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Objective. 'e concentrations of endogenous metabolites in saliva can be altered based on the systemic condition of the hosts and
may, in theory, serve as a reflection of systemic disease progression. Hemoglobin A1C is used clinically to measure long-term
average glycemic control. 'e aim of the study was to demonstrate if there were differences in the salivary metabolic profiles
between well and poorly controlled type 1 and type 2 subjects with diabetes. Subjects and Methods. Subjects with type 1 and type 2
diabetes were enrolled (n= 40). 'e subjects were assigned to phenotypic groups based on their current level of A1C: <7 =well-
controlled and >7 = poorly controlled. Demographic data, age, gender, and ethnicity, were used to match the two phenotypic
groups. Whole saliva samples were collected and immediately stored at −80°C. Samples were spiked using an isotopically labeled
internal standard and analyzed by UPLC-TOF-MS using a Waters SYNAPT G2-Si mass spectrometer. Results. Unsupervised
principal components analysis (PCA) and orthogonal partial least squares regression discrimination analysis (OPLS-DA) were
used to define unique metabolomic profiles associated with well and poorly controlled diabetes based on A1C levels. Conclusion.
OPLS-DA demonstrates good separation of well and poorly controlled in both type 1 and type 2 diabetes. 'is provides evidence
for developing saliva-based monitoring tools for diabetes.

1. Introduction

Saliva is a readily available biological fluid that can be ob-
tained noninvasively with moderate training and is cost-
effective for screening large populations [1]. Saliva’s chief
advantages over other biospecimens include that it is easy to
collect, ease of collection, minimally invasive for patients
and study participants who may be adverse to blood col-
lection, and achievable in study sites where more invasive
samples are not safe or feasible. Saliva contains an array of
proteins and metabolites that are secreted from salivary
glands, oral mucosa, and gingival crevice fluid (GCF), as well

as from the upper respiratory tract and possibly the gas-
trointestinal tract [2]. Proteins and metabolites may differ
based on the gland saliva is collected from, and systemic
conditions such as cancer, HIV, and periodontal disease
each manifest differently in an individual’s salivary profile
[1, 3–6]. Over the past 2-3 decades, attempts have been made
to measure salivary transcriptomes, proteomes, and
metabolomes in order to identify differences between
healthy and diseased subjects [7–11]. It is important to
emphasize that inflammation can link systemic changes to
oral conditions. A systematic review suggested that there is a
link between patients’ oral conditions, in particular their
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microbiome, and systemic condition [12]. Oral-systemic
connections can be seen in periodontal disease [13].
Upregulation of inflammatory markers or cytokines can be
linked to the activation of nuclear factor-kappa B (NF-κB)
via upregulation of proteins such as transglutaminase 2 [14].
An early detection of a certain biomarker can be reflective of
oral and systemic conditions [14].

For patients suffering from diabetes mellitus, main-
taining one’s glucose level can reduce the risk of diabetes-
related complications and improve quality of life [15].
Glucose levels in people with diabetes have traditionally
been assessed bymeasuring hemoglobin A1c (HbA1c) levels,
which serve as a proxy for average glucose levels over the
past 3 months, the typical red blood cell lifetime [15, 16].'e
HbA1c level is used to diagnose and monitor progression of
diabetes; diabetes is defined as having HbA1c levels of ≥6.5%
[17]. Among people with diabetes, the level of disease control
can be stratified into two groups: poorly controlled diabetes,
defined as having an HbA1c level of ≥9.5%, and well-con-
trolled diabetes, defined as having an HbA1c level of ≤7.5%
[18].

Our group along with others recently showed that sig-
nificant proteomic differences exist in people with diabetes
as compared to healthy controls [19–22]. More importantly,
salivary proteomes appear to be altered based on systemic
changes from healthy to prediabetics to full diabetes [19].We
also found changes in salivary proteomes in type 1 and type 2
diabetes based on their A1C values [20]. Similar to pro-
teomics, methods in metabolomics have recently been in-
troduced to define salivary metabolites. Salivary metabolites
and metabolomic changes are associated with several dis-
eases, including multiple types of cancers and periodontal
disease [6, 23]. Levels of salivary metabolites have been
associated with diabetes development [24]. However, little is
known about the differences in the salivary metabolomics
profiles of type 1 and type 2 diabetes based on the level of
glycemic control measured by HbA1c.

