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Simple Summary: Diarrhea and vomiting caused by Escherichia coli (E. coli) F17 are considered
significant threats to animal farming. In the present study, RNA-Seq was performed to investigate the
potential circRNA and miRNA biomarkers for E. coli F17-antagonism (AN) and -sensitive (SE) lambs.
The results indicated that circRNA and miRNA expression is closely associated with the susceptibility
of E. coli F17 in lambs. Numbers of circRNAs and miRNAs may serve as potential biomarkers for
intestinal inflammatory response against E. coli F17 infection. Our study can provide a preliminary
understanding of the underlying mechanisms of intestinal immunity.

Abstract: It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen
responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high
morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17
infection has not been fully understood. In this study, RNA sequencing was performed to explore
the expression profiles of circRNAs and miRNAs in the jejunum of E. coli F17-antagonism (AN)
and -sensitive (SE) lambs. A total of 16,534 circRNAs and 271 miRNAs (125 novel miRNAs and
146 annotated miRNAs) were screened, and 214 differentially expressed (DE) circRNAs and 53 DE
miRNAs were detected between the AN and SE lambs (i.e., novel_circ_0025840, novel_circ_0022779,
novel_miR_107, miR-10b). Functional enrichment analyses showed that source genes of DE circRNAs
were mainly involved in metabolic-related pathways, while target genes of DE miRNAs were mainly
enriched in the immune response pathways. Then, a two-step machine learning approach combining
Random Forest (RF) and XGBoost (candidates were first selected by RF and further assessed by
XGBoost) was performed, which identified 44 circRNAs and 39 miRNAs as potential biomarkers
(i.e., novel_circ_0000180, novel_circ_0000365, novel_miR_192, oar-miR-496-3p) for E. coli infection.
Furthermore, circRNA-related and IncRNA-related ceRNA networks were constructed, containing
46 circRNA-miRNA-mRNA competing triplets and 630 IncRNA-miRNA-mRNA competing triplets,
respectively. By conducting a serious of bioinformatic analyses, our results revealed important
circRNAs and miRNAs that could be potentially developed as candidate biomarkers for intestinal
inflammatory response against E. coli F17 infection; our study can provide novel insights into the
underlying mechanisms of intestinal immunity.
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1. Introduction

Diarrhea is the most commonly reported disease associated with infection by a com-
plex mixture of bacteria in young animals. Among them, Escherichia coli (E. coli) is the
major pathogenic bacterium responsible for diarrhea [1]. Pathogenic E. coli have been
divided into five pathotypes based on the virulence properties and clinical signs of the host:
enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli
(EPEC), enteroinvasive E. coli (EIEC), and diffusely enteroadherent E. coli (DAEC) [2].

Among these pathotypes, ETEC has been identified as the major agent of E. coli-related
diarrhea [3-6]. ETEC adheres to intestinal epithelial cells (IECs), leading to the production
and replication of enterotoxins [7]. Clinical reports revealed that ETEC infection exhibits
enteropathogenicity, causing increased mortality and clinical signs such as severe vomiting
and diarrhea [8]. The fimbrial adhesins, F5 [9], F17 [10], F18 [11], and F41 [12] are associated
with ETEC mainly in young animals. E. coli F17, one of the main subtypes of ETEC, has
been reported as the major pathogen associated with ETEC-related diarrhea worldwide,
responsible for high morbidity and mortality [13-15]. The growing prevalence of E. coli F17
has renewed the sense of urgency for E. coli F17 research.

