play an active role in dampening
harmful immune responses to gluten in the small intestine
remains poorly understood. Although it was shown that
Foxp3+ regulatory T cells expand in the celiac lesion (69–71),
it remains controversial whether regulatory T cells retain or loss
their suppressive function (71–73). Moreover, regulatory CD4+

T cells specific for immunodominant gluten peptides haven’t
been identified so far in the small intestine of genetically
predisposed healthy individuals (74). Therefore, additional
investigations are warranted to determine whether a regulatory
response to gluten exists and whether an altered mucosal
suppressive CD4+ T cell response to gluten contributes to
CeD pathogenesis.

In the context of CeD, TH1 immunity is accompanied by the
production of IFN-g and IL-21 by mucosal gluten-specific CD4+

T cells (32, 33, 60). The idea of crosstalk between lamina propria
and epithelium mediated by cytokines was put forward several
years ago based on in vitro observations (75). Indeed, it had been
shown that IFN-g released by stimulated mucosal T cells was
required for the optimal killing of human colonic epithelial cell
lines in ex-vivo cytotoxic assays (76). In addition, the incubation
of intestinal tissue specimens with the supernatants from gluten-
stimulated T cell clones or with IFN-g lead to epithelial cell
damage, and the cytotoxic effect of the supernatants could be
counteracted by the addition of neutralizing IFN-g (77). We
recently confirmed the requirement of IFN-g for the activation of
cytotoxic intraepithelial lymphocytes and the ensuing
development of villous atrophy in vivo using a relevant mouse
model of CeD (23). Although the exact mechanism underlying
this effect remains to be uncovered, it has been shown that local
production of IFN-g can promote the upregulation of the non-
classical MHC class Ib molecule HLA-E on epithelial cells (78,
79) hence potentializing the expression of the ligand for the
activating NK receptor CD94/NKG2C present on cytotoxic
intraepithelial lymphocytes during disease development.
Although it has been shown that IL-21 can increase the
cytotoxicity of human intraepithelial lymphocytes (80), the
administration of an IL-21R blocking antibody in our mouse
June 2021 | Volume 12 | Article 674313
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model didn’t reveal any significant direct role of IL-21 in
promoting cytotoxic properties on intraepithelial lymphocytes
but instead demonstrated that IL-21 and IFN-g both play a role
in the development of anti-deamidated gluten peptides
antibodies (23). Interestingly, IL-15 can promote IL-21
production in lamina propria cells (81) reinforcing the idea of
the involvement of a cytokine network in CeD.

While IFN-a, viral infections and IL-15 overexpression in the
lamina propria can induce a loss of oral tolerance and a pro-
inflammatory TH1 response to gluten, several studies in mice
have demonstrated that the CD4 T cell response to gluten alone
is nevertheless not sufficient to license intraepithelial
lymphocytes and induce villous atrophy (23, 37, 38, 82). This
is in accordance with observations in potential CeD patients who
not only lack IL-15 and stress molecules expression on intestinal
tissue cells, but also do not display an accumulation of
intraepithelial cytotoxic T lymphocytes with an active killer
phenotype, as seen in active CeD patients, despite the
development of an inflammatory CD4 T cell response (25).

Interestingly, a distinct cytokine signature has been identified
in the peripheral blood of treated CeD patients after oral gluten
challenge (83, 84) or subcutaneous administration of T-cell
stimulatory gluten peptides (85). Indeed, secretion of IL-2, IL-
17A, TNF-a, IL-6 and IL-10 was detected as soon as 2h after
gluten-re-exposure reflecting the rapid mobilization of gluten-
specific memory CD4 T cells. Serum cytokine elevations,
particularly IL-2 levels, correlated with the severity of acute
digestive symptoms (83) and were specific to CeD (84, 86, 87),
demonstrating a direct impact of gluten on the adaptive immune
system in genetically susceptible individuals. Not only could
serum cytokine release contribute to some extra-intestinal
manifestations of CeD driven by inflammation, but it could be
used as immune marker to diagnose and monitor the
development of CeD.
INNATE IMMUNE RESPONSE TO GLUTEN
AND EPITHELIAL STRESS

The contribution of innate immunity to CeD pathogenesis was
suggested by the observation that non-HLA genomic regions
associated with CeD harbor genes involved in stress pathways
and innate immunity (5). The activation of innate immune
pathways in different gut compartments, in particular at the
level of the lamina propria or in the intestinal epithelium, has a
substantial impact on the adaptive immune responses taking
place in those same compartments. These responses include the
loss of oral tolerance to gluten and the associated induction of
TH1 immunity, as well as the acquisition of lymphokine killer
activity by intraepithelial lymphocytes, all of which contribute to
disease development.

