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Abstract: Adequate nutrition is particularly important during pregnancy since it is needed not
only for maintaining the health of the mother, but also determines the course of pregnancy and
its outcome, fetus development as well as the child’s health after birth and during the later period
of life. Data coming from epidemiological and interventions studies support the observation that
carotenoids intake provide positive health effects in adults and the elderly population. These health
effects are the result of their antioxidant and anti-inflammatory properties. Recent studies have
also demonstrated the significant role of carotenoids during pregnancy and infancy. Some studies
indicate a correlation between carotenoid status and lower risk of pregnancy pathologies induced
by intensified oxidative stress, but results of these investigations are equivocal. Carotenoids have
been well studied in relation to their beneficial role in the prevention of preeclampsia. It is currently
hypothesized that carotenoids can play an important role in the prevention of preterm birth and
intrauterine growth restriction. Carotenoid status in the newborn depends on the nutritional status
of the mother, but little is known about the transfer of carotenoids from the mother to the fetus.
Carotenoids are among the few nutrients found in breast milk, in which the levels are determined by
the mother’s diet. Nutritional status of the newborn directly depends on its diet. Both mix feeding
and artificial feeding may cause depletion of carotenoids since infant formulas contain only trace
amounts of these compounds. Carotenoids, particularly lutein and zeaxanthin play a significant
role in the development of vision and nervous system (among others, they are important for the
development of retina as well as energy metabolism and brain electrical activity). Furthermore, more
scientific evidence is emerging on the role of carotenoids in the prevention of disorders affecting
preterm infants, who are susceptible to oxidative stress, particularly retinopathy of prematurity.
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1. Introduction

Carotenoids are fat-soluble pigments synthesized by plants and some microorganisms. Thus far,
more than 700 carotenoids have been identified and belong to groups of carotenes (e.g., β-carotene,
α-carotene, and lycopene) as well as their hydroxylated derivatives-xanthophylls (e.g., lutein and
zeaxanthin, β-cryptoxanthin, and astaxanthin). About 50 of these carotenoids can be found in the
human diet, mainly of plant origin, and some are present in dietary supplements [1–3]. Plasma levels
of carotenoids are determined by their intakes from the diet, but about 95% of plasma carotenoids
are represented by only six compounds: β-carotene, α-carotene, lycopene, and β-cryptoxanthin
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as well as lutein and zeaxanthin (often analyzed together; Figure 1) [1,3,4]. The nutritional and
health effects of carotenoids are due to their multidirectional biological effects in humans, including
antioxidant, anti-inflammatory and immunomodulatory properties [1,5,6]. Furthermore, some
carotenoids (β-carotene, α-carotene, and β-cryptoxanthin) can be converted to vitamin A in humans,
which can contribute to meeting the requirement for this essential vitamin [1,4]. The β-carotene
conversion ratio to vitamin A is 12:1 (24:1 for others carotenoids [7]), and is altered by individual’s
vitamin A status, food matrices, food preparations and the fat content of a meal [7,8]. The WHO
estimates that about 19 million pregnant women in low-income countries are affected by vitamin
A deficiency [9]. The importance of β-carotene as a source of vitamin A for pregnant and lactating
women has been reviewed by Strobel et al. [10].

Many biological properties of carotenoids help maintain health by decreasing the risk of chronic
non-communicable diseases, such as cancer, cardiovascular disease, some eye disorders and age-related
decline in cognitive functions, which has been shown in association studies [1,3,4,11,12].
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Nutrition during pregnancy is crucial for maternal health, pregnancy outcomes as well as for
fetus development and child health both after birth and in later life [13]. Studies have indicated that
carotenoids play an important role in pregnancy outcome and in the prevention of many pathologies
of pregnancy that are brought about by increase oxidative stress [14–16]. In addition, data have shown
that carotenoids may help in maintaining optimal health during childhood, including improvement in
the development and maintenance processes of vision and cognition [17–23].

2. Pregnancy and Oxidative Stress

Changes in energy metabolism as well as hormonal changes occur during pregnancy. The production
of reactive oxygen species (ROS) is increased, which is related to, among others, the functioning of the
placenta [24]. During the first trimester, the placenta is not yet connected to maternal circulation and
therefore oxygen concentration in the placenta is very low. As a result of this hypoxic state, ROS are
generated, which induce the production of factors that regulate proliferation of cells and angiogenesis,
including hypoxia-inducible factors (HIF), vascular endothelial growth factor (VEGF) and placental
growth factor (PGF) [14,15,24]. Towards the end of the first trimester, maternal circulation within the
placenta becomes fully established, which leads to a three-fold increase in oxygen concentration, which
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in turn raises the level of ROS particularly in the syncytiotrophoblast (fetus part of the placenta that
directly participates in metabolic exchange between the maternal blood and that of the fetus). At this
time, there is full regulation of the production of HIF-1α as well as the expression of genes encoding
antioxidant enzymes, including heme oxygenase 1 and 2 (HO-1 and HO-2), zinc-copper superoxide
dismutase (Cu/Zn-SOD), catalase, glutathione peroxidase (GPx) [15,24]. Improper placenta formation,
insufficient antioxidant defense as well as increase production of ROS can lead to oxidative stress.
Large amounts of ROS cause structural and functional damages to cells and tissues and can act as
pro-inflammatory agents, which can lead to many pregnancy complications and abnormalities [15,24].
However, it should be noted that physiological levels of ROS play a crucial regulatory role in female
reproduction system, including signaling transduction pathways, e.g., folliculogenesis and embryonic
implantation [24]. Carotenoids together with other dietary antioxidants may help in protecting humans
against extensive oxidative stress and its debilitating complications [1,3].

3. Carotenoids Intake and Their Plasma Levels in Pregnant Women

The intakes of carotenoids by pregnant women have been shown to be variable and depend
primarily on the population investigated (Table 1). Results of studies indicate that the consumption
of carotenoids is lower among pregnant women who smoke [25,26], younger pregnant women [16]
and women who get pregnant in spring and summer (from studies conducted in New Zealand) [27].
The influence of seasonality of the year on the intake of carotenoids may be the result of the differences
in the availability of their dietary sources, which are fruits and vegetables, marketing and dietary habits,
as well as changes in maternal diet during pregnancy [4,28,29]. In addition, the seasonal variation
in carotenoids intake may be explained by differences in its levels in vegetables and fruit between
seasons, due to storage or processing changes (both positive and negative) which was summarized by
Maiani et al. [4].