Following in the footsteps of high throughput sequencing technologies, myriad non-
coding RNAs (ncRNA) were identified via RNA sequencing, such as long non-coding
RNA (IncRNA), microRNA (miRNA) [16] and circular RNA (circRNA) [17]. Owing to their
extensive participation in a variety of physiological and pathological processes, ncRNAs
have received increasing attention in the past decade [18]. Emerging evidence has illus-
trated that circRNAs and miRNAs have regulatory roles in diverse farm animal diseases,
particularly in mastitis [19,20], reproductive and respiratory syndrome [21,22], Marek’s
disease [23,24], etc. In 2011, Salmena et al. [25] first proposed the “ceRNA hypothesis” as
the letters of a new RNA language, describing the crosstalk within IncRNAs, circRNA,
miRNAs, and mRNAs. To date, several lines of evidence have indicated that circRNAs
and IncRNAs function as ceRNAs during E. coli infection. Yang et al. [26] reported that
circ_2858 can increase VEGFA via sponging miR-93-5p during E. coli meningitis. In menin-
gitic E. coli-caused blood-brain barrier disruption, LncRSPH9-4 modulates intercellular
tight junctions via the miR-17-5p/MMP3 axis [27]. In ETEC infection, several miRNAs
have been confirmed to be a potential target for preventing pathogen infection; for example,
miR-215 can regulate E. coli F18 resistance by targeting EREG, NIPAL1, and PTPRU [28].
In addition, miR-192 can reduce the adhesion ability of E. coli F18 and K88 in pig IECs
via DLG5 and ALCAM [29]. Nevertheless, the mechanisms of circRNAs and miRNAs in
diarrhea caused by ETEC infection remain largely unknown, especially E. coli F17.

In the present research, RNA sequencing (RNA-seq) was performed to study the
expression profiles of circRNAs and miRNAs in E. coli F17-antagonism and -sensitive lamb
jejunum tissues. We undertook both bioinformatic and machine learning approaches to
identify circRNA and miRNA biomarkers for E. coli F17 infection, and reveal the potential
biological roles of them. Furthermore, we constructed ceRNA networks of circRNA-miRNA-
mRNA and IncRNA-miRNA-mRNA. In summary, our results can provide a preliminary
understanding of circRNAs and miRNAs in susceptibility of E. coli F17 in lambs, and
promise to provide novel insight into intestinal immunity.

2. Material and Methods
2.1. Sample Collection

All experimental lambs were supplied by the Xilaiyuan Agriculture Co., Ltd. (Taizhou,
China). E. coli F17-resistant and E. coli F17-sensitive lambs were detected from a challenge
experiment of E. coli F17 (DN1401, fimbrial structural subunit: F17b, fimbrial adhesin
subunit: Subfamily II adhesins, originally isolated from diarrheic calves) as described in
our previous report [30].

Briefly, 50 healthy newborn lambs were randomly selected and reared on lamb milk
replacer free of antimicrobial additives and free of probiotics from 1 day old to 3 days old.
At 3 days after birth, lambs were divided into high-dose and low-dose challenge groups.
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Lambs in the high-dose and low-dose challenge groups were orally gavaged with 50.0 mL
and 1.0 mL of actively growing culture of E. coli F17(1 x 10° CFU/mL) for four days,
respectively. Then, 10 healthy lambs in the high-dose challenge group and 10 lambs with
severe diarrhea in the low-dose challenge group (evaluated via stool consistency scoring)
were euthanized by administering pentobarbital overdose. Histopathological examination
and bacteria plate counting of the intestinal contents were conducted to evaluate the
severity of the diarrhea. Finally, six healthy lambs with mild intestinal pathology in the
high-dose challenge group (antagonism group, AN) and six lambs with severe diarrhea in
the low-dose challenge group (sensitive group, SE) with severe intestinal pathology were
selected and proximal jejunum tissue was collected and snap-frozen in liquid nitrogen for
RNA isolation.

2.2. RNA Extraction and Sequencing

RNA was extracted from the jejunum tissue using TRIzol (Invitrogen, Carlsbad, CA,
USA) per the manufacturer’s instructions. The quality of the extracted RNA was deter-
mined using an RNA Nano 6000 Assay Kit, and RNA integrity number (RIN) obtained
using an Agilent 2100 Bioanalyzer with RIN > 8.0 as the threshold.

The miRNA libraries were constructed using a NEBNext® Multiplex Small RNA Li-
brary Prep Set for Illumina® (NEB, Ipswich, MA, USA) per the manufacturer’s instructions.
The miRNA libraries were sequenced on an Illumina HiSeq™ 2500 platform with 50bp
single-end reads strategy by Beijing Novogene Technology Co., Ltd. (Beijing, China).