In vitro studies where gluten was used to stimulate duodenal
biopsy samples, intestinal epithelial cells, monocytes,
macrophages, and dendritic cells have shown that gluten may
have innate immune stimulatory properties (88–94).
Additionally, other molecules contained in wheat and related
Frontiers in Immunology | www.frontiersin.org 5
proteins could also drive immune cells activation, such as wheat
amylase trypsin inhibitors (95, 96).

The gluten-derived a-gliadin peptide P31-43, which unlike
the 33-mer (P55-87) and the 25-mer (P31-55) does not induce
specific T cell responses in the celiac lesion, has been shown to
activate innate immune pathways (90, 92, 97–99). However, the
observed innate properties have been different across studies and
we still need cross-validation. P31-43 peptide could induce
enterocyte proliferation and actin rearrangements in an IL-15
and epithelial growth factor (EGF)-dependent manner, leading
in particular to crypt hyperplasia, one of the characteristics of
tissue remodeling seen in the celiac lesion (100–104). Other
reported effects of gliadin on the innate immune system
encompass cell structural changes, alterations in epithelial cells
signaling, and induction of inflammatory and stress signals
[reviewed in (100, 105)]. The finding that enterocytes from
CeD patients have a stressed/inflamed phenotype and present a
constitutive alteration in the intracellular vesicular trafficking
provides an explanation as to why those cells are more sensitive
to the effects of the P31-43 peptide (106–108). Indeed, due to
sequence similarity between the P31-43 peptide and a region of
hepatocyte growth factor regulated substrate (HRS) kinase - an
essential protein involved in endocytic maturation-, P31-43
localizes in early endosomes and alters HRS-mediated
maturation of early endosomes and the recycling pathway. The
ensuing delayed vesicular trafficking leads to a reduction in the
degradation of receptor tyrosine kinases including the receptor
for EGF and promotes a sustained trans-presentation of IL-15 at
the epithelial cell level [reviewed in (100, 105)].

Interestingly, a peptic-tryptic digest of gliadin or the P31-49-
derived peptide can induce the upregulation of the expression of
the stress-inducible MHC class I polypeptide-related molecules
(MIC) via a pathway involving IL-15 (90). This is in accordance
with the observation that intestinal epithelial cells in CeD
patients express high levels of the MIC molecules (90, 109)
and the non-classical MHC class I molecule HLA-E (79, 94). The
expression of the inflammatory cytokine IL-15 can also be
upregulated in whole biopsies, intestinal epithelial cells, or
antigen-presenting cells from CeD patients upon gluten
challenge or P31-49 derived peptide stimulation (65, 66, 78, 92,
110). The physiological consequences of the activation of
immune pathways by gluten remain unclear given the fact that
family members of CeD patients that lack an adaptive response
to gluten, yet harbor the pre-disposing HLA-DQ2 and HLA-
DQ8 and also show IL-15 upregulation in their intestinal
compartment (25), retain normal intestinal morphology.
However, the observation that, unlike active CeD patients,
potential CeD patients -who display a gluten-specific adaptive
immune response in the absence of tissue destruction- lack the
innate epithelial stress response suggests that the alteration of the
epithelial compartment is required for the development of villous
atrophy (25). This observation is in accordance with the
mechanism of epithelial cell destruction whereby activated
intraepithelial TCRab lymphocytes mediate the killing of
intestinal epithelial cells based on the recognition of stress
signals such as non-classical MHC molecules and IL-15.
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As discussed in more detail below, the acquisition of innate-like
properties by intraepithelial lymphocytes is also driven by IL-
15 (111).