The results of the Norwegian Mother and Child Cohort Study (MoBa) confirm that the plasma
levels of carotenoids in pregnant women are a strict function of their intakes from fruits and
vegetables [30]. The plasma concentrations of carotenoids correlated with the consumption of
vegetables (r = 0.32; p < 0.01), fruits and vegetables together with vegetable juices (r = 0.24; p < 0.01); the
plasma level of α-carotene correlated with the intake of carrots (r = 0.50; p < 0.01) and cooked vegetables
(r = 0.39; p < 0.01); and lutein with the ingestion of cooked vegetables excluding root and cruciferous
vegetables (r = 0.30; p < 0.01). In the case of β-cryptoxanthin, the highest correlation was found for
citrus fruits and their juices (r = 0.39; p < 0.01) as well as juices in general (r = 0.30; p < 0.01) [30]. It is
worth mentioning that most pregnant women take dietary supplements, which can be a significant
source of β-carotene [2,17,25,30]. In the MoBa study, the plasma concentration of carotenoids in women
who did not take supplements with carotenoids (n = 106) was found to be 1.0 ± 0.50 µmol/L, but was
higher in women who used such supplements (n = 3) −2.10 ± 0.55 µmol/L [30].

Studies on changes in carotenoid status carried out among pregnant Peruvian women (n = 78) [31]
as well as pregnant Dutch women (n = 140) [32] showed that the plasma concentration of selected
carotenoids, particularly lutein, increases by about 40% between the first and third trimester. In both
studies, the plasma level of lutein was also found to increase from 0.41 (95% confidence interval (CI)
0.37–0.47) in the first trimester to 0.61 (0.57–0.67) µmol/L in the third trimester (p ≤ 0.0001) [31] as well
as from 0.48 ± 0.03 to 0.65 ± 0.04 µmol/L (p ≤ 0.001) [23]. Simultaneously, the plasma concentration
of β-carotene was found to decline by about 20% (p ≤ 0.01) in the Dutch study. Unlike tocopherols, the
plasma concentration of carotenoids does not proportionally increase with the increase in the level of
polyunsaturated fatty acids, which are particularly very prone to oxidative changes [32]. Lower plasma
concentration of carotenoids in pregnant women can be caused by smoking [26,33] as well as other
non-nutritional factors and lifestyle, such as multiple pregnancies, short interval between pregnancies
as well as breastfeeding [34,35]. The intake of carotenoids from dietary sources were analyzed in these
studies, therefore it is difficult to state whether the causes of these changes were a result of altered
dietary behavior or a function of other physiological determinants.
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Table 1. Mean intake of carotenoids intake during pregnancy.

Pregnancy Period Study Group
Carotenoids

Source
Type Intake (µg/day)

1 and 2 trimester

USA
n = 1290

62.6% households with annual income of >$70,000
75.6% White, 10.4%, Black, 5.4% Hispanic, 4.9% Asian, 3.7% other ethnicity

9.5% smokers

dietary + supplements total β-carotene 4770.3 ± 2293.0

[17]

dietary β-carotene 3863.5 ± 2036.5
dietary lycopene 7368.8 ± 3979.7

dietary lutein and zeaxanthin 2686.8 ± 1724.4
dietary α-carotene 878.0 ± 657.7

dietary β-cryptoxanthin 207.3 ± 130.9

1–3 trimester

Poland
n = 215

no information about socio-economic group
white Caucasian

dietary β-carotene 4513.0 ± 3908.1

[29]
dietary lycopene 4419.8 ± 3267.1

dietary lutein 2091.1 ± 1699.9

9–20 Hbd 1

United Kingdom
n = 774

26.6 ± 4.6 years
34% higher socio-economic group

no information about ethnicity
40.4% smokers

dietary β-carotene 937 ± 789–1168 ± 890

[25]dietary total carotenoids 1323 ± 999–1843 ± 1125

5–39 Hbd

Japan
n = 763

30.0 ± 4.0 years
31.3% households with annual income ≥6,000,000 yen

no information about ethnicity
90% European origin, 7% Maori, 3% other ethnicities

dietary β-carotene 2620.4 ± 1653.0

[21]dietary α-carotene 345.3 ± 277.0

4 and 7 month of gestation

New Zealand
n = 214

29.3 ± 4.4 years
72% higher socio-economic group

dietary β-carotene 1887–2510 [27]

34 Hbd

United Kingdom
n = 1149

29.4 ± 5.5 years
white Caucasian
45.5% smokers

dietary β-carotene 2302 ± 1861.6

[26]
β-carotene supplements 90.88 ± 591.7

dietary + supplements total β-carotene 2394 ± 2001.2

1 Hbd—week of gestation.
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4. Carotenoids and the Prevention of Pathology of Pregnancy

Recent studies have confirmed that oxidative stress can increase the risk of spontaneous abortion
and other pathologies of pregnancy, including gestational diabetes mellitus (GDM), preeclampsia,
pregnancy-induced hypertension and intrauterine growth restriction (IUGR) as well as preterm
birth [15,24]. The role of oxidative stress and protective action of carotenoids against preeclampsia,
which affects about 3–5% pregnant women have been well documented [36].