The circRNA libraries were constructed using a NEBNext® Ultra™ Directional RNA
Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA) per the manufacturer’s instruc-
tions. The RNA libraries were sequenced on an Illumina HiSeq™ 2500 platform with
PE150 strategy (paired-end 150 bp) by Beijing Novogene Technology Co., Ltd.

Raw reads of FASTQ format were firstly obtained. Low-quality reads containing reads
with adapters, reads with more than 10% N, and low-quality reads (quality scores <Q20;
i.e., bases with sQ < 5 more than 50% of all reads) were removed. Clean reads were gener-
ated and then mapped to the Ouis aries reference genome (Oar_v4.0) using Bowtie2 [31].

For known miRNA alignment, miRbase 20.0 was used as reference, and miRD-
eep22 [32] was used to assemble the miRNA transcripts. Then, srna-tools-cli was used
to obtain the potential miRNA and draw the secondary structures; novel miRNA candi-
dates from the transcripts were distinguished using miREvo [33] and miRDeep2 through
exploring the secondary structure. The circRNA candidates from the transcripts were
distinguished using find_circ [34] and CIRI2 [35].

2.3. Analysis of miRNA and circRNA Expression

The transcript per million (TPM) was used to estimate the expression levels of miRNA
and circRNA candidates. Differentially expressed (DE) candidates were identified between
AN and SE groups using DESeq R library (1.30.1) [36]. miRNAs and circRNAs were
considered significantly DE as the threshold of corrected p-value (p-values adjusted by
Benjamini and Hochberg’s approach) < 0.05.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Functional
Analyses

GO and KEGG enrichment were performed for the target genes of DE miRNAs
(predicted using miRanda and RNAhybird) and source genes of DE circRNAs using GOseq
R library (1.46.0) [37] and KOBAS (KO-Based Annotation System) programs [38], followed
by a Fisher’s exact test with a false discovery rate (FDR) [39] multiple test correction to
assess the statistical significance (p < 0.05).

2.5. Identification of Potential circRNA/miRNA Biomarkers for E. coli F17 Infection Using
Machine Learning Methods

To identify potential IncRNA and mRNA biomarkers for E. coli F17 infection, a two-
step machine learning approach (Random Forest-XGBoost, RX) combination Random
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Forest (RF) and Extreme Gradient Boosting (XGBoost) were performed. The randomForest
R library (4.6.14) [40] and XGBoost R library (1.5.0.2) [41] were performed for the analyses.
The detailed strategy for RX was described in our previous research [42].

Briefly, a range of parameters (Ntree and mtry for RE, colsample and eta for XGBoost)
was systematically examined, and out-of-bag (OOB) error rate was calculated to determine
the derive minimum hyperparameter values required for final analysis. For biomarkers
identification, RF was firstly performed to select the subset of circRNAs and miRNAs with
positive values of variable important measures (VIMs), then these selected circRNAs and
miRNAs were further assessed by XGBoost. Similarly, XGBoost produces a VIM rank
for the genes named “Gain”. In the current study, the VIM value of individual variable
(circRNA or miRNA) denotes the relative contribution of the variable for each tree in the
model; the higher the “Gain” value, the more important the variable is for generating
a classification between lambs AN and SE lambs. Variables with a high “Gain” were,
therefore, prioritized as potential circRNA /miRNA biomarkers for E. coli F17 infection.

2.6. Acquisition of IncRNA and mRNA Expression Dataset

The IncRNA and mRNA expression dataset used in this study was obtained from our
previous research (unpublished data), which is available in the Sequence Read Archive
(SRA) database under the study ID PRJNA759095.