In addition to the epithelial upregulation of IL-15, most CeD
patients display a chronic upregulation of IL-15 in the lamina
propria (66). IL-15 plays a critical role in the lamina propria as it
can impart dendritic cells to initiate the polarization of
inflammatory TH1 responses and the loss of oral tolerance to
gluten (38). This loss of oral tolerance to dietary gluten could also
be triggered by type 1 interferons in individuals over-expressing
IFN-a in lieu of IL-15 (63). Interestingly, the P31-43 peptide can
trigger the expression of inflammatory mediators and increase
cell death in a MyD88- and type 1 IFNs-dependent manner and
this innate immune activation is enhanced by the TLR3 agonist
poly(I:C) (112). This synergistic action of gluten peptides with
poly(I:C) and the finding that poly(I:C) (46) or reovirus infection
(19) promote the activation of TG2 suggests that multiple
environmental hits can trigger and drive disease development.
Because high levels of IL-15 can persist in a subset of patients on
a gluten-free diet, it remains unclear what drives the excessive
chronic upregulation of this innate cytokine. Similarly, both viral
and bacterial infections could be the main source of type 1
interferons, yet how this expression is sustained remains to be
determined (113).

The association between CeD susceptibility and single
nucleotides polymorphisms in genes involved in microbial
sensing has also pointed towards a role for bacterial microbes
in triggering immune activation (5, 114). Many studies have
noted differences in the microbiota composition between CeD
patients, treated CeD patients on a gluten-free diet and healthy
individuals [reviewed in (17)]. Gluten-degrading proteases
produced by some opportunistic pathogens found in the
duodenum of CeD patients such as Pseudomonas aeruginosa,
can activate PAR-2 initiated inflammatory signaling pathways
resulting in the expansion of intraepithelial lymphocytes (115).
In addition, thanks to its elastase activity, Pseudomonas
aeruginosa could contribute to the initiation of the disease by
favoring the generation of immunogenic gluten peptides that can
efficiently translocate through the intestinal barrier (116).
Neisseria flavescens, abundantly present in the duodenal
microbiome of CeD patients, could also contribute to the
inflammatory response through its ability to endow a pro-
inflammatory phenotype in dendritic cells (117). Dysbiosis is
usually associated with a decrease in bacterial diversity and in the
production of short-chain fatty acids such as butyrate,
propionate and acetate that result from carbohydrate
fermentation (118–121) and contribute to the maintenance of
the gut homeostasis (122). Interestingly, a decrease in butyrate-
producing bacteria such as Bifidobacterium or Faecalibacterium
prausnitzii (123, 124) as well as alteration of the fecal metabolites
patterns has been observed in children with CeD (125–127), yet
these changes have not been observed in adult cohorts (128–
130). These observations, together with the findings that
genetically predisposed children carrying the HLA-DQ2
molecule present an altered gut microbiota composition,
suggest that commensal bacteria could contribute early on to
Frontiers in Immunology | www.frontiersin.org 6
determining disease risk (131). In addition, because alterations in
gut microbiota and fecal short-chain fatty acid composition can
persist even when gluten is withdrawn, it is unclear whether
dysbiosis could contribute to the initiation and enhancement of
the disease or if changes in the microbiota reflect the ongoing
local inflammation (15).

Overall, innate factors induced by gluten exposure and
additional unknown triggers, perhaps of microbial origin, play
a critical role in promoting the loss of oral tolerance to gluten
and in altering intestinal epithelial cells that become the target
of activated intraepithelial lymphocytes. However, studies
comparing potential and active CeD patients as well as comparing
mice expressing IL-15 in different gut compartments have shown
that IL-15 and stress molecules overexpression in the epithelium
need to be associated with adaptive immunity for villous atrophy to
develop (23, 25).
DESTRUCTION OF EPITHELIAL CELLS
BY CYTOTOXIC INTRAEPITHELIAL
LYMPHOCYTES

