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Abstract. Air pollution is a risk factor for cardiovascular and respiratory morbidity and mortality. A growing literature
also links exposure to diverse air pollutants (e.g., nanoparticles, particulate matter, ozone, traffic-related air pollution) with
brain health, including increased incidence of neurological and psychiatric disorders such as cognitive decline, dementia
(including Alzheimer’s disease), anxiety, depression, and suicide. A critical gap in our understanding of adverse impacts of
pollutants on the central nervous system (CNS) is the early initiating events triggered by pollutant inhalation that contribute
to disease progression. Recent experimental evidence has shown that particulate matter and ozone, two common pollutants
with differing characteristics and reactivity, can activate the hypothalamic-pituitary-adrenal (HPA) axis and release glucocor-
ticoid stress hormones (cortisol in humans, corticosterone in rodents) as part of a neuroendocrine stress response. The brain
is highly sensitive to stress: stress hormones affect cognition and mental health, and chronic stress can produce profound
biochemical and structural changes in the brain. Chronic activation and/or dysfunction of the HPA axis also increases the
burden on physiological stress response systems, conceptualized as allostatic load, and is a common pathway implicated in
many diseases. The present paper provides an overview of how systemic stress-dependent biological responses common to
particulate matter and ozone may provide insight into early CNS effects of pollutants, including links with oxidative, inflam-
matory, and metabolic processes. Evidence of pollutant effect modification by non-chemical stressors (e.g., socioeconomic
position, psychosocial, noise), age (prenatal to elderly), and sex will also be reviewed in the context of susceptibility across
the lifespan.
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INTRODUCTION

Studies conducted around the world have consis-
tently shown that variation in air pollution levels
is associated with cardiovascular and respiratory
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morbidity and mortality [1, 2]. Recently, health con-
ditions associated with exposure to common air
pollutants have broadened to include impacts on the
brain such as anxiety, depression, cognitive deficits,
and dementia. The societal implications are sig-
nificant: neurological and mental health disorders
globally represent the largest contributor to years
lived with disability, and with an aging population the
proportion of affected individuals is growing [3, 4].
Given the ubiquitous exposure of the population to
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air pollution, and the prevalence of psychiatric and
neurological diseases, even small increases in relative
risk translate to a substantial public health burden.

Despite compelling evidence that the brain is a
target of air pollutants, and that inflammation and
oxidative stress are common features of pollutant-
induced disease processes, mechanisms linking
pollutant inhalation to effects in the brain remain
poorly understood [5–7]. In particular, we lack insight
into the early initiating events triggered by expo-
sure to air pollutants that lead to disease processes in
the brain. Elucidating mechanisms that directly link
exposure to air pollutants with effects in the brain is
a critical step toward addressing several key knowl-
edge gaps. These include whether common or distinct
processes underlie the relationship between exposure
to air pollutants and diverse central nervous system
(CNS) disorders (e.g., cognitive decline, dementia,
depression), each of which has both common and dis-
tinct features and etiology. Understanding whether or
not biological effects are specific to individual pol-
lutants has implications for risk management and the
targeting of key actors for regulatory action. Further-
more, with increased understanding of underlying
mechanisms comes knowledge needed to identify
those factors that contribute to susceptibility.

Recent work has shown that among the early
biological responses triggered by exposure to air pol-
lutants is a stress response that includes activation
of the hypothalamic-pituitary-adrenal (HPA) axis and
release of stress hormones. Dysregulation of the HPA
axis is a feature of many disease processes common to
both chronic stress and long-term exposure to air pol-
lution, including cardiovascular disease, metabolic
diseases such as type 2 diabetes, cognitive disorders,
and depression [8]. Chronic stress and dysregulation
of stress response systems have been proposed to
contribute to both neurodegenerative diseases such
as Alzheimer’s disease and to psychiatric disorders
such as depression [9], making this mechanism an
attractive target for investigation of mediators under-
lying CNS effects of air pollutants. The present paper
examines how HPA axis dysfunction may contribute
to CNS impacts associated with exposure to air pol-
lutants. Effects of two common pollutants, ambient
particulate matter and ozone, will be examined in
relation to their differing physicochemical properties
and mode of action. Recent evidence of stress axis
activation by these pollutants will be summarized,
and both the direct effects of stress axis activation on
the CNS as well as indirect (systemic) consequences
relevant to brain health will be reviewed. The poten-

tial contributions to brain disorders of converging
biological pathways and their impact on cumula-
tive physiological dysregulation, or allostatic load,
will be discussed. Finally, the relevance of the stress
response system to susceptibility will be examined
by reviewing recent evidence of sex-dependent effect
modification involving prior or co-exposure to non-
chemical stressors across the life course.

PARTICULATE MATTER AND OZONE:
DISTINCT PROPERTIES, OVERLAPPING
HEALTH IMPACTS

Particulate matter (e.g., PM2.5 and PM10, parti-
cles with an aerodynamic diameter less than 2.5 and
10 �m, respectively) and ozone are currently consid-
ered to be the most important criteria pollutants with
respect to morbidity and mortality. The Global Bur-
den of Disease project attributed 4.2 million deaths
and 103 million disability-adjusted life-years (essen-
tially a measure of years of healthy living lost)
to ambient particulate matter, with an additional
254,000 deaths and 4.1 million disability-adjusted
life-years attributed to ozone [2]. As global mortality
estimates have traditionally considered five specific
causes of death (ischemic heart disease, lower res-
piratory infections, chronic obstructive pulmonary
disease, lung cancer, and cerebrovascular disease),
evidence of associations between air pollutants and
reproductive (e.g., low birth weight), metabolic (e.g.,
diabetes), and neurological/mental health disorders
suggests that the societal impact of air pollutants may
actually be greater than currently appreciated. Indeed,
recent work incorporating data from cohort studies
spanning much of the range of global particulate lev-
els yielded estimates of excess non-accidental deaths
attributable to exposure to particulate matter that were
significantly higher than previously recognized [10].