In brief, total RNA was extracted from jejunum tissue of six healthy lambs with mild
intestinal pathology in the high-dose challenge group (antagonism group, AN) and six
lambs with severe diarrhea in the low-dose challenge group (sensitive group, SE) with
severe intestinal pathology as mentioned above. RNA libraries were sequenced using an
Mumina HiSeq2500 equipment with the PE150 strategy. Reads were aligned to the Ovis
aries reference genome (Oar_v4.0) using Hisat2 [43]. StringTie [44] was used to assemble the
mRNA transcripts. Then, coding and non-coding RNA candidates from the transcripts were
distinguished using Coding-Non-Coding-Index [45], Coded Potential Calculator-2 [46],
and Pfam-scan [47]. Fragments Per Kilobase of transcript sequence per Million fragments
sequenced (FPKM) was used to estimate the expression levels of candidate transcripts. DE
IncRNAs and DE mRNAs were identified between AN and SE groups using edgeR R library
(3.36.0, B LAB, Boston, MA, USA). IncRNAs and mRNAs were considered significantly
DE as the threshold of corrected p-value (p-values adjusted by Benjamini and Hochberg's
approach) < 0.05.

A total of 20,601 mRNAs and 12,426 IncRN As were screened, within which 1465 DE
mRNAs and 406 DE IncRNAs were identified between AN and SE lambs. Details can be
found in Supplementary Table S1.

2.7. ceRNA Network Construction

The ceRNA networks was constructed on the basis of the co-expression association
among mRNA, miRNA, circRNAs, and IncRNAs.

Based on all identified mRNAs, miRNAs, circRNAs, and IncRNAs, miRNA-related
interaction pairs (MiRNA-mRNA, miRNA-IncRNA, and miRNA-circRNA) were predicted
using miRanda [48] and RNAhybrid [49]. Subsequently, interaction pairs sharing the
same miRNAs were selected as candidate competing interactions for further analysis.
Finally, Pearson correlation coefficient (PCC) and corrected p-value were calculated to
estimate the co-expression relationship between circRNNAs, IncRNAs, mRNAs, and miR-
NAs, and negatively miRNA-target pairs with PCC < —0.75 and corrected p-value < 0.05
(p-values adjusted by Benjamini and Hochberg’s approach) were selected to establish
ceRNA networks of circRNA-miRNA-mRNA and IncRNA-miRNA-mRNA using cytoscape
software (3.9.1) [50].
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2.8. Validation of Sequencing Data

To validate the RNA-Seq data, 5 circRNAs and 5 miRNAs were randomly selected. The
housekeeping genes GAPDH and U6 were selected as the reference genes. The sequences
of the selected candidates and designed primers are shown in Supplementary Table S2.

Total RNA was extracted from the jejunum tissues from 12 lambs (six AN and six
SE) and processed for sequencing using TRIzol (Invitrogen, Carlsbad, CA, USA) per the
manufacturer’s instructions. The first strand of cDNA was prepared using FastKing
gDNA Dispelling RT (Vazyme Biotech, Nanjing, Jiangsu, China) per the manufacturer’s
instructions. The quality of the cDNA was evaluated by housekeeping gene amplification,
and stored at —20 °C until use.

Real-time qPCR was performed in triplicate with cDNA to validate the reliability
of RNA-Seq data. The 2722t method [51] was used to calculate expression levels of
selected circRNAs and miRNAs. The results were shown as relative expression level
(logoFoldChange mean =+ standard error) using GraphPad Prism 6 software.

3. Results
3.1. Overview of the Sequencing Data

Regarding the circRNA library, the average numbers of raw reads were 85,523,999
(AN) and 84,450,970 (SE); the average numbers of clean reads were 84,384,636 (AN) and
83,112,267 (SE); the average mapping rates for the AN and SE were 98.67% and 98.41%,
respectively. Regarding miRNA library, the average numbers of raw reads were 13,862,992
(AN) and 13,415,602 (SE); the average numbers of clean reads were 13,490,636 (AN) and
13,091,889 (SE); the average mapping rates for the AN and SE were 97.19% and 97.49%,
respectively. Detailed characteristics of the circRNA and miRNA libraries are shown in
Tables 1 and 2, respectively.

Table 1. Summary of the circRNA library.

