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Tanshinone IIA (Tan IIA) is a pharmacologically lipophilic active constituent isolated from the
roots and rhizomes of the Chinese medicinal herb Salvia miltiorrhiza Bunge (Danshen). Tan
IIA is currently used in China and other neighboring countries to treat patients with
cardiovascular system, diabetes, apoplexy, arthritis, sepsis, and other diseases.
Recently, it was reported that tan IIA could have a wide range of antitumor effects on
several human tumor cell lines, but the research of the mechanism of tan IIA is relatively
scattered in cancer. This review aimed to summarize the recent advances in the anticancer
effects of tan IIA and to provide a novel perspective on clinical use of tan IIA.
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INTRODUCTION

Salviae miltiorrhiza (Danshen) is the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae),
which is a traditional Chinesemedicine herb (Figure 1) (Tseng et al., 2014). It is mainly distributed in
Anhui, Shanxi, Hebei, Sichuan, Shandong, Jiangsu, and other provinces in China and considered to
have the action of relieving pain, activating blood circulation and removing blood stasis, clearing the
heart and removing annoyance, cooling blood, and eliminating carbuncle, according to the mechanism
of traditional Chinese medicine (TCM) (Li et al., 2016a; Zhou et al., 2019). There are two main active
ingredients in S. miltiorrhiza. One is the hydrophilic component, which belongs to water-soluble
substances, such as tanshinol, and the other is the lipophilic component, which belongs to fat soluble
substances, such as tanshinone I and tan IIA (Kwak et al., 2008; Shang et al., 2012; Lin et al., 2019).

Tan IIA (C19H18O3, 14,16-epoxy-20-nor-5(10),6,8,13,15-abietapentaene-11,12- dione) (Wei
et al., 2012), a natural diterpene quinone in S. miltiorrhiza, possesses miscellaneous biological
activities such as anti-inflammatory (Dong et al., 2009; Li et al., 2015a; Fan et al., 2016), antiviral
(Xiao et al., 2013; Zhang et al., 2014a), antioxidant (Gong et al., 2019), neuron-protective (Xia et al.,
2005; Weng et al., 2018), antiatherosclerotic (Chang et al., 2014a; Tan et al., 2019), antiallergic (Li
et al., 2018a; Heo and Im, 2019), anticonvulsant (Olivia et al., 2013), antifatigue (Lin et al., 2017),
anti-Alzheimer’s disease (Jiang et al., 2014; Li et al., 2015b), and antiangiogenic activities (Fan et al.,
2011), reducing organ damage (Ma et al., 2018a), and protection from angina pectoris and
myocardial infarction (Lv et al., 2018) (its structure is shown in Figure 1). Newly, it was said
that tan IIA could have a wide range of antitumor effects in multiple human tumor cell lines by
inhibiting tumor growth, inducing apoptosis, regulating cell cycle, regulating signaling pathways, and
reversing the multidrug resistance in various human tumor cells (Kim et al., 2015). However, because
the mechanism of tan IIA cell is relatively scattered in cancer, this paper provides the research
progress of the antitumor effect of tan IIA on leukemia, lung cancer, hepatocellular carcinoma,
gastric carcinoma, colorectal cancer, glioma, osteosarcoma, cervical cancer, ovarian cancer, breast
cancer, and prostate cancer, and its antitumor mechanism was also discussed.
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ANTITUMOR EFFECTS

Tan IIA could exhibit antitumor activity in many cancer cells
such as leukemia, lung cancer, hepatocellular carcinoma, gastric
carcinoma, colorectal cancer, glioma, osteosarcoma, cervical
cancer, ovarian cancer, breast cancer, and prostate cancer. Tan
IIA could induce autophagy and apoptosis and inhibit cell growth
and migration, by activating AMPK and inhibiting PI3K/Akt/
mTOR signaling pathway, and so on.

Leukemia
Leukemia, including chronic myeloid leukemia (CML), acute
myeloid leukemia (AML), and acute promyelocytic leukemia
(APL), is one of the blood or bone marrow cancers. Some
viruses, petrochemical products, ionizing radiation, and
alkylating chemotherapy drugs are considered as major
reasons of leukemia (Liu et al., 2012a). Around 100 million
children and adults worldwide suffer from some forms of
leukemia every year. At present, the treatment of leukemia
remains a top research priority. In recent years, TCM has
attracted wide attention as a clinical alternative to the
treatment of leukemia because of its anti-inflammatory,
antivirus, antioxidation, antitumor, apoptosis inducing effect
(Boon and Wong, 2004). Among them, Tan IIA played an
important role.