Pregnant women with preeclampsia have been found to have an increase in parameters of
oxidative stress (in the placenta, maternal circulation and exhaled air) and inflammation as well
as lower antioxidant status and endogenous antioxidants, including carotenoids in the plasma and
placenta [37–47]. Low level of endogenous antioxidants can be noticed before the development of
preeclampsia. A study conducted by Cohen et al. [48] revealed that the risk of the occurrence of
preeclampsia decreases with the increase in plasma concentration of lutein (odds ratio (OR) 0.60,
95% CI 0.46–0.77). However, separate analyses of cases of early preeclampsia (<34 Hbd (weeks
of pregnancy)) showed higher protective role of carotenoids with the exception of lycopene and
tocopherol in compared with late-onset. Discrepancies in carotenoid’s effect on two other preeclampsia
types may be caused by differences in its etiology pathways [48]. Lower plasma concentrations of
α- and β-carotene (by 45% and 53%, respectively) have been found in women with type 1 diabetes
mellitus and preeclampsia, which developed during the third trimester of pregnancy as compared
with women with diabetes but without preeclampsia; no differences were noticed for the plasma levels
of lutein, lycopene and α-tocopherol [49]. Studies conducted in Peru (n = 304) did not show any risk
of the occurrence of preeclampsia in relation to serum level of carotenoids (details about this study
and others from these section are presented Table S1 Supplementary Materials) [50]. Lack of statistical
significant in this study may be caused by differences between gestational age at blood collection
(36.0 ± 0.6 vs. 37.3 ± 0.3, p < 0.05), as well failure to adjust for gestational age at blood collection and
collecting maternal blood samples after preeclampsia diagnosis [50]. However, studies carried out in
Zimbabwe (n = 359) demonstrated a decrease risk, even by 50%, for the preeclampsia in women with
higher blood levels of β-carotene (OR 0.50, 95% CI 0.25–1.00) [41]. Some researchers have also looked
into how dietary habits impact on the risk for the occurrence of preeclampsia. The Norwegian Mother
and Child Cohort Study (MoBa), which was conducted in 23,433 women with first pregnancy from
which 5.4% developed preeclampsia showed that women who consumed a well-balanced diet rich in
plant-based foods (vegetables, vegetable oils, olive oil, fruits, rice) were characterized by lower risk
for the development of preeclampsia (OR 0.72, 95% CI 0.62–0.85) [51]. Simultaneously, a systematic
literature review and meta-analysis of 10 studies have confirmed the positive role of the consumption
of large amounts of fruits and vegetables in protecting against preeclampsia [52]. Usually, confounding
factors used for adjusting the results are maternal age, BMI, smoking socioeconomic status, as well
total energy intake, however factors such as gestational age, physical activity and hypertensive
disorders of pregnancy in earlier pregnancy are seldom [52]. Nonetheless, using these factors are very
important for results adjusted, due to the association between healthier diet (e.g., higher vegetables
and fruits consumption) and healthier lifestyle (e.g., non-smoking), which may be pro-health factor in
itself [53,54]. There are scarce data from observational studies showing the link between the intakes of
dietary carotenoids and the development of preeclampsia; however, there are three clinical studies
conducted on a small group of women in India. In these studies, investigators analyzed the influence
of the intake of lycopene supplements in the dosage of 2 mg/day up to the second trimester of
pregnancy. The results of one of the studies showed a very weak decrease risk for the development of
preeclampsia (8.6% vs. 17.7% cases, p = 0.043) [55], while the two other studies did not confirm such
an association [56,57]. Both studies showing no effects of carotenoids had small sample size and were
conducted on samples with different health status (n = 54, high preeclampsia risk [57] and n = 159,
low preeclampsia risk [56], and were generally characterized by low quality [16]. Study conducted in
low preeclampsia risk group also found adverse effects of lycopene supplementation on incidence of
preterm labor (10.4% vs. 1.2%, p = 0.02) and low birth weight (22.1% vs. 36.6%, p = 0.05) [56]. These
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effects may be caused by the possibility of lycopene oxidation, which may occur in some condition
e.g., exposure on cigarette smoke what was found on β-carotene, however characteristic of study
population is limited and there is lack of data about cigarette smoking or environmental exposition
on cigarette smoke [56,58]. Meta-analysis conducted by Cohen et al. [59] found significantly negative
pooled standardized mean difference (SMD) with substantial heterogeneity for total carotene (SMD
−1.06, 95% CI −1.65–(−0.47), p < 0.01), β-carotene (SMD −0.40, 95% CI −0.72–(−0.08), p = 0.01) and
lycopene (SMD −1.05, 95% CI −2.09–(−0.00), p = 0.05), whereas for α-carotene and lutein results were
not significant. In conclusion, carotenoids role in the prevention of preeclampsia is inconclusive and
there is the possibility of publications bias.

Oxidative stress is also noticed in GDM, which affects 1–14% of all pregnancies [60]. Plasma
antioxidant capacity in women with GDM is lower as compared to health pregnant women, but no
studies have been conducted to determine the existence of any differences in the plasma concentrations
of carotenoids [61]. In an interventional study related to the role of carotenoids in protecting against
oxidative stress it was found that taking supplements of carotenoids did not decrease the serum
levels of hydroperoxides in pregnant women [62]. However, there was a significant difference in
oxidative stress values between newborns born to mothers treated with lutein and newborns to
mothers untreated at 2 h of life (p = 0.01). However, at 48 h, there was not a significant difference
between the two groups. This study was conducted in a group of 24 women, 12 having GDM, who
ingested supplements of 10 mg lutein and 2 mg zeaxanthin; however, there were no randomization
or placebo controlling, and there were no demographic and anthropometric data of the participating
mothers, hence the strength of evidence from these study is poor [62].

Preterm birth (<37 Hbd) has been shown to increase morbidity and mortality rate as well as
perturbations in growth patterns. High level of oxidative stress has also been reported in premature
birth even without complications or pathologies of pregnancy [63]. Approximately 30–40% preterm
birth is caused by premature rupture of membranes (PROM). In addition, during the course of such
pregnancy, high levels of biomarkers of oxidative stress in the amniotic fluid have been noticed [64].
Researchers from Canada noticed that women who give birth to preterm babies have lower serum
concentrations of carotenoids and that the risk of premature birth decrease with the increased serum
levels of α- and β-carotene, α- and β-cryptoxanthin, and lycopene [65]. The risk of premature birth may
depend on the dietary habits of pregnant women. Investigators from USA have observed higher risk of
preterm birth in women with lower intakes of β-carotene (delivery at <32 Hbd, OR 1.92, 95% CI 1.1–3.5)
as well as α-carotene (delivery between 35 and 36 Hbd) [66]. In addition, a randomized controlled trial
(RCT) during which subjects were given supplements of 2 mg lycopene daily from the first trimester of
gestation revealed a weak but significant prolongation of gestational period in the subjects (37.72 ± 1.61
vs. 36.56 ± 2.2 Hbd, p < 0.05) [55]. Furthermore, researchers have noticed the importance of the
consumption of sustainable diet (rich in fruits and vegetables, which are good sources of carotenoids)
in the prevention of premature birth (hazard ratio (HR) 0.88, 95% CI 0.80–0.97) [67].

Newborns who are small for gestational age (SGA) are usually hypotrophic, and some of them
are born from pregnancies with complications of IUGR. Both SGA and IUGR are characterized
with high biomarkers of oxidative stress as well as low antioxidant capacity [68,69]. High maternal
plasma concentrations of carotenoids (β-carotene, lutein and zeaxanthin, and α- and β-cyrptoxanthin)
during pregnancy (24–26 Hbd) decrease the risk of giving birth to SGA babies (OR 0.64, 95% CI
0.54–0.78 for each increase in SD unit) [70]. Furthermore, mothers, who gave birth to newborns with
IUGR have been shown to have lower levels of carotenoids in the serum and breast milk, but no
differences were observed between the concentration of carotenoids in the serum and the skin of
IUGR newborns and their healthy peers [71]. Considering this, the study by Sharma et al. [55] has
shown that supplementation of lycopene at the dose of 2 mg daily during 16–20 Hbd can decrease the
prevalence of the occurrence of IUGR (12% vs. 23.7% in the control group, p = 0.033). Researchers have
also been interested in the impact of the intake of carotenoids and their status on birth parameters
in healthy infants. Interestingly, studies on maternal carotenoid status as well as the content of
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these compounds in the cord blood did not show any of their impact on birth parameters of the
newborn [69,72]. This was also revealed in an interventional study on the influence of β-carotene
supplementation from the first trimester of gestation till the third month after birth (Randomized
placebo-controlled trial, n = 13,709) [73]. However, this also study found unexplained small negative
effect of β-carotene supplementation on birth weight (−18 g, p = 0.06), which need further examination
in future studies [73]. As mentioned above, also Banerjee et al. [56] also found an adverse effect of
carotenoids (lycopene) supplementation on the incidence of low birth weight, however the strength
of this study is weak. Assessment of the influence of seasonal variations in diet during pregnancy
showed a positive correlation between the intake of β-carotene in fourth month of pregnancy and
head circumference at birth, but no relationship was found between seasonal variations in the intakes
of nutrients and birth parameters [27].