Sample Raw Reads Clean Reads Mapping Rate (%) Error Rate (%) Q20 (%) Q30 (%) GC Content (%)
AN1 86,448,964 85,310,470 98.68 0.03 97.55 93.27 51.32
AN2 82,985,976 82,314,372 99.19 0.03 97.00 91.76 46.32
AN3 81,095,934 79,701,960 98.28 0.03 97.49 93.16 51.61
AN4 94,502,330 93,722,960 99.18 0.03 97.25 92.49 48.07
AN5 84,496,940 83,246,004 98.52 0.03 97.45 93.06 50.25
AN6 83,613,850 82,012,052 98.08 0.03 97.49 93.19 54.43
SE1 82,325,980 81,420,394 98.90 0.03 97.31 92.67 52.18
SE2 83,101,628 81,439,640 98.00 0.03 97.39 93.00 48.07
SE3 83,731,304 82,241,834 98.22 0.03 97.45 93.09 49.79
SE4 80,794,124 79,478,658 98.37 0.03 96.90 91.99 56.07
SE5 92,174,900 90,902,860 98.62 0.03 97.35 92.99 49.55
SE6 84,577,884 83,190,218 98.36 0.03 96.54 91.14 49.89
Note: AN and SE represent antagonism group and sensitive group, respectively. Error rate% represents overall
sequencing error rate. Quality score (Q) represent the probability of incorrect based call.
Table 2. Summary of the miRNA library.
Sample Name Raw Reads Clean Reads Clean Bases Error Rate (%) Q20 (%) Q30 (%) GC Content (%)
AN1 16,273,383 16,059,313 98.68 0.01 99.49 98.16 49.67
AN2 13,434,545 13,274,363 98.81 0.01 99.50 98.35 48.56
AN3 14,558,297 14,136,725 97.10 0.01 99.06 96.65 48.87
AN4 11,883,680 11,545,885 97.16 0.01 99.10 96.96 49.54
ANS5 15,402,425 15,008,710 97.44 0.01 99.04 96.79 49.09
AN6 11,625,621 10,918,820 93.92 0.01 99.30 97.26 50.01
SE1 18,148,953 17,949,815 98.90 0.01 99.49 98.30 48.85
SE2 13,392,060 13,198,054 98.55 0.01 99.32 97.92 49.46
SE3 10,839,760 10,594,527 97.74 0.01 99.34 97.74 49.80
SE4 13,718,249 13,297,138 96.93 0.01 99.02 97.04 49.09
SE5 12,498,474 11,906,416 95.26 0.01 98.97 96.90 50.58
SE6 11,896,114 11,605,384 97.56 0.01 99.33 97.73 48.81

Note: AN and SE represent antagonism group and sensitive group, respectively. Error rate% represents overall
sequencing error rate. Quality score (Q) represents the probability of incorrect based call.
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Based on the results of CIRI2, miREvo, and miRDeep22, we identified a total of
16,534 circRNAs and 271 miRNAs; 125 of the miRNAs were novel and 146 were annotated
miRNAs. Most of the circRNAs were 200-400 nt long, with an average length of 334.28 nt
(Figure 1A), whereas most of the miRNAs were 200-400 nt long, with an average length of
21.74 nt (Figure 1B).

A B
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Figure 1. Length distribution of the identified circRNAs (A) and miRNAs (B).

3.2. Differentially Expressed circRNAs and miRNAs

TPM was performed to estimate the expression levels of circRNAs and miRNAs; miR-
NAs had a relatively higher expression than that of circRNAs, and the expression of circR-
NAs and miRNAs were similar between AN lambs and SE lambs (Supplementary Figure S1).

We identified 214 DE circRNAs between the AN and SE libraries, within which 90
were upregulated and 124 downregulated (Figure 2A). We also identified 53 DE miRNAs
between the AN and SE libraries, within which 31 were upregulated and 22 downregulated
(Figure 2B). Detailed results are provided in Supplementary Table S3.
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Figure 2. Volcano plot of differentially expressed (DE) circRNAs (A) and DE miRNAs (B).

3.3. Functional Analysis

GO and KEGG enrichment analyses were conducted using source genes of DE cir-
cRNAs and target genes of DE miRNAs. Figure 3 shows some of the top enriched
GO terms and KEGG pathways; detailed enrichment analyses results can be seen in
Supplementary Table S4.
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Figure 3. Top annotated GO terms (A) and top enriched KEGG pathways (B) of source genes of DE
circRNAs. Top annotated GO terms (C) and top enriched KEGG pathways (D) of target genes of
DE miRNAs.

