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Introduction

The evolutionary history between humans and their microbiota shapes a symbiotic relation-

ship that is integral for host health. Culture-based approaches, animal studies, and advanced

sequencing methodologies have unveiled the critical and unique influence of specific symbi-

otic microbes on host physiology. Even within a select species, strains exhibit significant vari-

ability in deriving host outcomes. The significance of strain diversity in the microbiome was

well recognized more than 2 decades ago, as Abigail Salyers curated a collection of more than

200 isolates from the genus Bacteroides [1]. More recently, metagenomic sequencing and

developments in computational approaches have enabled high-resolution analyses of bacterial

strain diversity within a population [2–9]. Aided by these technologies, we now have the ability

to elaborate how strain variability within a particular species yields functional diversity. In par-

ticular, the sequencing of new isolates of Bacteroides fragilis has resulted in an ever-expanding

pangenome, revealing substantial genetic diversity within the species (Fig 1A) [9]. This genetic

diversity is generated through genomic rearrangements, including inversions, duplications,

and insertions via horizontal gene transfer (HGT) [1,10–12]. These processes constitute funda-

mental evolutionary mechanisms that promote genetic divergence and the emergence of novel

bacterial functions. We are just beginning to understand how these strain-specific functions

give rise to variable, and potentially individual-specific, host outcomes. Here, we use B. fragilis
to discuss how the study of strain diversity in microbiome research can illuminate functional

contributions of the microbiota in health and disease and uncover mechanisms of adaptation

in the host gut.

Studying B. fragilis strains to identify mechanisms of adaptation in

the gut

Colonization with B. fragilis can begin in infancy and persist through adulthood. Studies on

bacterial transmission suggest that B. fragilis is transferred vertically from mother to infant

during vaginal delivery, or within the first year of life for infants born via cesarean section

[5,13,14]. However, research on vertical transmission primarily utilizes species-level taxo-

nomic assignment, whereas strain-level resolution is necessary to definitively determine

modes of transmission [15]. Strain-level resolution can also highlight genes that contribute to

adaptation within the gut. First described in Bacteroides thetaiotaomicron, SusC and SusD are

involved in binding and transporting polysaccharides across the outer membrane [16,17].

Genetic analysis reveals recurrent mutations in susC and susD orthologs among B. fragilis
strains isolated at different time points from the same individual [18]. This recurring mutation
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pattern was also detected in longitudinally sampled B. fragilis strains from other individuals.

Variations in these genes may reflect adaptation to diet- or host-derived glycans (Fig 1B) [16].

Notably, mutations in the Sus homologs appear to be unique to each individual, suggesting

microbial adaptation to host-specific factors [18]. As SusC and SusD are expressed on the cell

surface, mutations in the genes encoding these proteins may allow for antigenic variation

[16,17]. Strain variation in antigenicity may reflect a strategy that enables adaptation to and

evasion of host immune processes, including immunoglobulin (Ig) recognition. B. fragilis
strains can exhibit differences in the degree of IgA binding [19], which has been shown to

influence mucosal colonization [20]. Other common targets of mutation included genes

involved in the synthesis of the cell envelope. One of these genes, ungD2, is necessary for the

synthesis of 7 of the 8 capsular polysaccharides located on the cell surface of B. fragilis [21].

This includes capsular polysaccharide A (PSA), which is well known for its immunomodula-

tory capabilities [22]. Mutations in genes associated with cell envelope biosynthesis, such as

those described here, illustrate plausible adaptive mechanisms that allow bacteria to modulate

and evade the host immune system. Analysis of strains that display divergence in glycan utili-

zation and immune induction may unveil genetic factors that are critical for robust coloniza-

tion within the host.

Fig 1. Host interactions with Bacteroides fragilis are strain-dependent. (A) Strains of B. fragilis vary across

individuals. (B) B. fragilis relies on Sus-like systems to break down starch. Genetic variation in sus homologs may

result from differences in host- and diet-derived glycans between individuals. (C) Increased exposure to antibiotics,

such as erythromycin, can select for strains that have acquired resistance genes through horizontal gene transfer.

Created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1009056.g001
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Strain-level analyses can also reveal host selective pressures and genes that are vital for

adaptation at a population level. For example, strain-level metagenomic analysis of B. fragilis
genomes identified a mutant allele of a gene that encodes a predicted periplasmic protein. The

missense mutation was prevalent in a Western cohort but absent in a Chinese cohort [18].