CML is a myeloproliferative disease. The translocation of
chromosomes 9 and 22 leads to the clonal inflation of
transformed hemopoietic stem cells, which may lead to
resistance in tumor treatment (Yun et al., 2013a). Yun, et al.
observed that tan IIA induced mitochondria dependent apoptosis
through excitation of JNK in KBM 5 leukemia cells (Yun et al.,
2013a). Tan IIA could raise sub-G1 apoptotic portion, activate
Caspases 9 and 3, release cytochrome c from mitochondria into
cytoplasm, and downregulate Survivin, Bcl-2, Bcl-xL, and c-IAP2
(Yun et al., 2013a). Then, they also discovered that tan IIA could
induce autophagy via AMPK and ERK and restraint of mTOR
and p70 S6K (Yun et al., 2013b).

AML is characterized by unlimited proliferation of myeloid
cells (Liu et al., 2012a), with five-year mortality rate of more than
70% (Zhang et al., 2019). Therefore, we need to find more

effective therapeutic strategies to treat AML. Zhang et al.
revealed that tan IIA may induce apoptosis and autophagy in
U937 cells via inhibiting PI3K/Akt/mTOR signaling pathway
(Zhang et al., 2019). Tan IIA induced apoptosis in U937 cells
via upregulating the levels of active Caspase 3 and Bax and
downregulating Bcl-2. In addition, tan IIA inhibited the
capacity of migration and invasion in U937 cells. Liu et al.
discovered that tan IIA activated P × R (Pregnane × receptor),
which inhibited nuclear factor-κB (NF-κB) activity, leading to
significantly downregulating the expression of CCL2 by about ten
times (Liu et al., 2012a).

APL is a seldom seen disease accounting for about 10% of
AML. Zhang et al. indicated that C/EBPβ and CHOP participate
in tan IIA induced variation and apoptosis of APL cells (Zhang
et al., 2010). Tan IIA may upregulate C/EBPβ and CHOP; the
C/EBPβ was very important (Zhang et al., 2010). Liu et al.
suggested that tan IIA could induce apoptosis by excitation of
Caspase 3, downregulation and upregulation of Bcl-2 and Bax,
respectively, and the disruption of mitochondrial membrane
potential (Liu et al., 2006). Moreover, the treatment by tan IIA
may weaken adhesion and invasion of NB4 cells through the
extracellular matrix (ECM). Yoon et al. demonstrated that
induced apoptosis by tan IIA was accompanied by the PARP
specific proteolytic cleavage and Caspase 3 activation (Yoon et al.,
2000).

Liu et al. indicated that tan IIA has available antiproliferation
effect on THP-1 cells by apoptosis; it is basically related to the
destruction of Δψm (the mitochondrial membrane potential),
activation of Caspase 3, and downregulation and upregulation of
Survivin and Bax, respectively (Liu et al., 2009).

Guo et al. demonstrated that nutlin-3 and tan IIA
meaningfully potentiated the apoptotic effect of imatinib by
downregulating AKT/mTOR pathway (Guo et al., 2017). Next
year, they showed that the association of nutlin-3 and tan IIAmay
synergistically induce apoptosis, cytotoxicity, cell cycle arrest, and
autophagy; thus the antileukemia effect was through effective
activation of p53, inhibition of the AKT/mTOR pathway, and
activation of the RAF/MEK pathway (Guo et al., 2018) (its
anticancer pathway is shown in Figure 2).

Lung Cancer
Lung cancer is a usual respiratory harmful tumor in the clinic; its
morbidity is increasing with the change of modern circumstance
and lifestyle (Li et al., 2016b). It has become the main cause of
tumor related death in Taiwan and Western countries and has
been one of the diseases which can strictly threaten the human life
and fitness (Zhang et al., 2014b). With the consecutive ripeness of
science and technology, the curative effect by pharmacon of lung
cancer is greatly modified, but lung cancer remains fatal,
widespread, and expensive to patients and society (Zhang
et al., 2016). Therefore, how to efficiently treat lung cancer has
been the focus of clinical investigation.

Xie et al. showed that tan IIA could restrain cell proliferation,
induce apoptosis, and arrest cell cycle at the S phase (Xie et al.,
2015). It may block VEGF/VEGFR signal pathway, cause cell
cycle arrest, and indirectly inhibit downstream signal pathway
and then upregulate the expression of apoptosis genes,

