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THE BIGGER PICTURE A record-breaking pressure has been placed on healthcare systems by the COVID-
19 pandemic. As a result of fast-growing requests formedical care in hospitals, with limited space and num-
ber of intensive care units, estimation of the length of stay of patients with COVID-19 in hospitals can pro-
vide insightful information to decision makers for efficient allocation of equipment and managing hospital
overload in different countries. This work introduces statistical models and machine-learning-based ap-
proaches that can be directly applied to real-world COVID-19 data to predict the patient discharge time
from hospital and evaluate how the patient clinical information could have an impact on the length of
stay in hospital. While considerable insights have been achieved about the patient recovery times in this
paper, applications of these data-driven approaches are expected to gather substantial interest in the
near future once more detailed clinical data are available.

Mainstream: Data science output is well understood
and (nearly) universally adopted
SUMMARY
As a highly contagious respiratory disease, COVID-19 has yielded high mortality rates since its emergence in
December 2019. As the number of COVID-19 cases soars in epicenters, health officials are warning about the
possibility of the designated treatment centers being overwhelmed by coronavirus patients. In this study,
several computational techniques are implemented to analyze the survival characteristics of 1,182 patients.
The computational results agree with the outcome reported in early clinical reports released for a group of
patients from China that confirmed a higher mortality rate in men compared with women and in older age
groups. The discharge-time prediction of COVID-19 patients was also evaluated using different machine-
learning and statistical analysis methods. The results indicate that the Gradient Boosting survival model out-
performs other models for patient survival prediction in this study. This research study is aimed to help health
officials make more educated decisions during the outbreak.
INTRODUCTION

In December of 2019, a soaring number of unusual pneumonia

cases was reported in Wuhan, China. The cause of this

outbreak was soon determined to be a novel coronavirus,

referred to as COVID-19.1 On March 11, 2020, the World Health

Organization (WHO) recognized COVID-19 as a global

pandemic with significantly high infection and mortality rates
This is an open access article under the CC BY-N
compared with its predecessors, including SARS and MERS.2

As of March 24, 2020, the virus has spread to more than 170

countries, with more than 422,613 confirmed cases and

18,891 death toll.3 The initial reports indicated that the

mortality rate varies among countries due to differences in

demography, age distribution, and health infrastructure. China

reported an overall 2.3% mortality rate among COVID-19

patients. However, a significantly higher mortality rate
Patterns 1, 100074, August 14, 2020 ª 2020 The Authors. 1
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Figure 1. Probability Estimation of Discharge

Time in Different Age and Sex Groups

(A) Discharge-time probability estimation of sex

groups after showing the symptoms.

(B) Discharge-time probability estimation of sex

groups after hospitalization.

(C) Discharge-time probability estimation of two

categories of age groups.

(D) Discharge-time probability estimation of four

categories of age groups.
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(14.8%) was reported for senior patients (80 years or older).4 In

Italy, where more than 23% of residents are 65 or older,5 the

overall mortality rate has been about 5%, while the

statistics showed a rate of around 20% for senior patients.6

Across the world, epicenters of the coronavirus outbreak

are beginning to confront rapid surges in confirmed cases

that may overwhelm healthcare centers and medical personnel.

Precise mathematical models capable of predicting the dura-

tion of recovery and discharge time can provide valuable infor-

mation for health officials to design proper strategies to reduce

the death toll. It has been shown by early studies that statistical

analysis can be applied to COVID-19 problems to build predic-

tive models that can assess risk factors and mortality rates.7–9

In this paper, we use survival analysis techniques including sta-

tistical analysis and machine-learning approaches to predict

patient survival times and to examine the effect of basic risk

factors on hospital discharge-time probabilities. What distin-
Figure 2. Age Variation of 1,182 Patients

Patients are categorized into four different age groups. First, second, and third

quartiles are 34, 46, and 60, respectively.
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guishes survival analysis from the typical

machine-learning algorithms is that some

parts of the training data may be partially

observed censored samples. There are

numerous cases in this study where the

date of event of interest, the patient

discharge time, is not available. Instead

of employing typical predictive models

that cannot make use of these cases,

we utilize well-suited methods capable

of carrying out analysis of censored

cases, which yields more reliable out-

comes by preventing massive data
shrinkage. These methods are introduced in Experimental

Procedures.