In addition to the TH1-skewed CD4 T cell response, another
hallmark of CeD is the large accumulation of oligoclonal
cytotoxic intraepithelial TCRab+ CD8+ lymphocytes (IE-CTLs)
and TCRgd+ intraepithelial lymphocytes (78, 109, 132). These
cells, and not the gluten-specific CD4+ T cells, are the particular
immune cell type thought to mediate the destruction of intestinal
epithelial cells and directly lead to villous atrophy (23, 36). Their
critical role in tissue destruction was not appreciated until the
discovery that these cells are reprogrammed to express high
levels of activating NK receptors and associated adaptor
molecules. In healthy individuals, intraepithelial lymphocytes
predominantly express the dimeric inhibitory CD94/NKG2A
receptor with only low levels of the activating CD94/NKG2C
and NKG2D receptors (78, 79, 133, 134). However,
intraepithelial lymphocytes from CeD patients were found to
undergo extensive NK cell-like reprograming, downregulating
expression of the inhibitory CD94/NKG2A receptor and
upregulating expression of the activating CD94/NKG2C and
NKG2D receptors (78, 79, 133, 134). Furthermore, the CD94/
NKG2C receptors in CeD patients are associated with the
ITAM-bearing adaptor molecule DAP12, enabling cytokine
secretion, proliferation and cytolytic activity in response to NK
receptor ligands, even independently of TCR activation (79). The
stress-inducible, non-classical MHC-like molecule HLA-E is the
ligand for CD94/NKG2C and it is selectively upregulated on
intestinal epithelial cells in CeD patients, allowing enterocytes to
be targeted for killing by IE-CTLs (79). Upregulation of NKG2D
on IE-CTLs in CeD patients, as well as upregulation of its
adaptor molecule DAP10, was found to be directly caused by
high levels of IL-15 on intestinal epithelial cells (109). This IL-15
mediated signaling not only upregulated NKG2D, but also acted
in a co-stimulatory manner, synergizing with NKG2D signaling
to enable TCR-independent cytolysis of targets expressing both
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IL-15 and the stress-induced NKG2D ligands MICA/B (109, 134,
135). MICA/B, which are highly expressed in the intestinal
mucosa of CeD, enable enterocytes to be excellent targets for
IE-CTLs-mediated destruction (90). Taken together, the
reprograming of CD8+ intraepithelial lymphocytes into NK-
like IE-CTLs with the ability to lyse target cells independently
of TCR activation positions this cell type to be the direct
mediator of tissue destruction in CeD.

It is important to note however that while no gluten-specific
IE-CTLs have been identified in the intestinal epithelium of CeD
patients, and IE-CTLs can kill intestinal epithelial cells in a TCR-
independent manner, TCR specificity may still be playing a role
in tissue destruction. Support for this idea comes from studies
showing that inhibitory and activating NK receptor expression
was associated with particular TCR specificities (133, 136).
Additionally, signaling through CD94/NKG2C, NKG2D, and
IL-15 receptors lowers the threshold for TCR activation (79, 109,
134). This co-stimulatory signaling could allow for low-affinity
TCR-ligand interactions to activate TCR signaling, while under
normal conditions the interaction would be too low affinity for
activation. Evidence for this was shown in a study in which IL-15
expressing tumors were selectively controlled and killed by SIY-
specific CTLs cells in a non-cognate but TCR-dependent fashion
(137). Therefore, there still may be a potential role for TCR
specificity among IE-CTLs as low affinity TCR interactions may
be playing a part in tissue destruction along with TCR-
independent cytolysis. Overall, although TCRab+ IE-CTLs are
not gluten specific, they destroy specifically intestinal epithelial
cells expressing IL-15 and ligands for activating NK receptors.

While the frequencies of TCRab+ CD8+ IE-CTLs decrease
when gluten is excluded from the diet (35), the expansion of
TCRgd+ intraepithelial lymphocytes persists (132). Intriguingly,
the composition of the tissue-resident TCRgd+ compartment is
irreversibly altered by inflammation with the depletion of innate-
like Vg4+/Vd1+ intraepithelial lymphocytes and the expansion of
gluten-sensitive IFN-g-producing Vd1+ intraepithelial
lymphocytes (138). Although the exact role of the naturally
occurring tissue resident TCRgd+ intraepithelial lymphocytes
that have both cytotoxic and tissue repair potential remains to
be determined, their loss may lead to a defect in tissue healing
and the protection against infections and tumors. Furthermore,
the role of gluten-dependent production of IFN-g by active CeD
Vd1+ intraepithelial lymphocytes remains elusive.