Air pollution is a complex mix of particles and
gases that varies in relation to local and regional
source contributions and atmospheric conditions.
Particulate matter is itself a complex mixture that
includes a number of toxic constituents such as
transition metals, organics, sulfur, and black car-
bon derived from anthropogenic emissions as well
as crustal sources. In vitro studies using cultured lung
cell models have shown that particles compared on an
equal mass basis can vary significantly in their cyto-
toxic and inflammatory potential in relation to spatial
and temporal variations in contributions from traffic,
industrial, and other urban sources [11–13]. Although
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challenging to study at the population level, there is
evidence that such differences in composition con-
tribute to spatial variation in health impacts [14, 15].
However, while characteristics such as surface area,
transition metals, and most recently oxidative poten-
tial have, among others, been identified as potential
drivers for health effects of particulate matter [16], to
date, mass concentration of a given particle size frac-
tion continues to be the key metric used for regulatory
action.

Even less is known about drivers of CNS effects.
Because of their size and properties, considerable
experimental work has focused on potential translo-
cation of nanoparticles to the systemic circulation
and brain, and on pathological effects produced
in the brain following chronic exposure to parti-
cles, resulting in important findings supporting the
plausibility of pollutant effects on brain health [7,
17–19]. Depending on size and chemical composi-
tion, particulate matter or soluble constituents may
translocate from the lungs to the systemic circula-
tion, or migrate via olfactory transport, and directly
interact with extrapulmonary cells and tissues includ-
ing the brain [18, 20]. However, pollutants need
not physically reach the brain, nor must there be
chronic exposure, to provoke effects. A number of
experimental studies (e.g., [21–24]) have identified
structural, functional, biochemical, and transcrip-
tional alterations in the brain following both acute and
repeated exposure to the highly-reactive gas ozone.
Because of its reactivity, ozone is consumed within
the lungs through reactions with lipids, proteins, and
antioxidants present in the airway surface lining,
and extrapulmonary ozone toxicity is thought to be
mediated by secondary reactive products and other
biological mediators released into the systemic cir-
culation [25, 26]. Particulate matter, too, may impact
the brain through indirect processes, such as through
effects secondary to peripheral oxidative stress and
inflammation, or to stimulation of pulmonary neu-
ronal afferents, as has been proposed to explain
cardiovascular impacts [1, 7].

Despite their differing properties and potential
routes of exposure, both particulate matter and
ozone have been associated with a variety of CNS
impacts. These include impaired cognitive perfor-
mance [27–29], dementia [30, 31], anxiety and
depression [32–35], and suicide [36–38]. It should
be noted that there is considerable variability in
the epidemiologic literature; a more comprehensive
overview of associations between particulate matter
or ozone and neurological/mental health outcomes

is provided in several recent reviews [5, 6, 20, 39,
40]. In experimental models, repeated exposure to
air pollutants including ambient particulate matter
and ozone has been shown to increase oxidative
stress and cytokine production in the brain, with
evidence also of microglial activation and impacts
on neurotransmitters, neuronal morphology, mark-
ers of neurodegenerative disease, altered cognition,
and depressive-like behaviors (e.g., [21, 24, 41–43]).
Collectively, epidemiological and toxicological stud-
ies have found that both particulate and gaseous
pollutants, despite distinct physicochemical charac-
teristics and biological reactivity, can impact brain
health. Notwithstanding advances in our understand-
ing that exposure to ambient pollutants can adversely
impact the CNS, a critical knowledge gap remains
the initiating mechanism(s) through which exposure
to pollutants leads to effects in the brain.

INITIAL EFFECTS OF PARTICULATE
MATTER AND OZONE: EVIDENCE OF A
COMMON MEDIATOR

The physicochemical differences between partic-
ulate matter and ozone provide a useful contrast to
investigate mechanisms underlying extrapulmonary
effects of air pollutants. Unlike effects of ambient
particles, which could be due to direct effects of the
nanosized fraction or soluble constituents on target
tissues, or to secondary effects from signaling via
the systemic circulation or nervous inputs, extrapul-
monary effects of ozone are attributable to secondary
mediators. Extrapulmonary effects that are common
to both pollutants could therefore provide evidence
of a common secondary mediator or mediators, while
distinct effects provide insight into pollutant-specific
processes.