This discrepancy implies that B. fragilis strains face distinct host selective pressures dependent

on diet, lifestyle, and host genetics. Future studies can determine the potential functional

impact of the observed mutation [18], which may explain the relationship between mecha-

nisms of adaptation and selective pressures. Selective forces can also arise from differences in

antibiotic usage between populations. Longitudinal and geographical analyses of B. fragilis iso-

lates reveal disparities in antibiotic resistance among strains. Erythromycin and tetracycline

resistance genes were more frequent in strains isolated after 1980 compared to those isolated

prior to 1970, reflecting an increase in antibiotic consumption within the population (Fig 1C)

[1]. Geographically, imipenem resistance was more prevalent among B. fragilis isolates from

Japan [23], where imipenem was prescribed at higher rates, compared to strains from Europe

isolated at approximately the same time period [24]. Experimental work found that the multi-

drug resistant strain B. fragilis HMW615 was able to transfer antibiotic resistance genes to B.

fragilis 638R, revealing a possible mechanism by which B. fragilis adapts to the dynamic gut

environment [12]. By studying strains from diverse populations, we can begin to uncover

mechanisms of adaptation and track evolutionary trends that can inform research and clinical

decisions.

Studying B. fragilis strains to elucidate their functional

contributions to health and disease

B. fragilis can play a dichotomous role in its interactions with the host. The non-toxigenic B.

fragilis (NTBF) type strain NCTC 9343 directs a tolerogenic immune response, suppressing

intestinal inflammation in mice [22,25]. However, enterotoxigenic B. fragilis (ETBF) strains

drive inflammation of the colon and are associated with colorectal cancer [26–29]. A distin-

guishing feature of ETBF is B. fragilis toxin (BFT), a metalloprotease that causes barrier disrup-

tion and intestinal inflammation [28,30]. BFT is encoded within a genome segment, the B.

fragilis pathogenicity island (BfPAI), that is flanked by genes encoding mobilization proteins

(CTn86, a conjugative transposon) [31]. These mobile elements suggest that the BfPAI is trans-

missible, which supports evidence that the genome segment was independently acquired mul-

tiple times, akin to strategies of acquiring antibiotic resistance genes [32]. Independent

acquisition of BfPAI by NTBF strains may explain the finding that ETBF and NTBF strains do

not cluster as 2 monophyletic groups. Further, sequence analysis revealed NTBF 638R is more

closely related to an ETBF strain than another NTBF strain, NCTC 9343 [29]. The functional

capabilities of B. fragilis strains likely reflect a continuum instead of a dichotomy.

Although ETBF is associated with disease, up to 30% of individuals who harbor ETBF do so

asymptomatically [28]. This discrepancy suggests that ETBF strains may vary in pathogenicity,

although host susceptibility may also play a role [33]. Differences in pathogenic potential may

be attributed to variation in BFT production across ETBF strains [34]. Screening a diverse pop-

ulation of ETBF isolates at the genetic and functional level may point to genes and mechanisms

that are responsible for this variable BFT production. Moreover, ETBF strains can harbor dif-

ferent bft isotypes (bft-1, bft-2, bft-3) [28]. The presence and copy number of a given bft isotype

may contribute to the seemingly variable pathogenicity among ETBF strains [34]. For example,

BFT-2 is associated with colorectal cancer and exhibits greater carcinogenic potential than

BFT-1 [35,36]. In HT-29 cells, strains with bft-1 and bft-2 exhibit slightly higher cytotoxicity

compared to strains containing bft-3 [34]. Because differences in cytotoxicity are subtle,
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comparing the functional activities of all 3 BFT isoforms in a model system that is skewed

toward inflammation may inform whether a given isotype exacerbates disease. Currently, lim-

ited data exists to establish a causal relationship between bft variants and chronic inflammatory

diseases.

Adding even more complexity, BFT may not be the only virulence factor in ETBF. Within

the BfPAI, mpII encodes for another metalloprotease with potential pathogenic properties

[32]. In a germ-free mouse model, both a wild-type NTBF strain that overexpressed BFT and

an ETBF strain were able to induce colitis. Yet, the BFT-expressing NTBF strain did not induce

inflammation to the same extent as the ETBF strain [27]. Variation in biofilm formation,

which does not require bft, could contribute to disparities in pathogenicity [29]. Compared to

NTBF strains, ETBF strains demonstrate increased biofilm activity, which can confer resis-

tance to antimicrobials and strengthen adherence to host epithelial cells [29]. The contribu-

tions of ETBF to disease are multifaceted. Strain-level resolution can identify why ETBF

induces inflammation in some individuals but not in others, or the extent to which BFT iso-

forms and other pathogenic determinants contribute to the progression of diseases, such as

colorectal cancer.

Despite its associations with disease, B. fragilis also promotes immune tolerance in the gut.