A subset of adults with CeD go on to develop refractory
coeliac disease (RCD), a rare CeD complication in which patients
have persistent severe villous atrophy despite being on a strict
gluten-free diet (139, 140). One of the hallmarks of RCD is the
expansion of aberrant intraepithelial cytotoxic lymphocytes that
lack surface CD3 expression (sCD3-), express intracellular CD3
(iCD3+), and display a highly activated NK cell-like phenotype
(140). These aberrant IE-CTLs develop from hematopoietic stem
cell-derived CD103+sCD3- IELs that encounter high levels of IL-
15 and Notch signals in the gut epithelium and develop gain-of-
function JAK1 or STAT3 mutations (141). Since both JAK1 and
STAT3 are involved in IL-15 signaling, these gain of function
mutations lead to heightened IL-15 signaling in aberrant iCD3+
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IE-CTLs resulting in their expansion and survival through
activation of anti-apoptotic signaling pathways (e.g.
upregulation of anti-apoptotic factors Bcl-2 and Bcl-xl) (66,
142, 143). With IL-15 playing such a major role in the
development of CeD and RCD, recent phase 2a clinical trials
tested the impact of blocking IL-15 in CeD and RCD patients
(144, 145). The trials did not show a significant difference in the
primary clinical endpoints (improvement of the mucosal
architecture in CeD and reduction in the proportion of
aberrant intraepithelial lymphocytes in RCD). However, there
were differences in some secondary endpoints, with treated RCD
patients having fewer gastrointestinal symptoms and displaying
less T cell receptor clonality than the placebo group (144),
suggesting that blocking IL-15 may still be an option for
treating RCD. There is a need to perform long-term follow-up
studies in which the treatment duration will be significantly
increased (duration of the anti-IL5 treatment in the published
study was only ten weeks).
CONCLUSION

As discussed throughout this review, both innate and adaptive
immune responses possibly connected by a cytokine network
contribute to the immunopathogenesis of CeD. Each of the
described cell types and their known mechanism of action are
required to promote CeD but none of them individually is
sufficient to culminate in the full-blown disease characterized
by intestinal tissue destruction and remodeling. Observations in
mice and humans have suggested or demonstrated the
requirement for the simultaneous activation of distinct
pathways in different gut locations, some cell-cell interactions,
and the existence of a crosstalk between the lamina propria and
the epithelial compartments (Figure 2).

First, the simultaneous analysis of IE-CTLs and intestinal
epithelial cells features in patients encompassing the spectrum of
the disease - i.e. family members, potential CeD patients and
active CeD patients- has led to the hypothesis that the
combination of epithelial stress associated with high IL-15
expression in enterocytes and an anti-gluten adaptive immune
response induced in the lamina propria in the presence of
inflammatory mediators such as IL-15 is needed for the
development of villous atrophy (25). The cooperation between
epithelial IL-15 and CD4+ T cells to promote tissue destruction
was also suggested by a study performed in mice overexpressing
IL-15 in the gut epithelium and fed with the dietary antigen
ovalbumin (146). The analysis of our DQ8-Dd-villin-IL-15g mice
modeling CeD patients upon gluten oral challenge unequivocally
confirmed that the development of villous atrophy requires the
concomitant presence of epithelial stress and anti-gluten
adaptive immunity (23).

Next, in agreement with the findings that CD4+ T cells are
required for the development of CeD, the prevention of villous
atrophy in DQ8-Dd-villin-IL-15tg mice treated with an anti-CD4
depleting antibody, anti-IFNg depleting antibody or TG2
inhibitors concomitantly to gluten administration also
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underlined the existence of a cross-talk between TH1 immunity
in the lamina propria and the activation of IE-CTLs (23).