To investigate systemic impacts of inhaled pollu-
tants, we exploited this contrast by comparing gene
expression profiles in rats exposed to particulate mat-
ter, ozone, or both pollutants (Fig. 1A) [44]. We
measured the expression of a set of genes represent-
ing a number of biological pathways in the lungs,
heart, liver, kidney, spleen, cerebral hemisphere, and
pituitary gland. We reasoned that examination of
the pattern of response immediately after a single
acute (4 h) exposure would allow assessment of ini-
tial pollutant effects not significantly influenced by
subsequent cellular changes that accompany disease
progression observed in repeated or chronic exposure
models. Effects of exposure to particulate matter or
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Fig. 1. Systemic effects of particulate matter and ozone include activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. A) Gene
expression profiles (fold-change relative to air-exposed controls) were mapped across a variety of tissues in Fischer rats exposed by nose-only
exposure for 4 h to particulate matter (blue), ozone (red), or particulate matter and ozone (green). B) Both particulate matter (EHC) and
ozone increase plasma corticosterone (∗significant particle effect; ∗∗significant ozone effect; ∗∗∗significant time effect). C) Treatment with the
drug metyrapone (50 mg/kg, 150 mg/kg Met) blocked the ozone-induced increase in corticosterone (n = 5/group). Naı̈ve, rats not exposed to
experimental paradigm; Cort, rats administered exogenous corticosterone and exposed to air. D) Administration of corticosterone (10 mg/kg)
reproduced effects of ozone exposure (FC, fold-change). Figures reproduced or adapted from references 44 (A, B) and 54 (C, D).

ozone were observed in every organ, including robust
effects in the cerebral hemisphere and pituitary.
Remarkably, despite contrasting effects in the lungs
(e.g., strong induction of interleukin-6 by ozone, and
of xenobiotic response genes by particles), a subset
of genes that included inflammatory, antioxidant, and
stress-responsive factors exhibited a similar pattern

of response to the pollutants across most organs. The
pronounced response observed in the pituitary, cou-
pled with responses common to all tissues assessed,
led us to hypothesize endocrine involvement. Subse-
quent analyses confirmed that both particulate matter
and ozone activated the HPA axis and provoked the
release of the stress hormones adrenocorticotrophic
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hormone (ACTH) and corticosterone (Fig. 1B)
[44].

THE HPA AXIS: AIR POLLUTANTS AS
STRESSORS

Together with the sympathetic nervous system,
the HPA axis plays a pivotal role in coordinating
the response to stressors. Stressor exposure triggers
hypothalamic production of corticotrophin-releasing
hormone; this signals the pituitary to synthesize
ACTH, which is released into the systemic circu-
lation. Upon reaching the adrenal glands, ACTH
stimulates de novo synthesis of glucocorticoids (pri-
marily cortisol in humans, corticosterone in rodents)
that are in turn released into circulation. Glucocorti-
coids act primarily through specific receptors to exert
profound effects on a variety of processes that include
glucose and lipid metabolism, immune response,
and adipocyte differentiation, as well as interacting
with other endocrine systems [45]. Depending on the
intensity and duration of exposure, glucocorticoids
can both stimulate and inhibit immune responses
[46, 47]. Glucocorticoid production is shut down
by means of a negative feedback mechanism. Acute
activation of the HPA axis is essential for survival,
providing the body with the means to respond to
acute stressors including mobilizing and replenishing
energy reserves and regulating immune responses.
However, chronic activation of the HPA axis pro-
duces various deleterious consequences: both chronic
stress and excess glucocorticoids are associated with
increased risk of cardiovascular disease, metabolic
dysfunction, depression, and reduced cognitive func-
tion [48]. There is a substantial overlap between
stress-related diseases and diseases associated with
exposure to air pollutants [8].

Recent experimental work has demonstrated that
air pollutants can act as stressors and elicit endocrine
stress responses. Exposure of rats to concentrated
ambient particles, with and without ovalbumin-
induced allergic disease, activated stress centers in
the brain and increased circulating levels of corti-
costerone [49]. Short-term exposure of rats to ozone
and particulate matter altered expression of pituitary
endothelin-1 [23], a regulator of pituitary hormone
secretion [50]. Ozone exposure activated stress cen-
ters in the brain of adult rats, with the pattern of
activation suggesting signaling via the vagus nerve
[51]. Repeated exposure of seven-week old female
Wistar rats to ozone (0.12 ppm, 6 h/day for 15 d)

resulted in higher plasma corticosterone that coin-
cided with behavioral changes [52]. Acute exposure
to particulate matter or ozone increased plasma levels
of the stress hormones ACTH and corticosterone and
altered expression across multiple tissues in Fischer
rats, confirming that a single exposure to either par-
ticulate or gaseous pollutants can activate the HPA
axis and produce common (and additive) systemic
effects [44]. Short-term exposure to ozone increased
epinephrine levels in Brown Norway rats [53], con-
sistent with a response of the sympathetic nervous
system as part of the stress response. Blocking the
ozone-induced increase of corticosterone using the
drug metyrapone increased inflammatory signaling
in the lungs and circulation, consistent with immuno-
suppressive action of glucocorticoids, and prevented
effects of ozone on metabolic and inflammatory fac-
tor expression in several organs [54]. Effects of ozone
were reproduced by administration of corticosterone
(Fig. 1C, D), confirming a role for the HPA axis in
mediating and modifying local and systemic effects
of ozone exposure [54]. More recently, evidence of
adrenal stress hormone involvement was further sub-
stantiated in a study that showed that administration
of adrenergic and glucocorticoid receptor antagonists
prior to and concurrent with exposure modified the
pulmonary response to ozone [55]. The relevance
of these observations to humans was confirmed in
a panel study that showed that controlled exposure
to 0.2 ppm ozone increased plasma stress hormone
levels [56]. Furthermore, reduction of indoor particu-
late matter levels using a particle filter was associated
with a drop in cortisol levels in a randomized double-
blind crossover design study [57]. Collectively, these
studies show that exposure to gaseous and particulate
pollutants can elicit neuroendocrine stress responses.