The type strain B. fragilis NCTC 9343 expresses PSA, which drives regulatory T cells to pro-

duce interleukin-10, an anti-inflammatory cytokine responsible for maintaining immune tol-

erance [22,25]. It remains unclear if all or most B. fragilis strains promote this PSA-dependent

immune response, but varied host responses may arise from variation in the expression and

structure of PSA among strains. In a study of 50 diverse B. fragilis strains, the regions flanking

the PSA locus were found to be conserved [37]. However, the central portion of the PSA locus

was not conserved among all 50 strains, revealing heterogeneity among B. fragilis PSA. The

commonly used lab strain B. fragilis 638R exhibited a distinct PCR product within the PSA

locus [37], raising the possibility that 638R is not phenotypically representative of B. fragilis in

the human population. Of note, recent genetic comparisons reveal that the PSA locus of

NCTC 9343 is not conserved in B. fragilis HMW615 or B. fragilis 638R [12].

The extensive variation in the B. fragilis PSA locus suggests variability in PSA structure [38].

Consistent with the distinct PSA locus described above, the PSA structure derived from 638R

is more complex, with 5 monosaccharides instead of the 4 in the PSA of NCTC 9343 [38,39].

Outside of the intestinal environment, where B. fragilis is associated with inflammation, the

PSA of B. fragilis NCTC 9343 was a more potent inducer of peritoneal abscess formation in a

rat model compared to the PSA of B. fragilis 638R [40]. Within the gastrointestinal tract, B. fra-
gilis is capable of suppressing inflammation. Therefore, PSA variation among strains may

influence the induction of a tolerogenic response required for maintaining homeostasis

[11,12,37]. The PSA-driven response among B. fragilis strains warrants further study, given

that the relationship between the host immune system and NTBF is strain-dependent.

Common B. fragilis lab strains, including NCTC 9343 and 638R [11], were originally iso-

lated from infections, yet we rely on them to study B. fragilis in the context of immune toler-

ance in the gut [22,25]. Clinical isolates may induce a distinct immune response compared to

fecal isolates [41]. For example, in mice with LPS-induced inflammation, B. fragilis NCTC9343

did not significantly affect the production of pro-inflammatory cytokine tumor necrosis factor

alpha (TNF-α), whereas a B. fragilis strain isolated from a healthy donor, B. fragilis HCK-B3,

down-regulated TNF-α [41]. Further, B. fragilis strains can exhibit varied sensitivity to

immune mediators in the gut. Fecal isolates are more susceptible to the antimicrobial peptide,

human β-defensin-3, compared to blood and extraintestinal isolates [42]. By evading host anti-

microbials, which are critical factors of immune homeostasis, certain B. fragilis strains may be

more likely to translocate out of intestinal tissue and cause disease. The intestinal environment,

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009056 December 10, 2020 4 / 7

https://doi.org/10.1371/journal.ppat.1009056


in either healthy or pathologic conditions, shapes the adaptive strategies of bacterial strains.

Over the course of our life span, the changing gut environment (e.g., diet, medication, and

immune status) presents opportunities for new strains to evolve, driving genomic and func-

tional diversity.

Conclusions and future perspectives

Emerging technologies have illuminated the rich diversity of bacterial strains in the human

microbiome. B. fragilis serves as an example to illustrate the range of phenotypic heterogeneity

within a commensal species. By studying bacterial strains across different populations, we can

gain insight into genes and functions that are under selection in the human microbiota. For

instance, how might chronic inflammatory conditions drive strain selection and divergence?

We predict that prolonged inflammation in a sick individual may give rise to B. fragilis strains

that are distinct from those found in a healthy individual, but further work is needed to vali-

date this notion. On the other hand, how might strain diversity influence disease outcomes?

Deeper examination of bacterial strains associated with disease may uncover pathological phe-

notypes driven by select strains. For example, genomic analysis revealed that specific B. fragilis
strains were associated with type 2 diabetes [4]; however, functional studies are required to

determine if these strains are the cause or effect of disease. The need for strain-level analysis is

not limited to B. fragilis. Strains of gut commensal Eggerthella lenta show differences in the

ability to inactivate the cardiac drug digoxin, which can affect clinical outcomes [43]. More-

over, Prevotella copri strains from Western populations and non-Western populations show

significant genetic differences [33]. The unprecedented characterization of commensal strain

diversity presents us with a compelling opportunity to ask fundamental questions about the

relationship between us and our microbiota. This perspective serves to highlight the functional

implications of bacterial strain variability and to illustrate how strain-level research can draw

causal connections between the microbiome and disease.
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