5. Maternal-Fetal Transfer of Carotenoids

The absorption and transport of carotenoids is similar to that of fat. After absorption from the
small intestine, carotenoids are initially transported via the lymphatic system, and later together with
chylomicron remnants in the blood system, where they are transferred to the liver. In the liver, they
undergo modifications as well as storage or are transported back to the circulatory system together
with lipoproteins. Carotenes are transported with low-density lipoprotein (LDL), while xanthopylls,
due to their higher polarity, are transported with high-density lipoprotein (HDL) and to a lesser
extend with very low-density lipoprotein (VLDL). The affinity of carotenoids to different lipoprotein
fractions and the number and proportions between their receptors in various issues determine the
differences in the degree of saturation of different organs in carotenoids. For this reason, the highest
amount of carotenes is found in the liver, testes and adrenal gland, where LDL receptor is primarily
located, while xanthopylls are preferentially transported to the nervous tissue of the eye retina and the
central nervous system due to the presence of HDL receptors [1,3,74]. Proteins, including albumin and
lactoglobulin also participate in the transportation of carotenoids [75–77].

The exact mechanisms of the transfer, metabolism and utilization of carotenoids by the fetus
remain to be elucidated. During pregnancy, the amount of maternal lipoproteins increases, which
facilitates the uptake of carotenoids by the placenta. The dominating lipoprotein fraction in the cord
blood is HDL, while LDL and VLDL are found in small amounts in the fetus blood. It has also been
found that unlike in adults, HDL present in the cord blood participates to a greater extent in the
transport of β-carotene than LDL (55% vs. 45%) [75–78]. In a mouse model study, it was noticed
that administering β-carotene per os has the capacity to regulate the transcription and activity of
microsomal triglyceride transfer protein (MTP) as well as placental apolipoprotein B (apoB), factors
necessary for the biosynthesis of lipoproteins, which overall brings about an increase in the transfer of
β-carotene to the placenta [79]. Deficiency of vitamin A has been shown to cause a decrease in the level
of carotenoids in the placenta, which may be related to their poor transportation to this organ [80].
There is scarcity of data and research on the levels of carotenoids in various fetal tissues. Analysis of the
concentration of carotenoids in the tissues of the vitreous body of aborted fetuses it was found that the
maximum values of total albumin (1.42 mg) and carotenoids (276 ng) occurred approximately during
20–22 Hbd. Albumin and carotenoids concentrations peaked during weeks 17 and 16–17 (respectively)
of prenatal development. Later, carotenoids concentrations gradually decreaserd, and by week 31 of
gestation was below detection threshold [76].

6. Carotenoid Status in the Newborn

The most widely used biomarker of carotenoid status is maternal serum carotenoids as well
as the level of these compounds in the cord blood. Most studies indicate that carotenoid status in
the newborn directly depends on their level in the mother, which is usually several times lower.
The concentration of carotenoids in the cord blood is at least several times lower than the level found
in maternal blood [26,69–72,81–84]. Lower difference between the amount of carotenoids in the cord
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blood and maternal blood was observed for polar carotenoids (lutein, zeaxanthin, β-cryptoxanthin),
which may be due the fact that during early life of the fetus till the first week of a child’s life, HDL is
the dominating lipoprotein fraction [82]. Differences in the concentration of carotenoids, particularly
β-carotene and other carotenoids that are precursors of vitamin A between the mother and the fetus
may not be related to limitations in placental transfer of these compounds. This may be caused by
intensive fetal metabolism, conversion of β-carotene to retinol, and later the storage of retinol esters in
the liver, due to, among others, limited capacity to store β-carotene [85,86]. Henriksen et al. [71], who
assessed macular pigment optical density (MPOD) and the concentration of carotenoids in the skin of
40 mother–child pairs (30 health and 10 with IUGR), obtained very interesting results. They found
that both maternal and newborn plasma zeaxanthin correlated with MPOD in the infants (r = 0.59,
p = 0.032 and r = 0.68, p = 0.007, respectively), but such a relation was not found for lutein, which is
the main macula pigment in adults. This may be the result of the immature enzyme system, which is
responsible for the conversion of lutein to meso-zeaxanthin found in the macula of the retina, which
shows the importance of zeaxanthin in the development of macula pigment in infants.

Nutritional status of the newborn also depends on the week during which the newborn is
delivered. This may be related to the dynamics of the fetus growth, which is highest during the
third trimester of pregnancy. Analysis of the concentration of lutein and its metabolite 3’-oxolutein
in the cord blood of a group of preterm and full-term newborns (n = 116, 33–42 Hbd) revealed that
lutein concentration reaches its plateau at the beginning of the third trimester and starts to gradually
decline from 37 Hbd, reaching its lowest value at 41–42 Hbd [87]. Other investigators found lower
concentration of lutein in male newborns as well as newborns delivered from multiple pregnancy [34].
Smoking during pregnancy is another factor that decreases the concentration of carotenoids the cord
blood, which was demonstrated in the case of β-carotene [26,33,88].

Furthermore, an increase in oxidative stress has been noticed during child delivery. Although the
results of studies are equivocal, it has been observed that child birth via cesarean section, especially
when planned, is related to higher oxidative stress [89,90]. Scaife et al. [26] did not find any differences
in the concentration of β-carotene in relation to the type child birth, but Picone et al. [87] noticed a
decrease in the level of lutein in the cord blood from newborns delivered via cesarean section.