FIGURE 1 | The plant of Salvia miltiorrhiza Bunge and the chemical
structures of tanshinone IIA.
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downregulate antiapoptosis genes, then inhibit the development,
and promote the apoptosis of tumor cells (Xie et al., 2015). Zhang
et al. showed that tan IIA may induce cytochrome c-mediated
caspase cascade apoptosis via the JNK pathway (Zhang et al.,
2014b). It induced apoptosis through cytochrome c release from
mitochondria and Bax migration to mitochondria (Zhang et al.,
2014b). Wang et al. confirmed that the mechanism of tan IIA
inhibiting cell proliferation and epithelial-mesenchymal
transition (EMT) might be through the TGF-β1/Smad
signaling pathway (Wang et al., 2018). Cheng et al. detected
that tan IIA could inhibit H146 cells by upregulating Bax/Bcl-2
and diminishing mitochondrial membrane potential (Cheng and
Su, 2010). The inhibition of tan IIA might be through
endoplasmic reticulum (ER) stress caused through the release
of Ca2+ and the increased expression of GADD153 protein. It
induced the increase of Bax/Bcl-2 and Caspase 3 and the decrease
in matrix metalloproteinases (MMP), leading to the suppression
of the proliferation in H146 cells (Cheng and Su, 2010). Kim et al.
have proven that tan IIA induced TRAIL sensitization of lung
cancer cells by selective ER stress induction (Kim et al., 2016). So,
tan IIAmay induce apoptosis of TRAIL via upregulating DR5 and
downregulating Survivin via selective activation of PERK/ATF4
and inhibition of STAT3, respectively.

Chiu et al. showed that tan IIA induced apoptosis by the
abduction of ROS and diminishing the mitochondrial membrane
potential in A549 cells (Chiu and Su, 2010). Tan IIA might
decrease the expression of Bcl-2 and increase Bax, p53, and Cyto-
c and may work via the abduction of ROS and a higher scale of
Bax/Bcl-2. Liu et al. suggested that the apoptosis pathway by
NQO1-activated and p53-independent mechanism determines
the antitumor function of tan IIA against non-small cell lung
cancer (Liu et al., 2012b). Tan IIA may activate ROS detonated,
p53-independent, and caspase-dependent mitochondria
apoptotic mechanism by increased Bax/Bcl-xL, disruption of
mitochondrial membrane potential, release of cytochrome c,
and caspase excitation and PARP-1 cleavage (Liu et al., 2012b).

Zu et al. indicated that tan IIA could inhibit the activity of p53
deficient H1299 cell practicability via the MDM4-IAP3-caspase
signaling pathway and increase sensitivity to doxorubicin (DOX)
(Zu et al., 2018). Liao et al. demonstrated that tan IIA together
with cisplatin restrains non-small cell lung cancer by
downregulating the phosphatidylinositol 3-kinase/Akt signaling
pathway (Liao et al., 2019). It could destroy migration and
invasion, prevent the cell cycle in the S phase, and induce
apoptosis (Liao et al., 2019). The expression of cleaved
Caspase 3 and Bax was upregulated; nevertheless the
expression of Caspase 3, p-PI3K, p-Akt, and Bcl-2 proteins
was downregulated (Liao et al., 2019). Li et al. showed that tan
IIA together with cyclophosphamide (CTX) could downregulate
and upregulate Bcl-2 and Bax, respectively, inhibit the
neovascularization of cancer organizations, and raise the
immunological action, with a remarkable antitumor activity
(Li et al., 2016b) (its anticancer pathway is shown in Figure 2).

Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is a common hepatic
malignancy in the world and the occurrence rate of liver
cancer has been sustained to increase over the last few decades
(Chiu et al., 2018). The intricacy of the molecular
etiopathogenesis and drug resistance of HCC brings great
impediments in cure (Ren et al., 2017). Therefore, tremendous
efforts have been devoted to developing effective antitumor drugs
with less side effects. The ingredients isolated from traditional
medicinal plants have attracted a wide range of interest (Ma et al.,
2013; Chang et al., 2014b).

Dai et al. indicated that tan IIA showed anticancer effect on
BEL 7402 cells through apoptosis and G0/G1 arrest (Dai et al.,
2011). It induced apoptosis through excitation of calcium
dependent apoptosis signaling pathways and upregulation of
MT 1A (Dai et al., 2011). Lin et al. indicated that tan IIA
contemporaneously induced both Nec-1 restraint and FLIPS
regulation reconciled apoptosis/necroptosis in HepG2 cells