DIRECT EFFECTS OF STRESS AXIS
DYSREGULATION ON THE BRAIN

The demonstration that air pollutants can activate
the HPA stress axis has important implications with
respect to potential direct and indirect effects on the
brain (Fig. 2). Effects of stress and stress hormones on
the brain have been investigated for decades, leading
to insights into impacts of acute and chronic stres-
sors on molecular signaling, neuronal structure, and
brain plasticity [58, 59]. Both acute and chronic stress
produce neurochemical and structural changes in the
brain that have consequences for neurodevelopmen-
tal processes as well as healthy aging [60]. Cortisol
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Fig. 2. Proposed direct and systemic impacts of pollutant-induced stress axis activation on the brain. Both particulate matter and ozone
trigger a stress response, resulting in pituitary release of adrenocorticotrophic hormone (ACTH), which in turn signals the adrenal glands to
increase production of glucocorticoids (GC; primarily cortisol in humans, corticosterone in rodents). Glucocorticoids bind to receptors (GR)
to regulate processes that include glucose and lipid homeostasis, immune/inflammatory function, and responses to other hormones. The
stress hormone release coincides with and contributes to changes in blood mediators (e.g., cytokines, metabolic factors, reactive products)
that have systemic impacts, including effects on the brain, lungs, and peripheral tissues. Chronic activation and dysregulation of the HPA axis
is associated with a variety of adverse effects that include neurotoxicity, sensitization to other insults including oxidative stress, and impaired
control of inflammatory processes. Collectively, these effects interact with individual susceptibility to contribute to disease processes that
manifest systemically and in the brain.

plays a central role in regulating fetal brain develop-
ment, including the regulation of neurotrophic factors
such as serotonin [61]. Stress and elevated glucocorti-
coid levels are implicated in prevalent brain disorders
that include depression and dementia [48, 62–64].
Among older adults, individuals with progressively
higher basal cortisol levels over several years were
found to have greater memory impairment and lower

hippocampal volume than individuals with lower
cortisol levels [65]. Interindividual differences in
HPA axis reactivity explain the relationship between
serotonin transporter gene single nucleotide poly-
morphisms and susceptibility to depression [66],
suggesting that differences in stress response may
also be important modifiers of the effect of chronic
stressors on mental health.
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The brain is highly sensitive to glucocorticoids.
Much of our understanding of the effects of gluco-
corticoids on the brain were founded upon original
studies examining effects in the hippocampus, which
were then extended to other regions including
the amygdala and prefrontal cortex [58]. Under
the glucocorticoid-cascade hypothesis (now called
the neurotoxicity hypothesis), effects of cumulative
exposure to elevated glucocorticoid levels can lead to
hippocampal atrophy [67]. Stress is a strong negative
regulator of hippocampal neurogenesis, thought to be
a key cause of morphological and functional deficits
observed in depression [68]. Because the hippocam-
pus contributes to regulation of the HPA axis, this
effect can contribute to HPA axis dysregulation, a
feed-forward effect that may eventually impair cog-
nition [67, 69].

Both particulate matter and ozone alter the expres-
sion of glucocorticoid-regulated genes in the brain
of exposed rats ([44] and unpublished observations),
consistent with biologically-effective increases in
cerebral glucocorticoid concentrations following pol-
lutant exposure. While it remains to be determined
to what extent stress axis dysfunction is implicated
in adverse CNS impacts of air pollutants, there
is considerable experimental evidence to support a
direct causal role for glucocorticoids and HPA axis
dysfunction in brain pathologies. Repeated expo-
sure of rats to exogenous corticosterone impaired
memory and accelerated hippocampal neuronal loss
and glial reactivity, while adrenalectomy alleviated
these characteristics of brain aging [70, 71]. Gluco-
corticoid hypersecretion is associated with reduced
hippocampal volume and memory impairments in
rats [72], showing that individual differences in glu-
cocorticoid levels may be relevant to brain health.
Depending on dose, duration, and brain region,
glucocorticoids appear to differentially impact pro-
liferation of oligodendrocyte progenitors [73, 74],
and microstructural changes indicative of loss of
integrity and demyelination have been observed in
the white matter of patients with Cushing Syn-
drome [75]. In addition to their well-established
anti-inflammatory role, glucocorticoids can exert
early permissive immunostimulative effects in the
periphery, as well as proinflammatory effects dur-
ing the immune response to injury in the CNS, that
appear to depend upon level, timing, and duration
of exposure [47]. Chronic administration of gluco-
corticoids has been shown to increase amyloid-�
prevalence in the brain of aged macaques, possibly by
impairing expression of insulin-degrading enzyme, a

candidate protease for clearance of amyloid-� pep-
tides [76]. 11�-hydroxysteroid dehydrogenase 1 –/–
mice, which lack a key enzyme responsible for tissue-
specific conversion of glucocorticoid precursors to
the active form, are protected from the cognitive
decline that affects aged wild-type mice [77], empha-
sizing the importance of tissue glucocorticoid levels
in mediating effects. Repeated exposure to corticos-
terone is used as a model of depression [78], and
subchronic treatment with a glucocorticoid receptor
inhibitor prevented the cognitive decline observed in
a transgenic mouse model of Alzheimer’s disease
[79]. Collectively, these and other studies establish
a causal link between dysregulated glucocorticoids
and impacts on cognition, neurodegeneration, and
depression.