Here, for the first time we provide a comparison of
metabolomics profiles of well and poorly controlled type 1
and type 2 diabetes. 'e rationale for the study was that the
changes in the HbA1c levels would trigger changes in serum/
plasma, which in turn affect the salivary metabolomic
profiles, possibly through secondary mechanisms such as
inflammatory responses.'is pilot study provides promising
supportive evidence for saliva as a diagnostic fluid for di-
abetic progression and treatment responses.

2. Materials and Methods

2.1. Subject Recruitment and Sample Collection. 'e study
protocol was approved by the Office of Human Research
Ethics, the University of North Carolina (UNC) Institutional
Review Board (IRB), No. 10–0492. All subjects were
recruited from the UNCDiabetes Care Center.'e inclusion
criteria included patients who were between the ages of 18
and 89 years, had been diagnosed with type 1 or type 2
diabetes, had come for a regular visit at the diabetes care
clinic, and had HbA1c tested at the visit. 'e exclusion
criteria included patients who were nondiabetic, patients

who were younger than 18 or older than 89, and patients
who refused to provide saliva samples. All subjects gave
written informed consent for saliva sample collection,
storage, and analysis for this study. Study participants’
names and other HIPAA identifiers were removed from this
report. No identified information in this work can be traced
back to any study participant. 'e saliva collection protocol
was described previously [20, 21]. About 2 hours before
sample collection, subjects were asked to refrain from
drinking, eating, and practicing any oral hygiene habits. 'e
sample collection was done between 9 am and 12 pm and
before lunchtime. 'e subject was asked to spit into a 15-ml
falcon tube within 30–60 minutes to provide about 4ml of
saliva samples. 'e falcon tube was then placed in a cen-
trifuge at 4,000 rpm at 4°C for 15 minutes to remove food
debris. About 750 ul of the supernatant was then aliquoted
into a 1.5ml cryotube.'e tube was then fast frozen in liquid
nitrogen and placed at −80°C for storage prior to analysis
[20, 21].

2.2. Broad-Spectrum Metabolomics. 'is study was con-
ducted using methods similar to those previously described
[25, 26]. A 100 µL aliquot of each study sample’s saliva was
used for analysis. In addition, a small aliquot of each study
sample extract was pooled to create a total pool sample. Total
pool samples were prepared identically to the individual
study samples and were analyzed at fixed intervals across the
run. All study samples were randomized for extraction. A
cold methanol with tryptophan-d5 internal standard (500 µl)
was added to each study and pooled the sample for protein
precipitation. After centrifugation at 16,000 rcf, 450 µl of
supernatant was lyophilized overnight and reconstituted in
100 µl of 95 : 5 water: methanol for broad-spectrum
metabolomics analysis.

Samples were analyzed on an SYNAPT G2-Si QTOF
mass spectrometer coupled to an ACQUITY UPLC (Waters
Corporation, MA). Prior to analyzing the study samples, the
column and the system were equilibrated with ten injections
of QC samples. 5 µl of the salivary extract was injected for
mass spectrometric analysis. Study samples were random-
ized, and QC pool samples were inserted in the analytical
run sequence following the injection of 3–5 study samples.
'e compounds were separated on a Waters ACQUITY
BEH HSS T3 column (2.1× 100mm, 1.8 µm particle size)
operating at 50°C using a reversed-phase chromatographic
method. A gradient mobile phase consisting of water with
0.1% formic acid (A) and methanol with 0.1% formic acid
(B) was used as previously described [27]. All MS data were
collected over 50–1000m/z in ESI-positive and negative ion
modes using an MSE data acquisition method. Leucine
enkephalin was used as the lock mass calibrant and a lock
mass scan was collected every 45 s and averaged over 3 scans
to perform mass correction. Source and desolvation tem-
peratures were set at 110°C and 450°C, respectively.

Unsupervised data analysis was first performed to see the
overall trend, pattern, and outliers. Later, to classify potential
biomarker metabolites, labeled-biomarker supervised data
analysis was performed. 'e raw mass spectrometric data
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were processed (alignment, normalization, and peak pick-
ing) using Progenesis QI (Waters Corporation). Multivariate
analysis (PCA and OPLS-DA) of the metabolomics data was
performed using SIMCA (Umetrics, Umea, Sweden) [28]. A
putative identification of the signals differentiating the study
groups was made using a database search against RTI-
RCMRC’s in-house exact-mass-retention-time library of
standards (890 compounds) and the Human Metabolome
Database (HMDB) release version 3.60.