7. Carotenoids in Breast Milk

The composition of breast milk depends on the lactation period, phase of single breastfeeding,
time of day and frequency of breastfeeding during the day. Breast milk composition is also subjected to
inter-individual variations as well as to the impact of other factors, including week of gestation, during
which birth occurred as well as the frequency of breast emptying. The nutrient content of breast milk,
including carotenoids, can be influenced by the dietary habits of the breastfeeding mother [91–95].
Fat in breast milk is highly subjected to changes and its content depends among others on lactation
phase and phase of single breastfeeding. Colostrum contains relatively small amount of fat (about
2.6 g/100 mL), while mature milk has approximately 4.1 g/100 mL. In the beginning of the first
breastfeeding, the amount of fat in the foremilk is negligible (about 1%), but the amount in hind-milk
increases by even 9%. The amount fat in breast milk also changes depending on the time of the day;
it is highest during the day and evening and lowest at night and in the morning [93–96].

Just like in the serum, the primary carotenoids in breast milk are β-carotene, lutein and zeaxanthin,
lycopene, α-carotene and β-crptoxanthin [96–102]. Studies conducted in the US, Mexico and China
showed that in all phases of lactation, the median content of carotenoids in breast milk was as follows:
114.4 nmol/L, 49.4 nmol/L, 33.8 nmol/L and 33.7 nmol/L for lutein, β-carotene, β-cryptoxanthin
and lycopene, respectively [98]. In an earlier multinational investigation, Canfield et al. [97] found
lower content of carotenoids with 62% of provitamin A carotenoids (α-carotene, β-carotene, and
β-cryptoxanthin) accounting for all the carotenoids analyzed. The discrepancy in the results from
various studies may be the result of different methods related to, among others, season for breast milk
collection, methods of milk expression, methods used for fat extraction as well as dietary habits of
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population involved in the studies [98,102,103]. Similar to the fat content, hind-milk contains higher
amount of carotenoids (by 25%) than the foremilk [102]. There is within day variability in breast milk
composition, with higher fat content seen in the afternoon [100,102]. The concentration of carotenoids
decreases with the duration of lactation (Table 2). Changes in the content of carotenoids between
colostrum and mature milk can reach the values of 35.2–52.0% (zeaxanthin) and even 82.7–91.3% in
the case lycopene [96,98,99]. The highest decline in the content of carotenoids occurs between the
second and the fourth week of lactation, but stables between the fourth and the sixteenth week of
lactation [98,104]. Less polar carotenes are subjected more to changes [96] as well as carotenoids, which
are non-precursors of vitamin A (lycopene and lutein) [98].

Mother’s dietary habits, especially the consumption of fruits and vegetables, have a great impact
on the content of breast milk carotenoids. The changes in the profile of the main carotenoids in
breast milk observed in various studies could be due to the different dietary habits of the investigated
populations [97,98]. Cena et al. [105] found high correlations between the intake of dietary lutein
and its serum concentration (r = 0.94, p = 0.0001) as well as in breast milk (r = 0.86, p ≤ 0.0001).
The content of milk carotenoids is easily altered their dietary intakes. It has been reported that a 3-day
nutritional intervention with the use of carrot paste (15 mg β-carotene all-trans) or tomato paste (15 mg
lycopene all-trans) by 26 women brought about an increase in the content of these carotenoids in milk
even after the first day of intervention, but the highest concentration of lycopene (130% of the initial
value) was found in subjects on the 4th day and a 200% increase for β-carotene after the 2nd day of
intervention [106]. An increase in the breast milk content of lutein, zeaxanthin and β-carotene was
also observed at the levels of 2.6×, p = 0.001; 2.7×, p = 0.001 and 1.7×, p = 0.049, respectively) after the
use of chlorella supplements during 16–20 Hbd [107].

The concentration of carotenoids in breast milk is 10 and sometimes even 120 times lower than
their plasma concentration and the strength of the relationship between them differs with relation to
the investigated population or carotenoid. A study carried out in Italy showed that the strength of the
relationship for lutein was r = 0.87, p ≤ 0.0001 [105] and r = 0.37, p ≤ 0.05 in a Brazilian study [108],
while the correlations in a multinational study was found to be r = 0.45, r = 0.57; p ≤ 0.05 and r = 0.13,
p > 0.05 for lutein, β-carotene and lycopene, respectively [98]. Differences have also been found in the
ratio of milk carotenoids to their plasma content; higher ration was noted for more polar xanthopylls
(0.12 ± 0.01 for lutein and zeaxanthin vs. 0.08 ± 0.001 for β-carotene [108]; 80% for lutein vs. 7–13%
β-carotene and 4–5% for lycopene [98]. Randomized placebo-controlled trial revealed that a six-week
supplementation with lutein (6 or 12 mg/day) caused and increase in its serum content by about 170%
and 250% (p < 0.0001), respectively as well as in breast milk by 140% and 250% (p < 0.0001), respectively.
The serum of lutein in infants exclusively breastfed was also found to be increased by 180% in the
case of 6 mg/day and 330% after the ingestion of lutein in the dose of 12 mg/ day (p < 0.05) [109].
Lipkie et al. [98] showed the ratio of carotenoid in the serum of infants fed breast milk to their content
in breast milk is variable and amounts to 133% for lutein, 560–600% for β-cryptoxanthin, and 270–300%
for α-and β-carotene; the lower value for lutein can be attributed to its intensive turnover and uptake
the newborn tissues.
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Table 2. The concentration of carotenoids in breast milk according to stage of lactation.

Lactation Stage Study Group Milk Collection Method
Carotenoid Concentration in Breast Milk (nmol/L)

Source
β-Carotene Lutein (L) and/or Zeaxanthin (Z) Lycopene β-Cryptoxanthin

Colostrum

Germany; n = 21
30 ± 6 (20–39) the total milk volume of one breast 423.4 ± 326.6 164.0 ± 84.9 L

33.2 ± 84.9 Z 508.9 ± 421.7 238.8 ± 156.1 [99]

Cuba; n = 21
25 (19–30) 10–12 mL of primarily foremilk (in the morning) 125.7 ± 6.37 1 67.9 ± 44.9 L 2

9.7 ± 6.7 Z 137.3 ± 86.1 3 61.1 ± 66.6 4 [96]

Italy; n = 21
33.9 ± 4.37 (24–42) 5–6 mL of milk - 280 ± 220 L 5 - - [105]

Transitional milk Cuba; n = 21
25 (19–30) 10–12 mL of primarily foremilk (in the morning) 44.2 ± 34.1 1 44.5 ± 36.1 L 2

8.6 ± 5.5 Z 44.2 ± 34.1 3 24.8 ± 22.4 4 [96]

Mature milk

Cuba; n = 21
25 (19–30) 10–12 mL of primarily foremilk (in the morning) 36.2 ± 17.2 1 27.3 ± 16.4 L 2

7.9 ± 7.7 Z 18.8 ± 2.7 3 16.6 ± 12.7 4 [96]