STRESS-DEPENDENT SYSTEMIC
INVOLVEMENT IN CNS DYSFUNCTION

Systemic effects of pollutant exposure, like sys-
temic effects of chronic stress, may also contribute
to impacts on the brain. Major systems and fac-
tors that contribute to an integrated stress response
include the sympathetic nervous system, immune sys-
tem (including actions of inflammatory cytokines),
and metabolic factors. Chronic elevation of glu-
cocorticoids, as seen in Cushing Syndrome, is
associated with hyperglycemia, impaired immune
function, hypertension, obesity, and depression [45,
80]. The hypercortilism and inflammation seen in
stress-related diseases such as cardiovascular dis-
ease, metabolic syndrome, and depression have been
proposed to result from glucocorticoid resistance
[80]. Co-morbidity of metabolic and neurologi-
cal/neurobehavioral disorders is well-established,
and is thought to relate at least in part to common
underlying dysfunction of the HPA axis [48, 81–83].

The brain is highly sensitive to metabolic
disturbance, oxidative stress, and inflammatory stim-
uli. Glucocorticoids exert well-known impacts on
metabolic systems, including antagonizing insulin
signaling and regulating glucose and fatty acid
homeostasis [84, 85]. Insulin signaling is impli-
cated in neuronal and cognitive function [86], and
insulin resistance is associated with increased risk for
Alzheimer’s disease [87]. Insulin-degrading enzyme
is implicated in the regulation of amyloid-� levels,
with knockout mice exhibiting increased cerebral
accumulation of amyloid-�, hyperinsulinemia, and
glucose intolerance [88]. Reduced glucose tolerance
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has been associated with poor memory performance
and hippocampal atrophy [89], and insulin resis-
tance was associated with reduced cerebral glucose
uptake and increased risk of Alzheimer’s disease [90].
Experimental models have shown that repeated expo-
sure to corticosterone produces a model of depression
[78], and when combined with a high-fat diet pro-
duces a model of type II diabetes [91], implicating
glucocorticoids in metabolic and neurobehavioral
disorders.

There is abundant epidemiological and experimen-
tal data to show that exposure to air pollutants can
lead to dysregulation of metabolic and inflammatory
processes [92]. For example, mice exposed chroni-
cally to concentrated ambient particles and a high fat
diet developed insulin resistance, systemic inflamma-
tion, and increased visceral fat deposition [93]. Acute
exposure to ozone produced glucose intolerance in
Brown Norway rats [53], and in mice produced
insulin resistance partially reversed by antioxidant
treatment [94]. There is currently limited data to show
to what extent the stress axis is involved in such
effects, particularly in chronic exposure models, as
data to date come from short-term exposure stud-
ies. Pharmacological intervention with metyrapone, a
drug that blocks corticosterone synthesis, prevented a
subset of acute ozone-dependent metabolic effects in
male Fischer rats and enhanced the release of some
cytokines into the circulation after ozone exposure
[54]. Adrenalectomy alleviated acute ozone-induced
decreases in glucose tolerance in Wistar-Kyoto rats
[95], consistent with the involvement of adrenal hor-
mones. Ozone-dependent changes in the response of
metabolic and endocrine factors to glucose challenge
were reproduced by administration of corticosterone,
supporting a role for glucocorticoids in mediating
pollutant effects [96]. Given the co-morbidity of
metabolic and neurological and neurobehavioral dis-
orders and the sensitivity of the brain to metabolic
and inflammatory stimuli, such changes may have
relevance to impacts of pollutants on the brain.

CONVERGING PATHWAYS: OXIDATIVE
STRESS, INFLAMMATION, AND THE
NEUROENDOCRINE STRESS RESPONSE

The diverse health impacts now associated with
exposure to air pollution suggest involvement of
a number of processes that manifest according
to the specific makeup of the pollutant mix and
interindividual differences in susceptibility. Stress

axis dysfunction is unlikely to be the only factor
involved. Oxidative stress and inflammation have
long been considered important features of disease
processes initiated by pollutants, including effects in
the brain, where lipid peroxidation, microglial activa-
tion, and increased levels of inflammatory cytokines
have been observed in experimental models follow-
ing both acute and chronic exposure [97, 98]. These,
along with impacts on neurotransmitter systems and
changes of neuronal structure and function, have been
proposed as prominent mechanisms underlying CNS
impacts of pollutant exposure [6, 7].

Recent human data support involvement of oxida-
tive stress and inflammatory pathways in a variety
of pollutant effects relevant to brain health. For
example, associations between prenatal exposure to
ambient pollutants and impaired cognitive develop-
ment were strongest in the offspring of mothers who
reported low fruit and vegetable consumption, impor-
tant sources of antioxidants [99]. Mitochondrial DNA
copy number, which increases in response to envi-
ronmental demands and oxidative damage, has been
associated with exposure to pollutants in utero and
in later life [100, 101]. Although the physiological
consequences are not entirely clear, mitochondrial
damage is associated with a variety of disorders
including neurodegenerative diseases [102]. Black
carbon exposure averaged over a year was associated
with reduced cognitive function, with stronger effects
observed in individuals with longer leukocyte telom-
eres, a characteristic associated with the capacity to
mount a stronger systemic inflammatory response
[103]. In addition to this potential role as an effect
modifier, telomere length may also reflect oxidative
and inflammatory stresses linked to exposures, with
long-term exposures to a range of occupational and
environmental toxicants generally associated with
shorter leukocyte telomere length [104]. This emerg-
ing literature supports a role for air pollution in
contributing to fetal programming and to accelerated
aging, at least in part through cumulative effects of
oxidative and inflammatory stresses.