RESULTS AND DISCUSSION

In this section, we report and compare the performance of ma-

chine-learning techniques used in survival prediction of patients

and evaluate the impact of age and sex as two major risk factors

based on Figure 1.

Accuracy of Discharge-Time Prediction
According to Figure 2, we report and compare the results of

technqiues used in discharge-time predication of 1,182 patients.

Taking the performance metric into consideration, due to the ex-

istence of censored samples, the typical area under the receiver

operating characteristic curve (AUC) is not used to evaluate

the performance of survival analysis models. Instead, model per-

formances in discharge-time prediction are compared by a

metric, namely Concordance index (C-index). C-index is a stan-

dard metric to assess the predictions of algorithms in survival

analysis by calculating the percentage of concordant pairs

among all feasible evaluation pairs.10 C-index does not consider

the difference value between predicted and actual survival times

but compares only the ranking times of events of interest in all

possible pairs. For example, if patient A’s actual event happens

before that of patient B and thus the predicted event time for A is

before that of B, nomatter how long before B’s event as long as it

happens prior, this pair is considered a concordant pair.

According to the results shown in Table 1, IPCRidge has the

least accuracy among the six algorithms evaluated in this work.

This algorithm is expected to perform randomly if the assumptions

of this algorithm are violated. Since in this study the distribution of

the survival data is not known and the censoring status is not in-

dependent of the features, the IPCRidge performs randomly.



Table 1. Prediction Accuracies of Seven Survival Analysis Algorithms

Algorithm IPCRidge CoxPH Coxnet Stagewise GB Componentwise GB Fast SVM Fast Kernel SVM

Result 49.05 70.63 70.72 71.47 70.60 70.65 61.05

Performance (C-index) comparison of IPCRidge, CoxPH, Coxnet, Stagewise GB, Componentwise GB, Fast SVM, and Fast Kernel SVM.
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The Cox Proportional Hazard (CoxPH) and Coxnet models show

similar results, as the data do not contain numerous features

even after transforming categorical features to numerical. The

Coxnet model excels when dealing with high-dimensional data-

sets where the feature selection due to the potential correlation

is crucial. According to the results, regular Support Vector Ma-

chine (SVM) outperforms SVM with radial basis kernel function.

The observations suggest that there is no significant non-linear

reliance in the dataset, and the relationship between the features

and the survival time can be approximated by linear functions.

Therefore, the non-linear function is not required in this case to

perform the regression while using the SVM. When one considers

the boosting methods, the results indicate that the Stagewise

Gradient Boosting (GB) algorithm is not only more accurate

comparedwith the other boostingmethod but also beats other al-

gorithms in discharge-time prediction in terms of accuracy. The

benefit of the ensemble method is to take advantage of a collec-

tion of decision trees (DTs) instead of one predictor, so it tends to

yield the best results in this study. Regarding othermethods, deep
Data collection
Raw data (CA

B
Data processing

Age Sex Onset Admission Confirm Outcome

30 M 1-18-2020 1-20-2020 1-22-2020 Discharge

47 M 1-10-2020 1-21-2020 1-23-2020

49 M 1-15-2020 1-20-2020 1-29-2020

47 F 1-17-2020 1-17-2020 1-23-2020

59 F 1-19-2020 1-19-2020 1-26-2020 Discharge

30 M 1-17-2020 1-17-2020 1-25-2020

39 M 1-20-2020 1-20-2020 1-23-2020 Discharge

Censored: Exper
no event.
Confirm – Onset
to censoring da

Uncensored: E

Survival
Analysis

Discharge time 
prediction

Accuracy
measurement

Age Sex

32 F

44 F

29 M

39 M

39 F

46 M

66 M
learning is a powerful method that can be applied in various fields

and, similar to the aforementioned methods, can be extended to

handle censored data.11–13 This method requires a larger number

of samples as well as the boostingmethods, so their performance

can be fairly compared in future studies.