FIGURE 2 | The anticancer pathway of tanshinone IIA.
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(Lin et al., 2016). Chien et al. showed that tan IIA may inhibit J5
cell growth through increasing and decreasing Caspase 3 and
CD31, respectively (Chien et al., 2012). Jeon et al. revealed that
direct suppression of cytochrome P450 2J2 by tan IIA induced
apoptosis (Jeon et al., 2015). The CYP2J2 inhibits carcinoma cell
apoptosis via upregulation and downregulation of Bcl-2 and Bax,
respectively (Jeon et al., 2015). Tan IIA has been said to produce
cytotoxicity by apoptosis without generating mutations in the
GSH/GSSG ratio (Lee et al., 2008). Wang et al. found that tan IIA
could restrain the raised metastasis induced by PR of
hepatocellular carcinoma and drag on survival in part through
VEGFR1/PDGFR-related vascular normalization (Wang et al.,
2012). It immediately heightened tube formation of TECs,
associated with VEGFR1/PDGFR upregulation. Ren et al.
found that the multiple mechanisms involved in tan IIA
induced death formed from miR30b-p53 pathway and
PTPN11/SHP2 pathway (Ren et al., 2017). The transsituation
of p53 may be the original signal, and miR30b-p53-PTPN11/
SHP2 may be a fresh signaling pathway concerned in tan IIA
induced cell death (Ren et al., 2017). Tan IIA could change Bax/
Bcl2, p21, Caspase 3, cyclin D1, and CDK6, and it induced
apoptosis through arresting cell cycle at G1/G0 phase (Ren
et al., 2017).

Chiu et al. detected that tan IIA and sorafenib or SC-1 have
collaborative cytotoxicity (Chiu et al., 2018). Tan IIA could
restrain HCC proliferation via downregulation of pSTAT3
induced by sorafenib/SC-1. Chang et al. investigated that
combination of tan IIA and trans-resveratrol (Resv) could
raise the effect of apoptosis, sub-G1 arrest, and DNA
fragmentation (Chang et al., 2014b). Tan IIA blocked the cells
at sub-G1 phase, while Resv induced S and G2/M phase arrest,
and tan IIA provoked a marked feature of thanatosis, while Resv
mainly induced apoptosis (Chang et al., 2014b). Kan et al.
suggested the accession of DOX cytotoxicity by tan IIA (Kan
et al., 2014) (its anticancer pathway is shown in Figure 2).

Gastric Carcinoma
Gastric carcinoma is an ordinary malignancy around the world
and is a great threat to public health worldwide, with the second
central consideration of tumor related death (Chen et al., 2012). It
has the characteristics of high incidence rate, invasion, and
incidence rate and poor prognosis (Dong et al., 2008). The
familiar treatment of gastric cancer is gastrectomy together
with chemotherapy and chemotherapy which has multidrug
resistance and cytotoxicity to regular cells (Chen et al., 2012).
Heretofore, many methods have been applied by the scientists to
surmount the drug resistance in cancer (Xu et al., 2018). The
effective chemical components from herbal medicine may
contribute to improving the therapeutic effect of gastric cancer
patients (Zhang et al., 2018a). Natural products are the leading
compounds in the development of anticancer drugs and show
versatile anticancer actions and have attracted more and more
attention (Xu et al., 2018). Therefore, it is an emergency work in
clinical practice to find a new treatment (Dong et al., 2008).

Dong et al. indicated that tan IIA could induce apoptosis of
MKN 45 cells, and it may happen in G2/M phase; the possible
molecular mechanisms are downregulation and upregulation of

Bcl-2 and p53, respectively (Dong et al., 2008). Yu et al. found that
tan IIA suppresses SGC 7901 cell proliferation and
transplantation by downregulation of FOXM1 (Yu et al.,
2017). Chen et al. indicated that tan IIA may cause cycle
arrest in the G2/M phase and produce intrinsic apoptotic
signaling pathway (Chen et al., 2012). Zhang et al. revealed
that tan IIA inhibited cell proliferation and tumor growth via
downregulating STAT3 (Zhang et al., 2018a). The treatment of
tan IIAmight induce apoptosis; it may increase cleaved Caspase 3
and decrease Bcl-2 (Zhang et al., 2018a).

Su et al. showed that tan IIA could inhibit AGS cell
germination via decreasing Mcl-1, TCTP, BiP, and Bcl-xL and
increasing Bax and CHOP (Su, 2014a). The same year, they
suggested that tan IIA suppressed AGS cells by increasing the
expression of p53, p-p38, and p-JNK and reducing the expression
of p-ERK, CDC2, and cyclin B1 (Su, 2014b). One of the molecular
mechanisms might be to increase p-p38 and p-JNK and decrease
p-ERK to induce the activation of p53 and increase the expression
of p21 to downregulate CDC2 and cyclin B1, which then induces
G2/M phase arrest (Su, 2014b). Another way may be to improve
the expression of TNF-α, FAS, and Caspases 3 and 8 to induce
apoptosis (Su, 2014b). Second year, they reported that tan IIA
decreased the migratory ability via decreasing the expression of
MMP-2, MMP-7, MMP-9, NF-κB-p65, and cyclooxygenase-2
(Su, 2015). Third year, they documented that tan IIA may
restrain AGS cells by decreasing EGFR, IGFR, AKT, and
mTOR and blocking the PI3K/Akt/mTOR pathway (Su and
Chiu, 2016). Then, they showed that tan IIA may induce AGS
cells apoptosis by decreasing VEGFR and HER2, blocking the
Ras/Raf/MEK/ERK pathway, and inducing the excitation of
PARP and Caspase 3 (Su, 2018).