Basal glucocorticoid levels and pollutant-
dependent regulation of the HPA axis may contribute
to such effects. Rodent studies have shown that the
hippocampus, in addition to being highly sensitive
to glucocorticoids, appears also to be particularly
sensitive to the oxidative stress caused by ozone
exposure [105, 106], and exhibits inflammatory
signaling, impaired neurogenesis, and altered neu-
ronal morphology following long-term exposure to
concentrated ambient particles or traffic-related air
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pollutants [42, 107, 108]. In addition to exerting
neurotoxic effects and impairing neurogenesis,
chronic stress and elevated glucocorticoids can
prime microglial proinflammatory responses to
subsequent insults [109, 110]. Like oxidative stress,
psychological stress and elevated glucocorticoid
levels are associated with accelerated telomere
shortening [111–113]. Glucocorticoids also regulate
mitochondrial function, correlating with neuro-
protection at low levels and neurotoxicity at high
levels [114]. As air pollutants may act through
diverse pathways, such combined effects may render
specific brain structures vulnerable to air pollutants,
depending on individual host susceptibility and
exposure to other stressors.

ALLOSTATIC LOAD: CUMULATIVE
PHYSIOLOGICAL DYSFUNCTION FROM
CHRONIC STRESSOR EXPOSURE

Adaptation to stressors requires an integrated
response that is essential for survival, but is not with-
out cost. Diseases associated with chronic stress,
as with chronic exposure to air pollution, are char-
acterized by common underlying processes that
include dysregulation of endocrine, inflammatory,
and metabolic systems. If air pollutants act as stres-
sors through impacts on the HPA axis, considering the
combined and cumulative effects of multiple stres-
sors and innate differences in stress reactivity may be
important to understand conditions that contribute to
susceptibility. Key concepts that may help to explain
how the cumulative burden imposed by exposure to
stressors increases the likelihood of morbidity and
mortality include allostasis, which describes the pro-
cess by which the body responds to exposure to
stressors, and allostatic load, which describes the
wear and tear on the body as it responds to stres-
sors [115]. In essence, allostatic load represents the
physiological consequences of prolonged exposure
to stressors interacting with individual host sensitiv-
ity. While stress response systems have evolved to
respond to acute stressors by providing a survival
advantage, chronic activation imposes a burden that
may alter the capacity to respond to new challenges,
increasing vulnerability to new stressors and con-
tributing to disease processes (Fig. 3). This, coupled
with interindividual variability in stress responses,
may explain why small changes in the levels of a
stressor that is tolerated in some individuals can, in
others, produce an adverse effect.

Fig. 3. Allostatic load scenarios. Both intrinsic (e.g., stress reactiv-
ity, resilience, existing disease states) and extrinsic (e.g., prior and
concurrent exposure to other psychosocial, physical, or chemical
stressors) factors will interact to determine to what extent stres-
sor exposure contributes to physiological dysfunction, or allostatic
load, and increases the risk of disease.

Efforts to operationalize the allostatic load con-
cept using composite indices that incorporate a set
of biological measures covering physiological pro-
cesses dysregulated by chronic stress (e.g., cortisol,
epinephrine, cholesterol, glycated hemoglobin, blood
pressure, waist-to-hip ratio, C-reactive protein) have
shown its utility in predicting mortality, as well as
physical and cognitive decline [116]. For example,
higher baseline allostatic load scores in men and
women aged 70–79 were associated with a steeper
decline in cognitive function over a seven year follow-
up period [117]. In a large cross-sectional study,
higher allostatic load scores were associated with
poorer working memory in adults aged 20–59 [118].
Allostatic load during childhood was associated with
poorer working memory in young adults [119]. Such
relationships may have relevance in interpreting asso-
ciations between pollutants and health outcomes. For
example, long-term exposure to air pollutants was
associated with impaired performance on mathemati-
cal and verbal tests, with effects of pollutant exposure
on verbal skills most evident with increasing age and
lower education [27].

The concept of allostatic load provides insight into
social gradients in health that relate to exposure to
chronic stressors, including air pollution. It has been
recognized for some time that socioeconomic posi-
tion, in addition to being a potential confounder of
associations between exposure to air pollutants and
health outcomes, may also be an effect modifier.
O’Neill and colleagues identified three mechanisms
that may explain the increased adverse effects on
health associated with air pollution among indi-
viduals of lower socioeconomic position, namely:
1) susceptibility directly related to socioeconomic
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position, such as through higher levels of psychoso-
cial stress, limited access to health care, or increased
likelihood of living in lower quality housing and asso-
ciated greater exposure to stressors such as noise,
crowding, violence, allergens, and other pollutants;
2) higher prevalence of health conditions and behav-
iors that increase susceptibility such as diabetes and
smoking; and 3) more frequent or more intense expo-
sures to air pollution [120]. Stress may be common
to all three. If air pollution acts as a chronic stressor,
contributing to allostatic load and accelerating the
progression of stress-associated diseases, gradients
in exposure to stressors and individual differences
in sensitivity and behavior may act as important
modifiers of health impacts. Factors associated with
resilience may also modify the response to pollutants,
as suggested by evidence that exposure to natural
environments (e.g., green and blue spaces) is associ-
ated with protective effects, including improvements
in allostatic load measures, cardiovascular and mental
health outcomes, and risk of cause-specific mortality
[121–123].