Hospital Discharge Rate
As depicted in Figure 3, besides the accuracy measurement of

machine-learning techniques, measuring the hospital discharge

time specifically for different age and sex levels is of great impor-

tance. As shown in Figure 4, some data points are censored. By

leveraging the properties of reversed Kaplan-Meier (KM) esti-

mator, probabilities of patient discharge time from the hospital

can be estimated. According to Figure 1A, the probability of re-

covery and being discharged for male hospitalized patients in

the first 15 days beginning from showing the symptoms is higher

than females. Although this probability is higher for the first

15 days, after day 15 until nearly 40 days of showing the symp-

toms, the probability of recovery in females is slightly higher. This
SV)
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Date
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F
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2-16-2020 T

F

1-27-2020 T
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Figure 3. Data-Processing Steps

(A) Data collection and filtering.

(B) Data-processing steps required for analysis.
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Figure 4. Demonstration of Data Censorship Status

Patients A, B, andD have not experienced any events until the end of the study,

so they are considered as censored samples, but patient C is not censored

because the event has occurred and it is fully observed.
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suggests a higher average probability of discharge from hospital

for females, longer recovery times, and a higher average

morbidity rate for males compared to females. According to

the hazard ratio in association with sex that was obtained from

the Cox regression (semi-parametric survival model, which is de-

picted in Figure 5), females have approximately 5%more chance

on average than males to be discharged from hospital. In addi-

tion, as reported by Pan et al.,14 the average discharge-time

probability of 21 male and female patients from being hospital-

ized to being discharged is almost 1 after 17 days. However,

based on Figure 1B, this probability is approximately 1 after

27 days. The difference between data used and the number of

patients can account for the discrepancy between these re-

ported results. Nonetheless, since a far greater number of cases

are studied in this paper, the result’s variability must be lower.

Age is one of the risk factors used in this study to predict

survival times and is of great interest in determining its impact

on patient survival. First, second, and third quartiles of age

ranges are utilized to categorize age into four subgroups. Fig-

ures 1C and 1D show the effect of age on hospital discharge

rates. It is evident that there exist clear boundaries between

these age groups. According to this figure, lower hospital

discharge rates are associated with older age groups.

Beside the KM results, the coefficient of Cox regression

regarding age suggest that by increasing the age for 1 unit

(year), the probability of discharging from the hospital de-

creases approximately 3%.

Finally, a separate analysis is conducted for cases older than

the age median, 46 years, to examine the effect of sex in older

patients. The results indicate that the probability of recovery in

females after 35 days is equal to 0.86 compared with 0.83 after

37 days formales. This suggests that older females have slightly

higher survival rates. These results are also in agreement with

the initial outcomes of clinical research concerning the influence

of sex.15,16
4 Patterns 1, 100074, August 14, 2020
Conclusion
The clinical data from1,182COVID-19 patients are used in this pa-

per to measure the prediction accuracy of the discharge time of

hospitalized patients by implementing different survival analysis

models. Firstly, the results indicate that Stagewise GB delivers

the most accurate discharge-time prediction compared with the

other algorithms while using only age and sex as model features.

It is worth noting that since predictions are based on age and

sex as model features, this study provides a baseline criterion for

future studies once more detailed clinical data are available. Sec-

ondly, theKMandCox regressionmethod results suggest that sex

and age of the hospitalizedpatients have a direct effect on their re-

covery time. Findings indicate that beingmale orbeing inolder age

groups is associated with lower hospital discharge probabilities.

This study provides a baseline for recovery time prediction for

future research studies. Upon the accessibility of other risk factors

such as patient preconditions, therewill be an opportunity tomea-

sure the impact of them on patient survival.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Mohammadreza Nemati is the lead contact of this study and can be reached

through e-mail: mnemati@rockets.utoledo.edu.

Materials Availability

The machine-learning and statistical models used in this study can be ob-

tained via this GitHub repository:

https://github.com/Mnemati/Machine-Learning-Approaches-in-COVID-19-

Survival-Analysis.