Xu et al. demonstrated that tan IIA might raise the antitumor
effect of DOX in drug-resistant gastric cancer cells, by inhibiting
MRP1 function, enhancing cell cycle arrest, and increasing
apoptosis and autophagy (Xu et al., 2018) (its anticancer
pathway is shown in Figure 2).

Colorectal Cancer
Colorectal cancer is the third most ordinary type of human tumor
because it is closely related to a range of factors according to the
World Health Organization (Ma et al., 2018b). With the
development of medical technology, great advancement has
been made in the diagnosis and treatment of this disease, but
recent chemotherapeutic plans are ungratified and the recurrence
and death rate of colon cancer are still high (Su et al., 2008).
Accordingly, the development of new treatment methods is
particularly important. Among others, the phylactic and
remedial capabilities of natural products of restraining or
overturning cells associated with cancer conception,
advancement, and succession are accepting much attention (Su
et al., 2008).

Su et al. investigated that tan IIA may induce apoptosis via
downregulating ErbB-2 (erythroblastosis oncogene B; HER-2/
neu) and upregulating TNF-α in colon cancer cells (Su and Lin,
2008a). And then, they suggested that tan IIA triggered apoptosis
by activating both inherent pathways concerning mitochondrial
release of cytochrome c and outside pathways concerning
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excitation of Fas-caspase cascades (Su et al., 2008). Finally, they
supported that tan IIA may build up the effectiveness of 5-FU in a
colon cancer nude SCID mouse model by downregulating
expression of NF-κB-p65, VEGF, P-gp, MMP-7, and LC3-II
(Su, 2012).

Ma et al. showed that tan IIA may restrain COX-2 and activate
Wnt/β-catenin signaling pathway, downregulate VEGF, and
result in inhibition of colon cancer cells (Ma et al., 2018b).
COX-2 is an important rate-limiting enzyme in the synthesis
of prostaglandins; it could produce prostaglandin PEG2 after
metabolism, which could increase the proliferation of cells and
reduce the cell death. Tan IIA could also cause a β-catenin
decrease, and Wnt/β-catenin signaling pathway is a highly
conserved cell signaling system (Ma et al., 2018b).

Tu et al. supported that tan IIA might ameliorate
inflammatory microenvironment through inhibiting of
microRNA-155 and repressing the proliferation of Hct116 and
Ht29 cells (Tu et al., 2012). Bai et al. revealed that tan IIA may
induce cell death and enhance sensitizing to 5-FU cure by
restraining excitation of NF-κB (Bai et al., 2016) (its
anticancer pathway is shown in Figure 2).

Glioma
Glioma is the most common primary central nervous system
cancer, which has the characteristics of high invasiveness, high
recurrence rate, and poor prognosis (Ding et al., 2017). So far, the
treatment options of malignant glioma patients were still limited,
which has an important impact on human health (Wang et al.,
2007). Due to the limitations of current treatment methods, it is
necessary to develop novel therapeutic strategies according to the
specific biological characteristics of this tumor (Wang et al.,
2007). It is very considerable to find more valid therapy to
further antitumor effect and drag on the survival of patients
(Ding et al., 2017).

Ding et al. verified that tan IIA could induce apoptosis and
autophagy and raise LC3B and Beclin 1 and play an antitumor
role by restraining the PI3K/Akt/mTOR pathway (Ding et al.,
2017). It could decrease p-PI3K, p-Akt, and Bcl-2, increase Bax,
restrain viability of cells, and facilitate apoptosis. Tang et al.
showed that tan IIA efficiently inhibited the STAT3 pathway and
downregulated Bcl-xL and cyclin D1 which were targets of
STAT3, induced apoptosis, and inhibited tumor cell growth in
C6 glioma cells (Tang et al., 2010). Wang et al. suggested that the
cells treated by tan IIA showed astrocyte or nerve fiber-like
modalism, and tan IIA increased GFAP mRNA, decreased
nestin mRNA meaningfully, increased apoptotic cells
expressively, increased cells in G0/G1 phase and decreased
cells in S phase, and increased expression of ADPRTL1 and
CYP1A1 mRNA (Wang et al., 2007).