Germany; n = 21
30 ± 6 (20–39) the total milk volume of one breast 78.2 ± 46.2 88.1 ± 37.8 L 2

19.5 ± 10.2 Z 59.8 ± 38.9 3 60.6 ± 36.7 4 [99]

Brazil; n = 49
26.6 ± 6.3 the total milk volume of one breast 18.0 ± 2.0 5 6.0 ± 1.0 L + Z 5 - - [108]

Italy; n = 21
33.9 ± 4.37 (24–42) 5–6 mL of milk - 110 ± 50 L 5 - - [105]

1, 2, 3, 4—results were converted from ng/mL units to nmol/L according to formula (ng/mL/molecular weight/1000); molecular weight: 1 β-carotene [110]; 2 lutein and
zeaxanthin [111,112]; 3 lycopene [113]; 4 β-cryptoxanthin [114]; 5 results were converted from µmol/L units to nmol/L.
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Changes in breast milk content of carotenoids occur during the course of lactation, even in relation
to milk volume of fat content. Changes in the profile of serum carotenoids as well as their content
in plasma lipoprotein can also be observed. Differences in the ratio of serum carotenoids to their
content in breast milk in relation to their polarity suggest that there is a different mechanism for
the transfer of carotenoids to milk, which is independent of the transport of fat [96]. Breast milk
constituents can be secreted in five different pathways, including four transcellular pathways
(membrane pathway; transport via Golgi apparatus and secretion do milk through secretive cells via
exocytosis; intercellular vesicle transport; and the transport of milk fat) as well as one paracellular
pathway with help of tight-junction connections [98,115]. Milk fat is synthesized in, or on the surfaces of
the rough endoplasmic reticulum membrane and accumulated in the form of droplets in the cytoplasm
surrounded by milk fat globule membrane (MGFM). Droplets of variable size are transported to the
apical pole of the cell through the cytoplasm and are secreted from the apical surface enveloped with
cellular membrane. However, the transfer of carotenoids to breast milk can involve for example,
preferential uptake by lipoproteins as well as intracellular transport. Breast tissue contains all types of
lipoproteins, but mammary alveolar epithelium cells prefer the HDL fraction [98,99,116]. Furthermore,
the transport of carotenoids into epithelial cells of the milk vesicles probably involves fatty acid
transporting protein and cluster determinant 36 receptor (CD36), which is responsible among others,
for the uptake of fatty acids as well as carotenoids, which precursors of vitamin A (β- and α-carotene
as well as β-cryptoxanthin) in Caco-2 epithelial cells of the small intestine [98,99,115,117].

8. Infant Feeding Method and Infant Carotenoid Status

Due to humans inability to synthesize carotenoids de novo and fact that infant formulas often
contain only trace amounts of those compounds as they are not routinely enriched in carotenoids,
infant feeding method is an important determinant of infant’s carotenoid status, same as mother’s
nutritional status [71,104,118]. Infants exclusively breastfed are characterized by better nutritional
status as compared to infants mixed or artificially fed. Artificially fed infants after several months
of receiving formulas have serum concentration of carotenoids several times lower as compared to
values noticed after birth, and sometimes even lower than detection threshold [118–121]. This suggests
the importance of enriching infant formulas with carotenoids, particularly with lutein, to improve
or optimize the nutritional status of the newborns who are fed artificially. Studies on experimental
formulas enriched with lutein demonstrated that they are well tolerated by newborns and improve
their nutritional status [122]. A research carried out in infant rhesus macaques have also confirmed that
feeding those animals with a mixture of feed enriched with carotenoids increases the saturation degree
of their brain tissue in lutein but the increase in the amount of β-carotene, zeaxanthin and lycopene was
negligible and below threshold of detection, what suggests the significance of lutein for the developing
brain [123]. Due to lower bioaccessibility of lutein from infant formulas, it is necessary to consider a
4.5-fold increase in its concentration in relation to the levels found in breast milk [118,122,124].

9. Carotenoids and Infant Health and Development

There is an increasing number of studies on carotenoids role in infant health and development,
due to widely documented health benefits and preferential uptake of carotenoids by fetus and breast
milk [3,18]. The most important health benefits in infants may result from antioxidant properties of
carotenoids and their role in visual and cognitive development [18,125].

9.1. Visual Development

Lutein, zeaxanthin and meso-zeaxanthin, isomer of zeaxanthin and lutein derivative, are uptaken
by eye tissue, especially macula where they constitute the macular pigment [126]. The carotenoids
concentrations in the eye tissue are not evenly distributed. The highest concentrations of carotenoids
are observed in the central foveal region, and they decrease with the increasing distance from the
fovea being 100-times lower in peripheral area. There are also differences in carotenoids proportions
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according to retinal region observed in the central foveal region dominate zeaxanthin (60% of total
macular carotenoids; zeaxanthin:lutein ratio 2:1) and mezo-zeaxanthin and with the increasing distance
from the central fovea the raise in the lutein concentration is observed [127–129]. Changes in macular
pigment density and structure are also age-related. The peripheral retinal area is relatively mature
after birth, but photoreceptors, fovea and MPOD intensively maturate in early childhood until at least
4–7 years of age [120,130–132]. Newborns have very low or undetectable mezo-zeaxanthin levels and
opposite lutein:zeaxanthin proportion until two years of age, probably due to immaturity of enzymes
involved in the conversion of lutein to mezo-zeaxanthin [71,127–129]. Moreover, premature infants
have undetectable MPOD presumable for considerable immaturity of macula and carotenoid depletion
due to shorter prenatal development [131]. It is also well known that infant MPOD correlates with
maternal carotenoid status and after the birth infant feeding method is crucial for maintaining infant
carotenoid status [71]. Breastfed infants have higher MPOD compared with those who are artificial
fed, and recent study confirmed that early carotenoids exposition may be an important predictor of
MPOD in adulthood [133,134].

Eye retina is very susceptible for oxidative damage due to extensive metabolic activity, high
LC PUFA concentration and massive vascularity [130]. Newborns are even more vulnerable to such
damages because of their immature autoregulation of blood flow within the choroid (what combined
with an increased metabolic activity leads to hyperoxydation) as well as their more permeable lens that
allow to pass higher amounts of energetic short-wave light [135,136]. Susceptibility of infant retina
is reflected by rapid lipofucin accumulation during the first few years of life [137,138]. Prematures
are even more vulnerable and extensive oxidative stress may lead to development of prematurity
retinopathy [139].