Data and Code Availability

All the raw data used in this project are obtained from an open-access COVID-

19 epidemiological data website (https://www.thelancet.com/journals/

laninf/article/PIIS1473-3099(20)30119-5/fulltext). The code is available at

GitHub (https://github.com/Mnemati/Machine-Learning-Approaches-in-COVID-

19-Survival-Analysis).

Method Details

Data Description and Preparation

An open-access dataset is used in this research study. This dataset was

collected by a group of researchers from different universities and research

labs.17 According to the dataset descriptions, data are mostly extracted

from national health reports and online resources, released mainly by

state/local health officials and hospitals of different countries. The epidemi-

ological information includes various features about the surveyed cases,

including case ID, age, gender, onset date of symptoms, date of hospital-

ization, infection confirmation date, death or discharge time, death or

discharge status, symptoms, chronic disease history, travel history, and

location. Several filtering processes are applied to prepare the data for

training and statistical analysis. Incomplete cases with missing data points

are first removed from the dataset. Among available fields in the dataset,

only a limited number of features, including age, sex, available dates,

and outcome (death or discharge), are kept in the dataset. Finally, due to

format inconsistency in some fields such as age and outcome parameters,

the filtered dataset is reformatted. One of the stumbling blocks of survival

analysis is to calculate the days from the beginning of the study to the

event date (discharge) or the last available date (censoring days). Although

the beginning date is available for all cases, censoring days are calculated

by subtracting the last available date from the beginning date for each

case. The next processing step is to restructure the data to make them

compatible with survival analysis methods. The first component in the

structured data is the status of the case (censored or uncensored). For

cases with discharged outcomes, the status is considered uncensored

(True), while for occurrences with no available outcome information, the

mailto:mnemati@rockets.utoledo.edu
https://github.com/Mnemati/Machine-Learning-Approaches-in-COVID-19-Survival-Analysis
https://github.com/Mnemati/Machine-Learning-Approaches-in-COVID-19-Survival-Analysis
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status is set to censored (False). The second component is the event or

censoring days. In the final stage, age and sex are added as the predictor

variables, so a more detailed description of them is vital. One of the main

objectives of this study is to evaluate the impact of different age and sex

categories on patient survival. As illustrated in Figure 2, age is stratified

into four categories by determining its quartiles. Regarding the sex, it is

a categorical variable, so a dummy encoding is applied to it to transform

it to a numerical value for further analysis. Nonetheless, one of the limita-

tions of this study is that this dataset does not contain other potential

risk factors such as blood type and body mass index, or barely contains

patient preconditions. Therefore, we are not able to add them beside age

and sex. According to Figure 3, after the data-processing step is finished,

survival algorithms can perform the time-to-event analysis.

Survival Analysis Methods

Survival analysis is a well-established technique in statistics used to pre-

dict time to the event of interest during a specific observed time interval.

Survival analysis is widely used in economy18 and healthcare19 for

numerous applications. Prediction of death time after cancer treatment

and prediction of time between the first heart attack and the second attack

are some of the survival analysis examples in the healthcare domain.20–22

In this paper, the event of interest is the time when a patient is discharged

from the hospital.

Survival analysis is a form of regression by which a continuous variable is

to be predicted. However, the main difference between this type of regres-

sion and the conventional regression techniques is that unlike ordinary

regression, the training data for survival analysis are partially observed.

In other words, the exact time of the event is unknown. This type of sample

is called censored. Some of the censorship conditions are depicted in Fig-

ure 4. As can be seen, patient D does not experience the event during the

observation period. A case might leave the study, such as patient A.

Another situation is when the patient’s status cannot be determined due

to lost or incomplete records (patient B). Due to different possible censor-

ship circumstances, standard predictive models are not applicable to this

problem. In this study, it is assumed that the start date is identical to the

symptom onset or hospitalization date. However, the discharge-time infor-

mation is unknown for many samples. For these cases, the last follow-up

date is considered as the censoring time.

Different statistical and machine-learning methods have been developed by

survival analysis researchers to address prediction problems in various fields.