VULNERABILITY: INTERACTIONS WITH
SEX, AGE, AND NON-CHEMICAL
STRESSORS

Differences in the magnitude and nature of effects
of air pollutants on health are thought to depend
both on subject-specific traits (such as age, sex,
existing disease, genetic variation, behaviors) and
contextual characteristics (such as socioeconomic
position, concurrent environmental exposures), but
the specific factors and mechanisms that define sus-
ceptibility remain uncertain [120, 124]. In evaluating
health risks associated with exposures, cumula-
tive risk assessment initiatives have emphasized the
importance of considering non-chemical stressors
alongside chemicals, as well as interactions with
intrinsic factors such as age and sex [125–128]. Such
interactions may be important in the context of stress
because effects of stressors will vary across the lifes-
pan. For example, with respect to effects on the brain,
stress may interfere with developmental program-
ming during gestation and early childhood, contribute
to depression in adults, and accelerate cognitive
decline in the elderly [60]. Moreover, stress hormone
responses to a standardized acute psychosocial stres-
sor (the Trier Social Stress test) have been found to
vary in relation to age and sex [129]. Accordingly,
consideration of the stress context during specific life

stages in each sex may be needed to more fully under-
stand effects of pollutants and the modifying role of
intrinsic and extrinsic factors (Fig. 4).

In this vein, a number of recent studies have
directly examined the link between the stress context
and pollutant effect modification, including exami-
nation of specific vulnerability periods in each sex.
Higher PM2.5 exposure during the first trimester
was associated with increased risk of wheeze among
children with mothers who reported high prenatal
stress [130]. Prenatal nitrate exposure at 7–19 and
33–40 weeks gestation was associated with asthma in
boys exposed to high prenatal stress [131]. Combined
exposure to PM2.5 and maternal stress was associ-
ated with mitochondrial DNA copy number in cord
blood and placenta that also differed in a sex-specific
manner [132]. Prenatal exposure to PM2.5 was asso-
ciated with childhood asthma, with stronger effects
observed in boys exposed prenatally to maternal
stress [133]. Stronger associations between indicators
of traffic-related air pollution (NO2 and/or oxides of
nitrogen) and asthma incidence have been reported

Fig. 4. Stress response as an integrator of effects of chemical
and non-chemical stressors and individual sensitivity on brain
health across the life course. Exposure to air pollution occurs
in the context of other exposures, including stressors associated
with socioeconomic position such crowding, crime, noise, and
other hazards. Deleterious effects of exposure to chronic stressors
may accumulate across the life course, and in turn may further
increase vulnerability to subsequent exposures. Effects include
impacts on fetal development, programming of future stress reac-
tivity and disease susceptibility, and cumulative dysregulation
of systemic neuroendocrine, cardiovascular, inflammatory, and
metabolic processes that collectively contribute to disease. “X”
represents interactions among factors.
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for children exposed to community violence [134] or
living with higher parental stress [135], suggesting
that heightened stress levels may exacerbate respi-
ratory effects of pollutant exposure. Chronic stress
was also associated with increased vulnerability to
asthma exacerbations in children exposed to rel-
atively low levels of traffic-related pollutants, an
interaction not observed at higher pollutant levels
[136]. Co-exposure to psychosocial stress was asso-
ciated with greater risk of decreased lung function
from exposure to traffic-related air pollutants in chil-
dren [137] and adolescents [138]. In adults, stronger
associations between PM2.5 and systolic blood pres-
sure were found in individuals who reported high
psychosocial stress assessed using a stress index
that included neighborhood stress, acute life events,
family caregiving stress, financial vulnerability, and
unfair treatment [139], an association not found in a
previous study that did not consider multiple sources
and types of stress [140]. Collectively, these studies
suggest that prior and concurrent exposures to non-
chemical stressors exacerbate effects of air pollutants
on respiratory and cardiovascular disease across life
stages, including through prenatal programming of
chronic diseases.

Whether the same holds true for brain health is
currently unknown, but there is intriguing experi-
mental and epidemiological evidence suggesting a
role for neuroendocrine stress in modifying associ-
ations with environmental contaminants. Male pups
exposed prenatally to diesel exhaust and maternal
stress exhibited microglial activation as well as cog-
nitive impairments, effects not observed in female
pups or following exposure to either diesel exhaust
or stress alone [141]. Interestingly, serum corticos-
terone was higher at postnatal day 1 only in the
male pups exposed prenatally to stress, suggesting
a possible early role in priming microglial immune
responses to the pollutant. In a recent population
study, the association between PM2.5 and lower cog-
nitive scores was found to be stronger among older
adults living in higher stress neighborhoods [142].
Earlier work showed that neighborhood psychosocial
stressors or individual perceived stress strengthened
associations between tibia or blood lead levels and
poorer performance on cognitive tests in older adults
[143, 144], consistent with experimental findings of
a modifying role for stress in neuroendocrine effects
of lead [145–147]. Co-exposure to air pollutants and
noise, an important non-chemical stressor, was asso-
ciated with greater impacts on cognitive function
in adults aged 45–75 than would be expected by

addition of independent effects, suggesting poten-
tial synergism [148]. Air pollutants have themselves
been found to be associated with increased perceived
stress [149], consistent with the notion that air pollu-
tion acts as a stressor and contributes to cumulative
stress exposure. If prior or concurrent exposures to
other stressors exacerbate the effects of pollutants
on health outcomes such as cognitive impairment,
impacts of pollutants may be greater in populations
disproportionately exposed to stressors.