The source genes of DE circRNAs were significantly enriched in 61 GO terms. The
top enriched GO terms were single-organism process (GO:0044699), isomerase activity
(GO:0016853), and membrane (GO:0016020) in biological process (BP), molecular function
(MEF), and cellular component (CC), respectively. The source genes of DE circRNAs were
significantly enriched in 14 KEGG pathways, within which pathways related to intestinal
inflammation were enriched, such as PPAR signaling pathway (0as03320) and N-Glycan
biosynthesis (0as00510).

The target genes of DE miRNAs were significantly enriched in 132 GO terms. The
top enriched GO terms were phosphorylation (GO:0016310), binding (GO:0005488), and
extracellular region (GO:0005576) in biological process (BP), molecular function (MF), and
cellular component (CC), respectively. The target genes of DE miRNAs were significantly
enriched in 7 KEGG pathways, within which pathways related to intestinal inflamma-
tion were enriched, such as natural killer cell mediated cytotoxicity (0as04650) and Rap1
signaling pathway (0as04015).

3.4. Potential circRNA/miRNA Biomarkers for E. coli F17 Infection

The final parameters used for RF and XGBoost analyses of miRNA and circRNA
expression datasets were chosen based on a systematic evaluation of a range of values,
details of which can be seen in Supplementary Table S5.

For circRNA biomarker identification, 2437 circRNAs with positive VIM values were
identified by RF, then 44 circRNAs were further selected by XGBoost (Figure 4A). The top
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three circRNAs with highest Gain values were novel_circ_0000180 (0.33), novel_circ_0000365
(0.11), and novel_circ_0000027 (0.07).

A Gain of circRNA B Gain of miRNA
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Figure 4. Gain value of top circRNAs (A) and miRNAs (B) selected by Random Forest-XGBoost.

For miRNA biomarker identification, 68 miRNAs with positive VIM values were
identified by RF, then 39 miRNAs were further selected by XGBoost (Figure 4B). The top
three miRNAs with highest Gain values were novel_miR_192 (0.15), oar-miR-496-3p (0.13),
and novel_miR_366 (0.11).

3.5. ceRNA Network

From the results of miRanda and RNAhybrid, combined with calculated PCC and
corrected p-value, we identified 79 miRNA-mRNA pairs, 47 miRNA-circRNA pairs, and
347 miRNA-IncRNA pairs. Then, ceRNA networks were constructed based on the in-
teraction pairs with shared miRNAs. We finally obtained 46 circRNA-miRNA-mRNA
competing triplets among 30 mRNAs, 10 miRNAs, and 16 circRNAs (Figure 5A); and 630
IncRNA-miRNA-mRNA (Figure 5B) competing triplets among 44 mRNAs, 23 miRNAs,
137 IncRNAs, details of which can be seen in Supplementary Table Sé.

fiovel_circ-0025550
novel_cire-0017265
novel_circ-0016777,

novel_circ-0010324

PABPC1L FAMS8A
SDR42E1

PIAS2

Figure 5. ceRNA networks of circRNA-miRNA-mRNA (A) and IncRNA-miRNA-mRNA (B), where
the “V” shape (blue), triangle (blue), and rectangle (red) represent circRNAs (IncRNAs), miRNAs,
and mRNAs, respectively.

For a better understanding of the huge and complicated ceRNA networks, we calcu-
lated the connections of each node in the network. Notably, the same topmost connected reg-
ulator was identified in the two ceRNA networks: a novel miRNA named novel_miR_107,
which was found to participate in 18 circRNA-miRNA-mRNA competing triplets and 386
IncRNA-miRNA-mRNA competing triplets. Our results suggested that novel_miR_107
may serve as a star competing endogenous biomarker for E. coli F17 infection. The Hi-res
ceRNA networks can be seen in Supplementary Figures S1 and S2.
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3.6. Validation of Sequencing Data

The comparison of the expression level of circRNAs and miRNAs selected for verifica-
tion of the accuracy of sequencing between RNA-Seq and RT-qPCR are shown in Figure 6.
The results indicated that selected circRNAs and miRNAs showed similar expression patterns
between RNA-Seq and RT-qPCR, suggesting the reliability of our sequencing data.
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Figure 6. Comparisons of the results of the RNA-seq and RT-qPCR analyses of selected circRNAs
and miRNAs.