Based on Figure 5, among the statistical practices, KM estimator, CoxPH,

Coxnet, and Accelerated Failure Time are selected for evaluation. Additionally,

several machine-learning approaches including Stagewise GB, Component-
wise GB, and SVMs are used. These techniques are discussed and compared

in the following.

Kaplan-Meier Estimator. As discussed earlier, massive amounts of data can

be censored to generate partial information. In some applications, however, it

is ideal to avoid reducing the sample size. KM estimator, also known as a prod-

uct limit estimator, is a powerful non-parametric method capable of computing

survival. The incidence probabilities of an event are first calculated at a specific

time. These consecutive probabilities are then multiplied to achieve the final

survival estimation.23 Despite its benefits, the KM estimator has some limita-

tions. For instance, KM is not an appropriate estimator to account for the ef-

fects of a variety of covariates on survival simultaneously. Also, unlike regular

healthcare problems whereby the event of interest is typically the occurrence

of a failure such as the next heart attack or kidney graft loss, in this work the

event of interest is the time the patient takes to recover. So a modified version

of the KM estimator, known as the reverse of KM estimator, is implemented.

Cox Proportional Hazard. Unlike the KM estimator that cannot handle multi-

ple features at the same time, CoxPH enables the simultaneous processing of

numerous features. CoxPH is a widely used linear and semi-parametric tech-

nique that estimates the effect of each survival variable on the entire cohort.

According to Wang et al.,24 CoxPH relies on assumptions and restrictions

that limit its applications. The features are assumed to have an exponential

impact on the outcome. Also, it is assumed that different individuals have iden-

tical hazard functions. More importantly, since the baseline hazard function

h0(t) remains unspecified, it is not a well-suited model in some real-world

problems.

Coxnet. One of the shortcomings of CoxPH is its vulnerability to overfitting in

high-dimensional, massive-sample-size datasets. Due to this issue, not only

the training time can be considerably high, but also CoxPH is likely to memo-

rize the training samples. Also, CoxPH is not effective when there is multicolli-

nearity in the dataset. To address these shortcomings, a regularized version of

CoxPH called the Coxnet model is evaluated.25 The modification is achieved

by adding different penalties.

d L1 regularization, which adds an L1 penalty. L1 can lead to sparse

models in which the model has a few coefficients. Lasso regression

uses L1 regularization.

d L2 regularization, which adds an L2 penalty. Despite the previous one, it

does not yield a sparse model. Ridge regression uses this method.

d Elastic net: a combination of the two previous models yields to the

elastic net model. A classic regressor model with an elastic net

penalty is called the Coxnet model. Since sufficient clinical data are

not yet available for COVID-19 and a limited number of covariates are
Patterns 1, 100074, August 14, 2020 5
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used, it is not necessary to apply dimensionality reductionmethods.26,27

Therefore, it is expected for CoxPH and Coxnet to yield similar results in

this study.

Accelerated Failure Time Model. Although previous models are robust

regression techniques, other types of regression models are available that

might yield useful information for interpretation purposes. The Accelerated

Failure Time model (IPCRidge) lies in the category of parametric and linear

models with a different form of regression. In this model, samples are weighted

by the inverse probability of censoring, and the censoring status remains inde-

pendent of covariates.28

Stagewise Gradient Boosting. Stagewise GB is an ensemble, boosting ma-

chine-learning technique. This algorithm integrates weak learners into a

weighted sum where it builds a powerful and specialized learner.24 In fact,

base learners do not perform independently, and each successive tree gives ex-

tra weight to the points that were incorrectly predicted by earlier predictions.

Each tree is trained on an ever-more specialized subsample of the training

set.29 This algorithm uses an ensemble of learners to determine how the hazard

function changes in regard to the features and has been proved to be effective

for real clinical datasets in many cases.30 Therefore, extending this algorithm to

handle censored data-point and survival analysis is of great interest and accord-

ing to previous research, Coxmodel andDTs have been used to develop survival

GB.24,30 Despite the power of this algorithm, since it uses numerous learners,

time complexity for tuning the hyperparameters specifically in high-dimensional

settings can be quite high. Moreover, in the contexts where the number of sam-

ples is not enough, this algorithm can potentially have other shortcomings, such

as low prediction accuracy on the test set.