Yang et al. suggested that tan IIA might increase variation and
neural lineage flags including GFAP and β-tubulin, decrease
glioma stem cells (GSCs) flags including CD133 and nestin,
and then induce GSC apoptosis (Yang et al., 2014). Tan IIA
inhibited the growth by interrupting IL6/STAT3 signaling
pathways, not only reducing expression of IL6, but also
reducing activated STAT3 (Yang et al., 2014) (its anticancer
pathway is shown in Figure 2).

Osteosarcoma
Osteosarcoma is a highly invasive tumor, which is the most
common elementary malignant cancer in adolescents and
young people, and it mainly occurs in the areas of positive
bone growth and renovation (Yen et al., 2018). The
characteristics of osteosarcoma are high metastatic expanding
liability, poor prognosis, and low patient survival rate (Ma et al.,
2016). Present treatment strategies include chemotherapy and
aggressive surgical resection, but the five-year survival rate
remains 5–20% (Ma et al., 2016). In recent years, more and
more evidence has shown that TCM could apply potential drugs
to prevent or treat various cancers (Zhang et al., 2012a).
Therefore, it is of great practical significance and urgency to
develop new plan to restrain recrudescent and intractable
osteosarcoma and research the mechanism of antitumor effect
(Huang et al., 2017).

Ma et al. confirmed that interaction between Beclin-1-
dependent autophagy and caspase-dependent apoptosis is
induced by tan IIA. ROS play a central part in adjusting the
cytotoxicity of tan IIA (Ma et al., 2016). Yen et al. discovered that
HGK-sestrin 2 signaling-mediated autophagy is advantageous to
anticancer effectiveness of tan IIA (Yen et al., 2018). They defined
the activation of HGK/SAPK/JNK1/Jun kinase pathways in
upregulating transcription of SESN2, in which tan IIA invited
HGK/JNK1-dependent Jun excitation and gave rise to increasing
Jun recruitment to AP-1-binding site in the SESN2 promoter
region (Yen et al., 2018). Zhang et al. showed that tan IIA induced
apoptosis and inhibited the diffusion, transference, and
aggression in MG-63 cells (Zhang et al., 2012a). It could
inhibit mRNA, MMP-2, and MMP-9, restrain cell aggression
though Matrigel, and reduce MG-63 migration activity (Zhang
et al., 2012a). Huang et al. demonstrated that tan IIA could induce
apoptosis through inherent pathways and result in mitochondrial
lesion and suppress vasculogenesis (Huang et al., 2017). The
balance of mitochondrial fission/fusion and the adjustment of
cancer vasculogenesis were also relevant in the new antitumor
effect of tan IIA (Huang et al., 2017) (its anticancer pathway is
shown in Figure 2).

Cervical Cancer
Cervical cancer (CC) is one of the most ordinary gynecological
harmful cancers that severely threaten women health and is one
of the major causes of female death all over the world (Qin et al.,
2018). High risk human papilloma virus (HPV) infection plays a
crucial role in the multifactor etiology (Munagala et al., 2015).
New therapeutic drugs and effective antitumor cure hinge on
developments in investigation. In recent years, the investigation
has shown that certain TCM has showed antiviral and tumor
apoptosis properties (Pan et al., 2010).

Munagala et al. suggested that tan IIA strongly restrained
diffusion of C33a, CaSki, HeLa, and SiHa cells (Munagala et al.,
2015). Tan IIA was found to downregulate HPV E6 and E7;
regulate associated E6AP and E2F1; create S phase cell cycle
arrest; attract accumulation of p53 and alter p53-dependent
targets; modulate pRb; cause p53-mediated apoptosis by
moderating Caspase 3, Bcl-2, Bax, and PARP cleavage in HPV
positive CaSki cells. It could repress HPV E6 and E7 and then
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result in breeding of p53-dependent cancer allayer liveness
resulting in growth inhibition (Munagala et al., 2015).

Zhou et al. concluded that tan IIA might prevent cancer cells
in mitosis via disorganizing the mitotic spindle and after that
trigger cells to enter apoptosis via the mitochondria dependent
apoptotic pathway in HeLa cells (Zhou et al., 2008). It may
selectively kill mitotic cells over interphase cells and destroy
only the mitotic spindle during the M phase but not the
microtubule structure in interphase cells (Zhou et al., 2008).
Pan et al. demonstrated that it may firmly bind to the β-subunit of
the microtubule protein, and it strongly inhibits the growth by
interfering with the process of microtubule assembly, then
resulting in G2/M phase arrest and sequent apoptosis (Pan
et al., 2010).