Macular carotenoids protect retina by: (1) absorption of 40–90% of incident blue light, which
protects the retina from photo-damages [140]; (2) antioxidant properties, i.e. a mixture of lutein,
zeaxanthin and mezo-zeaxanthin can quench more singlet oxygen than individual carotenoid [141];
(3) anti-inflammatory and anti-apoptotic properties [142]; and (4) neuroprotective activity [143].
Lutein and zeaxanthin are also likely to support the transmission and processing of visual
information by: (1) stabilization of microtubules in cytoskeleton [144]; (2) enhancing the gap
junctional communication between glia and neuronal cells [145,146]; (3) improving visual parameters,
including scoptopic noise and light scatter [147]; and (4) contribution in oxygen utilization from
foveal [120,148]. There is also more scientific evidence supporting the crucial role of macular carotenoids
in proper eye and visual development [130]. Animal model studies reveal that carotenoids are
essential for proper retina development, including macula and retinal pigment epithelium density in
fovea [149,150]. Additionally, proper visual development is crucial for optimal cognitive development
of infant [18,151,152]. Besides, retinal lutein concentration is related to brain lutein concentration in
primates [153], humans [154], as well as to cognitive performance in children and elderly [155,156].

9.2. Brain and Cognitive Development

Carotenoids are preferentially captured by the nervous tissue, and lutein constitutes even 59%
of all carotenoids in infants, whereas only 31% in adults [123,155,157]. It has been shown that the
most carotenoid is abundant in the brain area of the hippocampus, frontal cortex and occipital cortex,
regions associated with cognitive process. In neurons, the highest lutein concentration is observed
in cellular membranes and axon terminals, and the structure of neurons’ cell membranes amonal
axonal projections depends on brain region in which they occur [144,158,159]. Lutein action in
nervous tissue is related to: (1) improving intracellular communication [145,146,160]; (2) ability
to modify the cellular membranes, including their fluidity, ion exchange, oxygen diffusion and
stability [160]; (3) neuroprotective properties [161]; and (4) participation in metabolic pathways in
brain [22]. The results of study conducted by Vishwanathan et al. [162] did not confirm the impact of
infant feeding method on the brain content of carotenoids in full-term newborns. The brain of preterm
newborns has lower concentrations of carotenoids as compared to full-term newborns [162,163].
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Literature data have shown that carotenoids are important for cognitive performance, and its
supplementation improves their cognitive performance in adults and elderly [18,155]. Recent study
conducted among 55 exclusively breastfed infants from USA (82% of Caucasians) indicated that
higher choline and lutein (whereas DHA and lutein had no effect) contents in breast milk at three
(3.7 ± 0.63) months of age can improve the processes of cognitive functions in infants at six (6.1 ± 0.09)
months of life, as assessed using an electrophysiology paradigm known as event-related potentials [20].
Observed association (study also revealed association for choline and DHA) may be caused by
proposed mechanism of lutein and DHA transport to the brain via high-density lipoproteins, which
are rich in phosphatidylcholine, as well as choline may have neuroprotective effect in itself [164,165].

9.3. Preterm Infants

Newborns are susceptible to oxidative stress, due to extensive metabolic activity and higher
oxygen extrauterine environment [125]. Preterm infants are even more vulnerable to oxidative
stress because of immature antioxidant defense system, associated disorders and invasive medical
procedures [125]. Lutein may be protective against extender oxidative stress by improving biological
antioxidant system and decreasing oxidation stress what has been shown in term infants who were
supplemented with lutein at a dose of 0.28 mg at 6 and 36 h of life [166]. Lutein supplementation is
well tolerated even by preterm infants [167] and may reduce the risk of developing diseases associated
with premature birth such as retinopathy of prematurity (ROP), necrotizing enterocolitis (NEC) and
bronchopulmonary dysplasia (BPA), however results were not statistically significant (Table 3).

Table 3. The impact of carotenoids supplementation on oxidative stress and occurrence of
prematurity disorders.

Study Group Intervention Assessed Outcomes Results Source

n = 77
GA 1 ≤ 34
(30.4 ± 2.3)

1415 ± 457 g
Italy

RCT 2

L + Z 3 (0.5 +
0.02 mg/kg/day) vs.

placebo

– total antioxidant status (TAS)
plasma L and Z concentration

– no differences in TAS
↑ Z concentration at week 4
(p ≤ 0.05)

[168]

n = 203
GA ≤ 33

(29.6 ± 0.2)
1244 ± 32 g

USA

RCT
Formula with L + β-c +

Ly (211 + 219 +
143 µg/L) vs. placebo

control formula

– inflammatory status
(C-reactive protein)
electroretinography
plasma carotenoids
concentrations (compared also
with breastfed infants)

– ↑ rod photoreceptor sensivity
(6.1 vs. 4.1, p ≤ 0.05)
↓ inflammation status (p ≤ 0.001)

[169]

n = 114
GA ≤ 32

(28.8 ± 2.4)
1130 ± 330 g

Italy

RCT
L + Z (0.14 +

0.006 mg/kg/day) vs.
placebo

– ROP 4,5 screening every
2 weeks

– ↓ ROP incidence in L/Z groups
(19% vs. 27%, p > 0.05)

[23]

n = 63
GA ≤ 32

(29.9 ± 1.9)
1331 ± 415 g

Italy

RCT
L + Z (0.5 +

0.02 mg/kg/day) vs.
placebo

– ROP screening
plasma L and Z concentration
every week

– no differences in ROP incidence
↑ L concentration at week 5 and Z
at week 4 (p ≤ 0.05)

[167]

n = 229
GA ≤ 32

(30.1 ± 1.8)
1336 ± 417

Italy

RCT
L + Z (0.14 +

0.006 mg/day)

– incidence of ROP, BPD 6,
NEC 7 till discharge or term
corrected age

– ↓ ROP incidence in L/Z groups
(6.2 % vs. 10.3%, p > 0.05)
↓ BPD incidence in L/Z groups
(4.5% vs. 10.3%, p > 0.05)
↓ NEC incidence in L/Z groups
(1.7% vs. 5.1%, p > 0.05)

[170]

1 GA—gestational age; 2 RCT—randomized controlled trial; 3 L, Z—lutein, zeaxanthin; 4 ROP—retinopathy of
prematurity; 5 Criteria of International Committee for the Classification of Retinopathy of Prematurity [171];
6 BDP—bronchopulmonary dysplasia; 7 NEC—necrotizing enterocolitis.

Use of breast milk could influence on decrease of ROP risk (relative risk (RR) 0.39, 95% CI
0.17–0.92) as well as the risk of death before hospital discharge RR 0.27, 95% CI 0.08–0.96 [172], which
may be related to high antioxidant activity of breast milk [173]. Recent study has revealed that donor
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milk had 18–53% decreased antioxidants status compared with maternal milk but in most cases still
higher than infant formula [174].