Componentwise Gradient Boosting. Unlike Stagewise GB, the Component-

wise GB algorithm aims at estimating the coefficients either by updating one

component of b or by fitting the gradient with the help of all covariates in

each step. The algorithm calculates the gradient of the log-partial likelihood

and then fits this gradient to the input matrix by a so-called base procedure

such as least-squares estimation.31 Like the previous boosting method, the

training time can be considerable while dealing with massive datasets.

Support Vector Machine

The SVM is a standard supervised machine-learning algorithm that is

widely used for regression and classification and has wide applications in

healthcare problems such as predicting organ (e.g., liver) disease.32 Prior

research has extended the properties of this algorithm to enable handling

censored data in survival analysis.33–35 By applying an updated asym-

metric form of the penalty function, survival SVM can take advantage of

regular SVM’s abilities in handling high-dimensional data while adapting

them for censored and uncensored samples. By using a kernel function

and transforming the data into higher dimensions, the margins between

different classes could be maximized in the case of non-linearity. Both

linear and kernel SVMs are used to handle survival analysis problems. In

this work, more efficient versions of SVM called Fast SVM and Fast Kernel

SVM are implemented.35

ACKNOWLEDGMENTS

The authors wish to thankMedical Product Outsourcing. Figure 3 has been de-

signed using this source.

AUTHOR CONTRIBUTIONS

All authors conceived the study and reviewed the manuscript. M.N. ran the

models and supervised the group activity. M.N., J.A., and N.N. were involved

in validating the outcomes, data visualization, writing the original draft, review,

and editing.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: April 12, 2020

Revised: June 23, 2020

Accepted: July 1, 2020

Published: July 4, 2020
6 Patterns 1, 100074, August 14, 2020
REFERENCES

1. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K.S.,

Lau, E.H., Wong, J.Y., and Xing, X. (2020). Early transmission dynamics in

Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med.

382, 1199–1207.

2. Mahase, E. (2020). Coronavirus: Covid-19 has killed more people than

SARS and MERS combined, despite lower case fatality rate. BMJ

368, m641.

3. World Health Organization (2020). Coronavirus Disease 2019 (COVID-19):

Situation Report, 61. https://apps.who.int/iris/handle/10665/331605?

show=full.

4. Wu, Z., and McGoogan, J.M. (2020). Characteristics of and important les-

sons from the coronavirus disease 2019 (COVID-19) outbreak in China:

summary of a report of 72 314 cases from the Chinese Center for

Disease Control and Prevention. JAMA 323, 1239–1242.

5. Dowd, J.B., Andriano, L., Brazel, D.M., Rotondi, V., Block, P., Ding, X., Liu,

Y., and Mills, M.C. (2020). Demographic science aids in understanding the

spread and fatality rates of COVID-19. Proc. Natl. Acad. Sci. U S A 117,

9696–9698.

6. Livingston, E., and Bucher, K. (2020). Coronavirus disease 2019 (COVID-

19) in Italy. JAMA 323, 1335.

7. Ji, J.S., Liu, Y., Liu, R., Zha, Y., Chang, X., Zhang, L., Zhang, Y., Zeng, J.,

Dong, T., Xu, X., and Zhou, L. (2020). Survival analysis of hospital length of

stay of novel coronavirus (COVID-19) pneumonia patients in Sichuan,

China. medRxiv. https://doi.org/10.1101/2020.04.07.20057299.

8. Li, X., Xu, S., Yu, M., Wang, K., Tao, Y., Zhou, Y., Shi, J., Zhou, M., Wu, B.,

Yang, Z., et al. (2020). Risk factors for severity and mortality in adult

COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 146, 110–118.

9. Du, R.H., Liang, L.R., Yang, C.Q., Wang, W., Cao, T.Z., Li, M., Guo, G.Y.,

Du, J., Zheng, C.L., Zhu, Q., and Hu, M. (2020). Predictors of mortality for

patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospec-

tive cohort study. Eur. Respir. J. 55, 2000524.