4. Discussion

In our previous research, we studied the transcriptomic characteristics of lamb spleen
in response to E. coli F17 infection and revealed numbers of DE mRNAs, circRNAs, and
IncRNAs [30,52]. However, as the first barrier against E. coli F17, the transcriptomic roles
of the intestine in the process of E. coli F17 infection have not been well documented. In
the present study, by integrating transcriptomic and multiple bioinformatic approaches,
we provide a preliminary understanding of the transcriptomic profiles of circRNAs and
miRNAs in E. coli F17-resistant (AN) and E. coli F17-sensitive (SE) lamb jejunum.

In the present study, we identified a total of 16,534 novel circRNAs, 125 novel miRNAs,
and 146 annotated miRNAs. The number of identified circRNAs was remarkably higher
than previously identified in the spleen [52]; similar results were also obtained in the
circRNA-seq study in clave jejunum [53] and porcine intestinal epithelial cells [54]. Over
the past decade, studies of circRNAs were mainly focused on brain tissue [55]; our results
suggest that circRNAs are also highly enriched in the intestine, which suggests that the
intestine could be an important tissue to investigate.

By applying DEseq, we detected 214 DE circRNAs and 53 DE miRNAs, indicat-
ing clearly different expression profiles of circRNAs and miRNAs between the AN and
SE lambs. The most upregulated DE circRNAs (ranked by fold change and padj) was
novel_circ_0025840, whose source gene is transmembrane protein 27 (TMEM27), a cru-
cial regulator produced in beta cells and linked to beta cell proliferation [56]. The most
downregulated DE circRNAs was novel_circ_0022779. Interestingly, the source gene of
novel_circ_0022779 is transmembrane protein 16E (TMEM16E, also known as Anoctamin
5, ANOb), which is also a member of the transmembrane protein family and plays a role
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in regenerative muscle repair [57]. Although the functions of these circRNAs are largely
unclear, our results suggest that they may serve as the principal regulators during E. coli
F17 infection, and might function together with transmembrane protein family members.
The most upregulated DE miRNAs was a novel miRNA, namely, novel_miR_107; not much
is known about the novel miRNA, but the high expression of novel_miR_107 in AN lambs
suggest that novel_miR_107 would make a prime candidate for future research. The most
downregulated DE miRNAs was miR-10b, one of the most upregulated miRNAs in human
cancers and strongly expressed in highly metastatic cancer cells [58,59]. In the present
study, miR-10b was highly expressed in SE lambs. Considering the role of miR-10b in the
cancer cell cycle, migration, and invasion [60,61], miR-10b may play an important role in
intestinal immunity by regulating the cell progress of E. coli F17 infected-IECs. Of course,
in-depth work is needed to confirm this possibility.

To further understand the function of the DE circRNAs and miRNAs, we performed
GO and KEGG enrichment analyses using source genes of DE circRNAs and target genes
of DE miRNAs. GO enrichment analysis showed target genes of DE miRNAs were mainly
involved in the immune response, including inflammatory response, regulation of immune
response, and regulation of immune system process. Source genes of DE circRNAs were
primarily involved in diverse cellular processes such as cell wall modification, negative
regulation of cellular protein metabolic process, and cell wall organization. Similar results
were also obtained in the KEGG pathway enrichment analysis: target genes of DE miR-
NAs were mainly involved in the immune-response-related pathways, such as natural
killer cell mediated cytotoxicity (early defenses against cells undergoing various forms of
stress such as infection with bacteria and viruses [62,63]) and ABC transporter (primarily
import systems of E. coli, [64,65]). Source genes of DE circRNAs were mainly involved
in metabolic-related pathways, such as N-Glycan biosynthesis, Alanine, aspartate and
glutamate metabolism, and nitrogen metabolism. Taken together, our results suggest that
DE miRNAs may be the principal regulators of intestinal inflammatory response, and DE
circRNAs may function against E. coli F17 infection through cellular metabolic pathways.
It is worth noting that several well-studied E. coli infection-related pathways, such as
TLR and NF-kappaB pathways, were not enriched in our study; one potential explana-
tion for these inconsistencies is that all experimental lambs were challenged with E. coli
F17 in our study, while these pathways were initially revealed between challenged and
unchallenged individuals.