9.4. Long-Term Studies in Infants and Children

The intake of carotenoids intake during pregnancy may also have long-term consequences for
infants. Research conducted among mothers of children with sporadic retinoblastoma and health
controls showed that inadequate intake of vegetables and fruits as well as lutein and zeaxanthin
derived from such foods may increase the risk of sporadic retinoblastoma in children (OR 2.6, 95% CI
1.5–4.6) [19]. Carotenoids, especially provitamin A, may alter the various factors in the developing
immune system, including T-cell proliferation or natural killer cell activity [175]. Study conducted
by Litonjua et al. [17] revealed that maternal intake of lutein and zeaxanthin in the highest quartile
compared with the lowest decreased risk of respiratory infections in two-year-old children (OR 0.56;
95% CI 0.37–0.85; p = 0.01) but there were no significant associations between wheezing or recurrent
wheezing in the first two years of life. Results from Japanese study of 763 mother-infants dyads found
that maternal β-carotene consumption during pregnancy in the highest quartile compared with the
lowest decreased risk of infantile eczema, but not wheeze (OR 0.52, 95% CI 0.30–0.89) [21]. However,
systematic review by Melo van Lent et al. [176] did not find any association between lutein intake or
status and respiratory health in children. A cross-sectional study of healthy, well-nourished, children
aged 5.75 years (n = 160) living in Vancouver, Canada investigating lutein intake and status did not
confirm lutein role in cognition assessed by the Kaufman Assessment Battery (KABCC-II) and Peabody
Picture Vocabulary Test (PPVT) [177]. Lack of lutein effect on cognitive performance may be caused
by selection of well-nourished population, whereas largest functional effects of lutein may be the
most significant for those with relative deficiency; selection poor biomarker (plasma concentration) for
lutein in brain (MOPD would be better), as well probably not the most sensitive cognitive tests for
measuring the effects of diet on brain development [178]. The Generation R Study (n = 2044 healthy
Dutch children) did not support the hypothesis that lutein intake in early life (13 months of life) has
beneficial role for later cardiometabolic health, anthropometrics and body measures at the age of
six [179].

10. Safety of Carotenoids and the Intake Recommendations for Pregnant Women and Infants

It has been shown that carotenoids (lycopene, β-carotene, lutein) act as an antioxidant, but
as oxygen pressure increases the effectiveness of carotenoids as an antioxidant decreases possible
because of autooxidative processes [180,181]. This property may be responsible for results of few
epidemiological studies which reported adverse health effect of high carotenoid intake with dietary
supplements. ABTS clinical trial conducted in Finland among 29,133 50–69-year-old male smokers
found that long-term (5–8 years) supplementation of 20 mg β-carotene per day caused 18% increase
in incidence of lung cancers, and as a consequence 8% increased overall mortality [182]. In addition,
later study has shown that this supplementation increased the post-trial risk of a first nonfatal
myocardial infarction [183]. Other studies with higher dose of β-carotene (50 mg/day), but conducted
among non-smoking participants did not shown that carotenoids supplementation lead to increase
risk of cardiovascular morbidity or mortality [184,185]. The observed adverse health effect only in
smoking participants may be associated with β-carotene oxidation by cigarette smoke, which lead
to the formation of oxidation products of β-carotene [58]. Another, harmful, side effect of lutein
supplementation is carotenodermia-a reversible condition characterized by yellowish discoloration of
the skin [186]. To our knowledge, despite the one study in healthy low-risk pregnant women (2 mg
lycopene/d since 15.7 ± 2.3 Hbd), there is no evidence of adverse health effects of high carotenoids
supplementation or intake in pregnant women (even smoking) and newborns and infants, however
none of studies conducted among these population were long term or using high dose of carotenoids.

There is no dietary intake recommendation for any of the carotenoids for any populations group,
as they are not considered as essential nutrients. However, it has been argued that dietary intake
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recommendations for e.g., lutein and zeaxanthin should be established. In adults, there is strong
evidence that intake of 6 mg lutein per day may be optimal for eye health, and there is no evidence
of toxicity at intakes three times this dose in clinical trials [18,187,188]. There is no proposed intake
recommendation of lutein for pregnant and breastfeeding women or infants, but, for infants, EFSA
concludes that the concentration of 250 µg/L added lutein in infant formulae is safe [186]. During
pregnancy, lactation and childhood diet rich in vegetables and fruits, as carotenoids source, should be
recommended, due to the fact that intake of vegetables and fruits is associated with variety of health
outcomes, as well there is no evidence that even high consumption of them is harmful [1]. For infants,
exclusive breastfeeding up to six months and further continuation for up to two years and longer
should be recommended, considering that breastfeeding leads to many health outcomes, and breast
milk is a better source of carotenoids than formulae [189].

11. Conclusions

Carotenoids are nutrient with broadly documented antioxidant, anti-inflammatory and
neuroprotective properties. Data from epidemiological, clinical and interventional studies have
supported the associations between adequate intake of dietary carotenoids or its supplements and
reduced risk of some chronic non-communicable diseases, as well as age-related decline in cognitive
functions. However, among pregnant women, their role in the reduction of risk of pregnancy
pathologies, as well pregnancy outcomes is inconclusive. Observational and few RCT studies contradict
each other very often. In some cases, a beneficial effect of carotenoids on preeclampsia, preterm birth
and infant birth parameters has been clearly observed; in others, little or no correlation between
them has been found or, even, an inverse relationship has been reported. However, majority of
conducted RCT studies were small and biased, so further research in these area are needed. Higher
intake of carotenoids may be related to healthier diet and lifestyle, which may be beneficial in
themselves. Lutein is one of the carotenoids which beneficial properties have been investigated
more often. Lutein adequate intake during neonatal period may be particularly important as a result
of its antioxidant activity and involvement in vision and nervous system development. In the early
stages of life, visual stimuli are very important elements of stimulating the brain development, and
in turn may be crucial for cognitive development of the child. Carotenoids status of newborns and
infants, due to the lack of those components in most of infant formulas, depends on the nutritional
status of the mother as well as the infant feeding method. It has been hypothesized that lutein and
zeaxanthin during early childhood play a key role in the normal visual system development and
also brain neurocognitive development. However, this has strongly been supported only in animal
models. Due to the small number of available data or inconclusive results, it is necessary to continue
research in this area. Further studies need to be performed to establish carotenoids role in early, as well
subsequent, infant development and health are needed. RCT studies are highly recommended.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/9/8/838/s1,
Table S1: Observational and Intervention Studies Examining Associations between Carotenoids during Pregnancy
and Maternal or Infant Health Outcomes.
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