10. Uno, H., Cai, T., Pencina, M.J., D’Agostino, R.B., and Wei, L.J. (2011). On

the C-statistics for evaluating overall adequacy of risk prediction proced-

ures with censored survival data. Stat. Med. 30, 1105–1117.

11. Fotso, S. (2018). Deep neural networks for survival analysis based on a

multi-task framework. arXiv, 1801.05512.

12. Farhangi, A., Bian, J., Wang, J., and Guo, Z. (2019). Work-in-progress: a

deep learning strategy for I/O scheduling in storage systems. In 2019

IEEE Real-Time Systems Symposium (RTSS) (IEEE), pp. 568–571.

13. Fotso, S. (2019). PySurvival: open source package for survival analysis

modeling. https://square.github.io/pysurvival/.

14. Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J.,

Hesketh, R.L., Yang, L., and Zheng, C. (2020). Time course of lung

changes on chest CT during recovery from 2019 novel coronavirus

(COVID-19) pneumonia. Radiology 295, 715–721.

15. Ruan, Q., Yang, K., Wang, W., Jiang, L., and Song, J. (2020). Clinical pre-

dictors of mortality due to COVID-19 based on an analysis of data of 150

patients from Wuhan, China. Intensive Care Med. 46, 846–848.

16. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song,

B., Gu, X., and Guan, L. (2020). Clinical course and risk factors for mortality

of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort

study. Lancet 395, 1054–1062.

17. Xu, B., Gutierrez, B., Mekaru, S., Sewalk, K., Goodwin, L., Loskill, A.,

Cohn, E.L., Hswen, Y., Hill, S.C., Cobo, M.M., and Zarebski, A.E. (2020).

Epidemiological data from the COVID-19 outbreak, real-time case infor-

mation. Sci. Data 7, 1–6.

18. Ji, W., Wang, X., and Zhang, D. (2016). A probabilistic multi-touch attribu-

tion model for online advertising. In Proceedings of the 25th ACM

International on Conference on Information and Knowledge

Management, pp. 1373–1382.

19. Reddy, C.K., and Li, Y. (2015). A review of clinical prediction models.

Healthc. Data Analytics 36, 343–378.

http://refhub.elsevier.com/S2666-3899(20)30094-5/sref1
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref1
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref1
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref1
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref2
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref2
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref2
https://apps.who.int/iris/handle/10665/331605?show=full
https://apps.who.int/iris/handle/10665/331605?show=full
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref4
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref4
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref4
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref4
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref5
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref5
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref5
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref5
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref6
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref6
https://doi.org/10.1101/2020.04.07.20057299
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref8
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref8
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref8
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref9
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref9
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref9
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref9
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref10
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref10
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref10
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref10
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref11
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref11
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref12
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref12
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref12
https://square.github.io/pysurvival/
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref14
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref14
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref14
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref14
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref15
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref15
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref15
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref16
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref16
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref16
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref16
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref17
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref17
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref17
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref17
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref19
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref19
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref19
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref19
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref20
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref20


ll
OPEN ACCESSArticle
20. Pölsterl, S., Gupta, P., Wang, L., Conjeti, S., Katouzian, A., and Navab, N.

(2016). Heterogeneous ensembles for predicting survival of metastatic,

castrate-resistant prostate cancer patients. F1000Res. 5, 2676.

21. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., and

Fotiadis, D.I. (2015). Machine learning applications in cancer prognosis

and prediction. Comput. Struct. Biotechnol. J. 13, 8–17.

22. Abbasi-Kesbi, R., Memarzadeh-Tehran, H., and Deen, M.J. (2017).

Technique to estimate human reaction time based on visual perception.

Healthc. Technol. Lett. 4, 73–77.

23. Goel, M.K., Khanna, P., and Kishore, J. (2010). Understanding survival

analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res. 1, 274.

24. Wang, P., Li, Y., and Reddy, C.K. (2019). Machine learning for survival

analysis: a survey. ACM Comput. Surv. (CSUR) 51, https://doi.org/10.