Pan et al. evidenced that tan IIA could reveal tough growth
prohibitive effect on CaSki cells by accelerating caspase cascades
with concomitant upregulation of the phosphorylation of p38 and
JNK signaling (Pan et al., 2013). Qin et al. showed that tan IIA
restrained the migration and invasion of cervix carcinoma stem
cells via inhibiting YAP transcriptional activity (Qin et al., 2018)
(its anticancer pathway is shown in Figure 2).

Ovarian Cancer
Ovarian cancer is one of the most ordinary human malignancies
and results in death from gynecological malignancies (Huang
et al., 2015). Due to the lack of sensitive and specific early
detection methods, the diagnosis of ovarian cancer is
usually late, and the treatment plan is limited (Li et al.,
2018b). So, the development of antiapoptotic TCM
monomers has been the center of surveys in the remedy of
cancer (Zhang et al., 2018b).

Zhang et al. showed that tan IIA could induce apoptosis via
attenuation of PI3K/AKT/JNK signaling pathways (Zhang
et al., 2018b). It meaningfully increased the apoptosis by
cleavage excitation of Caspases 3, 8, and 9 (Zhang et al.,
2018b). Huang et al. investigated that it induced arrest of
cell cycle at the G2/M phase, decreased Bcl-2, increased Bax,
promoted SKOV3 cell apoptosis, and inhibited cell
proliferation and viability (Huang et al., 2015). Li et al.
demonstrated that it may induce apoptosis in TOV-21G
cells via direct upregulation of miR-205 and in turn
downregulation of Survivin (Li et al., 2018b). Chang et al.
confirmed that tan IIA enhanced tumor necrosis TRAIL-
induced apoptosis by upregulating DR5 acceptor by the
ROS-JNK-CHOP signaling axis (Chang et al., 2015). Lin
et al. illustrated that tan IIA enhanced the effect of TRAIL
by downregulating Survivin in ovarian carcinoma cells (Lin
et al., 2015). The downregulation of Survivin induced via tan
IIA requires p38 MAPK activation and is regulated by both
transcription process and proteasome degradation.

Jiao et al. revealed that tan IIA has remarkable antiproliferative
effect on COC1/DDP cells by generating apoptosis and
downregulating cisplatin-resistance genes (Jiao and Wen,
2011). The apoptosis was mainly related to the reduction of
Survivin, and lessened cisplatin resistance was invited by the
reduction of ERCC1 and LRP (Jiao and Wen, 2011) (its
anticancer pathway is shown in Figure 2).

Breast Cancer
Breast cancer is one of the most ordinary malignancies and the
main reason of cancer death for women all over the world (Yu
et al., 2014). It has the characteristics of high recurrence rate, high
metastasis rate, and high mortality (Lin et al., 2013). For the past
few years, with the increasing incidence rate and mortality of
breast cancer, more and more attention has been paid to research
of chemotherapy and new anticancer drugs; it has prompted
people to seek more prevention and treatment methods (Li et al.,
2015c).

Yan et al. found that tan IIA inhibited BT 20 cells by increasing
Caspase 12, GADD153, Caspase 3, phospho-JNK, phospho-p38,
and Bax and decreasing Bcl-xL and phospho-ER (Yan et al.,
2012). Its molecular mechanism might be by generating ER stress
and the MAPK pathway (Yan et al., 2012). Wang et al. confirmed
tan IIA inhibition of proliferation and apoptosis through
upregulation (CDKN1A, ARHC, CYP1A1, CLU, and
ADPRTL1) and downregulation (MAP3K1, CEACAM6 and
MMP-7) of many genes containing cell cycle management,
signal transduction, cell propagation, apoptosis, vasculogenesis,
invasion, and metastasis of cancer cells (Wang et al., 2005). Lu
et al. suggested that tan IIA proved a stable prohibitive effect on
the diffusion of ER-positive and ER-negative breast cancer cells
by reducing P53 and Bcl-2 (Lu et al., 2009). Su et al. showed that
tan IIA restrained MDA-MB-231 cells via increased Bax/Bcl-xL
(Su and Lin, 2008b). Tan IIA increased p21 and Caspase 8. p21
(WAF1 and Cip-1) has the feasibility to induce arrest of G1 and
apoptosis. Then, they indicated that tan IIA restrained cells by
reducing LC3-II, Erb-B2, and NF-κB-p65 (Su et al., 2012). Li et al.
showed that tan IIA restrained the vasculogenesis and growth via
the suppression of hypoxia-inducible factor 1α (HIF-1α)
synthesis and VEGF, in which the mTOR/p70S6K/4E-BP1
signaling pathway was participating (Li et al., 2015c).