IMPLICATIONS AND KNOWLEDGE GAPS

Air pollution research has long been organ- or
disease-specific, focused primarily on pulmonary
and cardiometabolic diseases, and more recently on
impacts on the brain including cognitive decline,
dementia, and depression. Clearly, there is value in
examining tissue- and disease-specific mechanisms;
for example, understanding that nanoparticles may
translocate to the brain via olfactory nerves [18]
provides important insight into a potential route of
exposure. Furthermore, it is clear that effects may
differ according to dose and duration of exposure for
different anatomical sites. In addition to such targeted
studies, complementary approaches that consider
effects of pollutants on systems that broadly impact
the body are also needed to understand how the myr-
iad health outcomes associated with exposure to air
pollutants are connected, and to what extent they
are driven by common initiating events. Despite dis-
tinct elements of neurological/mental health diseases,
and considerable heterogeneity within a disease, a
number of common underlying molecular and cellu-
lar mechanisms may increase susceptibility. These
include dysregulated stress response systems [9],
which are implicated also in a broad range of
diseases that encompass those associated with air
pollutants. It is unknown whether common initiat-
ing processes underlie the relationship between air
pollutants and various diseases, although oxidative
stress and inflammation have been identified as char-
acteristic features of many disease states. Emerging
evidence supports the notion that air pollutants act
as chronic stressors, triggering stress response sys-
tems that, when chronically activated, contribute to a
variety of disease states including those affecting the
brain [8].

Assessing to what extent the health impacts of air
pollutants are mediated through the stress axis may
be helpful in improving our understanding of how



608 E.M. Thomson / Air Pollution, Stress, and the Brain

pollutant exposure is associated with such a range
of disease outcomes, and why adverse effects are
seen in some individuals and not others. Because
of their systemic nature, effects of chronic stressors
will manifest in a variety of ways that depend not
only on the nature of the stressor itself, but also on
individual susceptibility. Exposure to stressors does
not necessarily imply adverse consequences to the
individual; rather, interindividual differences in sus-
ceptibility and resilience must be considered. There
is substantial heterogeneity in stress reactivity in the
human population [150]. Intrinsic factors such as
age, sex, gender, stress reactivity, and existing dis-
ease, and extrinsic factors such as co-exposure to
psychosocial and other stressors, may all potentially
contribute to individual responses to pollutants. In
rodent models, interstrain differences in stress axis
function are associated with differences in lung injury
and inflammatory response following exposure to
ozone [151], suggesting that such variability may
be relevant to susceptibility to pollutants. It will be
important to assess to what extent interindividual dif-
ferences are related to susceptibility to CNS impacts
of air pollutants. Exposures during vulnerable win-
dows of development are important determinants of
future disease risk; indeed, stressors can produce epi-
genetic changes that influence future stress reactivity
and morbidity, with some evidence that such effects
may be transmitted across generations [152]. The
timing, dose, pattern, and duration of exposure are
likely to be important factors in determining effects,
as seemingly opposing effects (e.g., pro- versus anti-
inflammatory effects of glucocorticoids [47]) may be
produced depending upon context. In the population
setting, composite measures such as allostatic load
indices may be useful in assessing potential chronic
effects of multiple stressors that act through diverse
biological mechanisms. In addition, interactions with
established risk factors warrant investigation.

If stressor action by air pollutants is an impor-
tant contributor to health impacts, characteristics that
define the nature, magnitude, and duration of the
stress response warrant investigation. Recent find-
ings from a panel study show associations between
specific particulate constituents, especially water-
soluble inorganic ions, and stress hormone levels
[153]. Bacterial lipopolysaccharide (LPS) is a potent
stimulator of the HPA axis via its inflammatory
effects [154], and is a common constituent of ambient
particulate matter. There are high levels of airborne
LPS in Mexico City, where exposure to pollution has
been associated with a range of adverse impacts on the

brain [17]. As effects of particulate matter and ozone
on the stress axis were additive in experimental mod-
els [44], the combined effects of exposure to multiple
pollutants should be considered. Both population and
toxicological studies will be needed to investigate and
identify factors driving stress responses.

CONCLUSION

Chronic activation and dysfunction of the stress
response system is a characteristic of many disease
processes, including those associated with air pol-
lution. Observations of similar systemic responses
to particulate and gaseous pollutants suggest that
the endocrine stress response could be a common
mechanism contributing to extrapulmonary effects of
pollutant exposure, including impacts on the brain [8,
44]. Further research is warranted to investigate the
relative importance of stress responses and HPA axis
dysregulation in contributing to air pollutant-induced
disease progression. An exciting implication of this
work is that air pollution, like other stressors, could
be a modifiable risk factor for neurodegenerative
and psychiatric disorders. Efforts aimed at reduc-
ing stressor exposure at individual, neighborhood,
and community levels could have the added bene-
fit of decreasing vulnerability to the adverse health
impacts of air pollutants. Future epidemiological and
experimental studies should provide insight into such
questions.
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