1145/3214306.

25. Mittal, S., Madigan, D., Burd, R.S., and Suchard, M.A. (2014). High-dimen-

sional, massive sample-size Cox proportional hazards regression for sur-

vival analysis. Biostatistics 15, 207–221.

26. Lee, J.A., and Verleysen, M. (2007). Nonlinear Dimensionality Reduction

(Springer Science & Business Media).

27. Esmaeilbeig, Z., and Ghaemmaghami, S. (2018). Compressed video

watermarking for authentication and reconstruction of the audio part. In

2018 15th International ISC (Iranian Society of Cryptology) Conference

on Information Security and Cryptology (ISCISC) (IEEE). https://doi.org/

10.1109/ISCISC.2018.8546897.
28. Kalbfleisch, J.D., and Prentice, R.L. (2011). The statistical analysis of fail-

ure time data. In Wiley Series in Probability and Statistics, Second Edition,

Vol. 360 (John Wiley & Sons).

29. Schapire, R.E., Freund, Y., Bartlett, P., and Lee, W.S. (1998). Boosting the

margin: a new explanation for the effectiveness of voting methods. Ann.

Stat. 26, 1651–1686.

30. Chen, Y., Jia, Z., Mercola, D., and Xie, X. (2013). A gradient boosting algo-

rithm for survival analysis via direct optimization of concordance index.

Comput. Math. Methods Med. 2013, 873595.

31. B€uhlmann, P., and Yu, B. (2003). Boosting with the L 2 loss: regression and

classification. J. Am. Stat. Assoc. 98, 324–339.

32. Fathi, M., Nemati, M., Mohammadi, S.M., and Abbasi-Kesbi, R. (2020). A

machine learning approach based on SVM for classification of liver dis-

eases. Biomed. Eng. Appl. Basis Commun. 32, https://doi.org/10.4015/

S1016237220500180.

33. Khan, F.M., and Zubek, V.B. (2008). December. Support vector regression

for censored data (SVRc): a novel tool for survival analysis. In 2008 Eighth

IEEE International Conference on Data Mining (IEEE), pp. 863–868.

34. Pölsterl, S., Navab, N., and Katouzian, A. (2016). An efficient training algo-

rithm for kernel survival support vector machines. arXiv, 1611.07054.

35. Pölsterl, S., Navab, N., and Katouzian, A. (2015). September. Fast training

of support vector machines for survival analysis. In Joint European

Conference on Machine Learning and Knowledge Discovery in

Databases, P. Cellier and K. Driessens, eds. (Springer), pp. 243–259.
Patterns 1, 100074, August 14, 2020 7

http://refhub.elsevier.com/S2666-3899(20)30094-5/sref21
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref21
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref21
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref22
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref22
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref22
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref23
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref23
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref23
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref24
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref24
https://doi.org/10.1145/3214306
https://doi.org/10.1145/3214306
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref26
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref26
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref26
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref27
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref27
https://doi.org/10.1109/ISCISC.2018.8546897
https://doi.org/10.1109/ISCISC.2018.8546897
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref29
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref29
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref29
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref30
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref30
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref30
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref31
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref31
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref31
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref32
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref32
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref32
https://doi.org/10.4015/S1016237220500180
https://doi.org/10.4015/S1016237220500180
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref34
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref34
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref34
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref35
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref35
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref36
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref36
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref36
http://refhub.elsevier.com/S2666-3899(20)30094-5/sref36

	Machine-Learning Approaches in COVID-19 Survival Analysis and Discharge-Time Likelihood Prediction Using Clinical Data
	Introduction
	Results and Discussion
	Accuracy of Discharge-Time Prediction
	Hospital Discharge Rate
	Conclusion

	Experimental Procedures
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Method Details
	Data Description and Preparation
	Survival Analysis Methods
	Kaplan-Meier Estimator
	Cox Proportional Hazard
	Coxnet
	Accelerated Failure Time Model
	Stagewise Gradient Boosting
	Componentwise Gradient Boosting

	Support Vector Machine


	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