Lin et al. showed that tan IIA restrained breast cancer stem
cells growth via attenuation of IL-6/STAT3/NF-κB signaling
pathways (Lin et al., 2013). After tan IIA treatment, the
expression of IL-6, NF-κB-p65, phospho-STAT3 (Tyr705), and
STAT3 in nucleus and cyclin D1 were reduced meaningfully (Lin
et al., 2013).

Fu et al. reported that it may ameliorate hypoxia induced
iatrochemistry obstruction to DOX and EMT, which may be
attributed to the downregulation of HIF-1α (Fu et al., 2014). Li
et al. demonstrated that tan IIA might boost the susceptivity to
DOX by restraining the PTEN/AKT pathway and
downregulating efflux ABC transporters incorporating MRP1,
BCRP, and P-gp (Li et al., 2019). Li et al. suggested that it
enhanced the chemosensitivity to DOX via reducing MDR-
related ABC transporters (Li and Lai, 2017). It could facilitate
endocellular DOX cumulation of MCF-7 cell and increase the
sensitivity to DOX (Li and Lai, 2017). Lin et al. showed that tan
IIA may shorten the taxol resistance via inhibition of the tau
expression in MCF-7 cells (Lin et al., 2018) (its anticancer
pathway is shown in Figure 2).

Prostate Cancer
Prostate cancer is the most ordinary aggressive cancer and the
secondmajor consideration of death inmen (Chiu et al., 2013). At
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present, the remedial formations of prostate cancer generally have
drug resistance and high toxicity (Zhang et al., 2012b). Therefore,
it is still the priority of prostate cancer investigation to find amore
effective chemical prevention plan with the least side effects
(Gong et al., 2011).

Won et al. observed that tan IIA may induce mitochondria
dependent apoptosis by inhibiting PI3K/AKT survival pathway
(Won et al., 2010). It may reduce PI3K, p85 subunit, and the
phosphorylation of AKT and mTOR (Won et al., 2010). Tan IIA
induced p53 excitation and mitochondrial lesion, resulting in
Caspase 9/ 3 reconciled apoptosis (Won et al., 2010). Then, they
demonstrated that it induced arrest of G1 through activation of
p53 signaling and restraint of androgen receptor (AR) in LNCaP
prostate cancer cells (Won et al., 2012). Tan IIA could induce
arrest of cell cycle at G1 phase and reduce cyclin D1, CDK2, and
CDK4 and activate the phosphorylation of p53 at Ser 15 residue
and its downstream p21 and p27 (Won et al., 2012). Chiu et al.
suggested that it restrained growth by reaction of ER stress (Chiu
et al., 2013). It could arrest cell cycle G0/G1 and the underlying
mechanism for apoptosis via the excitation of PARP, Caspases 9/
3, and the reaction of ER stress through the IRE1-α-GADD153/
CHOP pathway (Chiu et al., 2013).

Li et al. showed that the apoptosis and autophagy were
dependent on the ROS abducted via tan IIA in PC-3 cells (Li
et al., 2015d) (its anticancer pathway is shown in Figure 2).

CONCLUSION

Recently, TCM has played more and more important roles in
health conservation, the prevention and treatment of diseases,
and plant drug detection. The use of TCM to prevent the
occurrence and revolution of multiple malignant diseases has
become an important choice for the cure of malignant disease.
There has been great effort not only to develop new drugs, but
also to conclude how the consisting ingredients exhibit their
activities. S. miltiorrhiza has been widely used in eastern
countries, especially in China, to treat miscellaneous diseases

for its extraordinary pharmacological actions, including free
radical scavenging, anticoagulation, and vasodilatation.

Tan IIA is an effective component in the extract of S.
miltiorrhiza Bunge, which has been diffusely used in TCM
exercise for more than thousand years to treat diverse diseases.
It significantly induced apoptosis on a panel of cancer cells, such
as leukemia, lung cancer, hepatocellular carcinoma, gastric
carcinoma, colorectal cancer, glioma, osteosarcoma, cervical
cancer, ovarian cancer, breast cancer, and prostate cancer.

Overall, Tan IIA has remarkable prohibitive effect on a variety
of tumor cells and its possible mechanism involves regulating cell
cycle, inhibiting cell diffusion, inducing apoptosis and differentiation,
inhibiting tumor aggression and diversion, inhibiting angiogenesis
and reversing tumor MDR, and so on. Tan IIA, as a sort of medicine
possessingmultiple pharmacological actions, has the characteristics of
high efficiency, low toxicity, and natural source and possessed
considerable potential value clinically. The combination of tan IIA
and other clinical commonly chemotherapeutic drugs could enhance
the therapeutic effect of chemotherapeutic drugs, which makes tan
IIA have a good application prospect in tumor therapy and adjuvant
therapy and also provides a new idea for various cancer treatment.
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