Machine learning (ML) methods have shown promising results in identifying biolog-
ically important genes when applied to transcriptomic datasets [66—-69]. In our previous
research, a comparison of the classification accuracy of decision-tree-based ML methods
(Random Forest, XGBoost) and DE analysis methods (edgeR, t-test) was conducted, and
we found that a combination method of Random Forest and XGBoost (RX) outperformed
the other four methods (Random Forest, XGBoost, t-test, and edgeR) with the highest
classification accuracy [42]. Hence, RX was performed in the present study to identify
potential circRNA /miRNA biomarkers for E. coli F17 infection. Forty-four circRNAs and
39 miRNAs were finally selected by RX, within which the circRNA and miRNA with the
highest Gain values were novel_circ_0000180 and novel_miR_192; the specific roles of these
novel candidates in E. coli infection have not yet been revealed. The high Gain values
demonstrated that they achieved a good performance in distinguishing AN and SE lambs
in our transcriptomic datasets; in addition, the decision-tree-based strategy underlying
RX [70] also indicated that certain interactivity exists between them and other important
biomarkers picked by RX. There is a high probability that these circRNAs and miRNAs can
act as key regulators in E. coli F17 infection, and thus assist in discovering novel regulatory
mechanisms associated with intestinal immunity.

To uncover the ceRNA crosstalk underlying intestinal inflammatory response against
E. coli F17 infection, we constructed ceRNA networks of circRNA-miRNA-mRNA and
IncRNA-miRNA-mRNA. A total of 46 circRNA-miRNA-mRNA competing triplets and 630
IncRNA-miRNA-mRNA competing triplets were identified. Within these, several regula-
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tors have been demonstrated to be involved in various disease processes, such as miR-370-
3p (cholangiocarcinoma, [71], acute myeloid leukemia [72], oral squamous carcinoma [73],
hepatocellular carcinoma [74], ovarian cancer [74]), miR-143 (DE between the duodenum
of E. coli F18 -sensitive and resistant weaned piglets [75]), miR-133 (acute myocardial infarc-
tion [76], breast cancer [77]), and MAPK9 (production of inflammation mediator [78]). In
addition, several novel regulators were also found to participate in many ceRNA competing
triplets, such as novel_miR_107, novel_miR_119, novel_miR_433, and TCONS_00072826.
The most connected regulator was a novel miRNA, namely, novel_miR_107; novel_miR_107
participated in 18 circRNA-miRNA-mRNA competing triplets and 386 IncRNA-miRNA-
mRNA competing triplets. Of note, novel_miR_107 was also a potential miRNA biomarker
with high Gain value selected by RX; these results can further demonstrate the biological
value of RX in RNA-seq analysis.

5. Conclusions

In summary, our study presented expression profiles of circRNAs and miRNAs in E.
coli F17-antagonism and -sensitive lamb jejunum tissues. A total of 214 DE circRNAs and 53
DE miRNAs were identified between the AN and SE lambs, and a series of integrated bioin-
formatic analyses revealed several potential important circRNAs (i.e., novel_circ_0000180,
novel_circ_0022779, and novel_circ_0025840) and miRNAs (i.e., novel_miR_107, miR-10b,
and novel_miR_192). Moreover, we constructed circRNA-related and IncRNA-related
ceRNA networks involved in intestinal inflammatory response against E. coli F17 infection.
The findings from this study can help elucidate the molecular mechanisms underlying
intestinal immunity.
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