In addition, a recent study using a mouse model of CeD
lacking B cells has demonstrated that B lymphocytes are required
for the development of villous atrophy and the induction of a
killer phenotype in IE-CTLs (147). The mechanisms underlying
the exact contribution of B-cell mediated immune responses to
the immunopathogenesis of CeD remains to be determined.
Most of our current understanding of the role of antibodies is
based upon in vitro experiments. Although anti-TG2 antibodies
can exert several effects, no consensus has been reached
regarding their potential pathogenic role [reviewed in (148)].
While cytokines produced by B cells, that need yet to be
identified, could contribute to the inflammatory process in the
CeD lesion, B lymphocytes and/or plasma cells themselves could
contribute to disease pathogenesis through their role as antigen-
presenting cells. Indeed, plasma cells were found to be the most
abundant gluten peptide MHC-expressing cells in the lamina
propria of CD patients (149). Human studies have also suggested
that gluten CD4+ T cells and B cells having internalized TG2-
gluten complexes interact to promote the generation of anti-TG2
antibodies, whose formation rely on the presence of gluten
Frontiers in Immunology | www.frontiersin.org 8
(24, 48, 150, 151). This T cell-B cell crosstalk is supported by
in vitro assays showing that transduced lymphoma B cells
expressing HLA-DQ2.5 and binding catalytically active TG2
can activate gluten-specific hybridoma T cells in the presence
of non-deamidated gluten peptides (151). However, whether this
interaction also benefits CD4+ T cells by promoting their
activation and expansion helping to reach the threshold
needed to reach a pathogenic T cell response remains to
be determined.

T cell clones have proven to be an invaluable research tool to
gain insights into the immune mechanisms underlying CeD
pathogenesis. Early analysis of CD4 T cell clones in celiac
patients uncovered TH1-skewed gluten-specific CD4 T cells
restricted to the disease-associated HLA-DQ2 and HLA-DQ8
molecules (26, 31, 40). Further interrogation of gut derived
gluten-specific T cell clones helped to demonstrate that these
clones respond to TG2-modified gluten peptides and that
deamidation of these peptides leads to the strongest T cell
response (29, 30). The usage of animal models of the disease
combined with our ability to track gluten-specific T cells should
help identify the intestinal location of the pathogenic cellular
interactions described in this review, such as the B cell-T cell
FIGURE 2 | Intestinal tissue destruction in coeliac disease results from the interplay between several immune pathways in distinct gut locations. Transglutaminase 2
(TG2)-deamidated gluten peptides bind with high affinity to the disease-associated HLA-DQ2 or HLA-DQ8 molecules on antigen-presenting cells. In an inflammatory
context (presence of IL-15, type 1 IFN), dendritic cells acquire a pro-inflammatory phenotype and migrate to the mesenteric lymph nodes (left circle with dashed line).
They present gluten peptides to naïve CD4 T cells and promote T cell differentiation into TH1 effector T cells, while the induction of regulatory T cells involved in oral
tolerance is abrogated. Anti-gluten CD4+ T cells directly secrete IFN-g or IL-21. Anti-gluten CD4+ T cells are thought to provide help to gluten- and TG2-specific B
cells in gut-associated secondary lymphoid organs (right circle with dashed line) leading to the production of IgA and IgG anti-gluten and anti-TG2 antibodies. In the
presence of high IL-15 expression in the epithelium, intraepithelial lymphocytes acquire cytotoxic properties (activating NK receptors, release of the cytotoxic
molecules granzyme B and perforin) and the ability to kill stressed epithelial cells expressing the ligands (HLA-E, MICA/B) for the NK receptors. Each of these
immune events are required to promote coeliac disease but none of them individually is sufficient to promote intestinal tissue destruction. Hence the
immunopathogenesis of coeliac disease is often presented as a jigsaw where each piece associated with one immune event needs to be connected to
promote the disease.
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crosstalk (37, 152). Leveraging single-cell approaches
technologies to study human samples could also help identify
additional understudied cell subsets such as innate lymphoid
cells [reviewed in (138, 153)] that could participate in the
establishment and maintenance of the disease.

Altogether, CeD represents a perfect example of a
multifactorial complex autoimmune disorder. The priming of a
gluten-specific inflammatory immune response depends on the
coordinated interaction between gluten, the celiac predisposing
HLA-DQ molecule, activated TG2, and CD4+ T cells, while the
alteration of epithelial cells expressing stress molecules, and the
subsequent activation of IE-CTLs are all required to promote
intestinal tissue destruction. How T lymphocytes in the lamina
propria and cells present in the epithelial compartment
communicate and where the cross-talk between distinct cell
Frontiers in Immunology | www.frontiersin.org 9
types occur is not yet understood and will certainly lead to the
identification of signaling pathways that could potentially
represent novel therapeutic targets.
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