3. Results

3.1. Subjects’ Demographics. All subjects were matched by
age, gender, and ethnicity (Table 1). Note that in this ex-
ploratory study, we only matched Caucasian subjects since
the number of subjects in other ethnicities was too small and
could not be matched. 'e HbA1c cutoff of 7 was used to
define well or poor glycemic control. However, the average
HbA1c in well-controlled was below 6.5 and the average
HbA1c in poorly controlled was higher than 9 (Table 1).

3.2. Analysis of Saliva Metabolomics. Saliva samples were
spiked with an isotopically labeled internal standard. Each
study sample was extracted with methanol and lyophilized
and randomized with quality control samples prior to
analysis by UPLC-TOF-MS on a Waters SYNAPT G2-Si
mass spectrometer [22, 23]. 'e data were processed using
Progenesis Qi Software, and multivariate analysis was
conducted using SIMCA 14. Unsupervised principal com-
ponent analysis (PCA) was first used to evaluate the quality
of the analysis by demonstrating that the QC pool samples
are tightly clustered and centered in the middle of the
samples from where they were derived (Figure1(a)). Un-
supervised PCA analysis did not reveal good differentiation
between the well and poorly controlled diabetes (type 1,
Figure 1(b); type 2, Figure 1(c)). A supervised method
(Orthogonal Projections to Latent Structures Discriminant
Analysis, OLPS-DA) was used to examine possible rela-
tionships among the metabolites in each type of diabetes.
OLPS-DA could differentiate the well and poorly controlled
groups (Figures 1(d) and 1(e)) creating a signature of signals
that best define these groups. Tables 2 and 3 demonstrate the
biomarker metabolites differentially expressed in poorly
controlled vs. well-controlled type I and type II diabetes,
respectively.

4. Discussion

'e results demonstrated, for the first time, the salivary
metabolomic profiles of type 1 and type 2 diabetes based on
different levels of HbA1c levels. 'is is an important finding
highlighting the possibility of using salivary metabolites to
monitor diabetic conditions. Advancements in the fields of
serum proteomic and metabolomic profiling have afforded
the use of blood as a diagnostic tool for diabetes [24, 29–31].
However, the use of saliva as a diabetes diagnostic tool has
been minimally researched. Previously, we have demon-
strated that patients with type 1 and type 2 diabetes have a
significantly different salivary proteomic profile based on

HbA1c levels. [20] In addition, we have shown that patients
with diabetes have significantly higher levels of diabetes-
related inflammatory biomarkers and lower levels of other
biomarkers [21]. 'ese salivary biomarker profiles may
mimic the changes found in serum. Previous literature re-
garding salivary proteomic differences in patients with di-
abetes is limited. In accordance with our previous study,
Bencharit et al. [20] found a significant difference in bio-
marker profiles in both types of diabetes based on the
subject’s HbA1c, specifically with proteins involved in
metabolism and immune response [32]. Additional research
suggests that type 1 diabetes compared to controls has
significantly higher levels of proinflammatory biomarkers
[22]. In terms of salivary metabolomics, Barnes et al.
demonstrated a difference in metabolite profiles for patients
with type 2 diabetes compared to controls [33]. However, the
difference in metabolomic profiles between “poorly” and
“well-controlled” type 1 and type 2 diabetes has, to our
knowledge, never been investigated. In this exploratory
study, we have shown that type 1 and type 2 “poorly” and
“well-controlled” diabetes can be differentiated based on
salivary metabolomics profiles. Furthermore, these differ-
ences in salivary metabolomic profiles may suggest bio-
chemical processes are different in people with diabetes
based on the level of glycemic control.

'e main limitation of this study was the small study
population used. Current research into salivary metab-
olomics in people with diabetes using a large sample size is
nonexistent. We also limited our study to the Caucasian
population to minimize variability. Previous research has
used sample sizes of less than 50, which exacerbates the
problem of variability between individuals’ salivary protein
profiles. 'us, the results of this study and other similar
studies are limited in applicability until large-scale patient
populations are studied. In addition, metabolites in serum
are usually highly regulated within a certain range in the
population. 'us, serum metabolomics profiling is repro-
ducible and has successfully been applied to the diagnosis of
Alzheimer’s disease, bipolar disorder, autism, and schizo-
phrenia [34]. On the contrary, the physiological ranges of
salivary metabolites are much wider than those in serum. In
addition, two healthy subjects can have different baseline
values for each salivary metabolite. 'is presents challenges
in reproducibility due to subject-to-subject metabolomic
profile variability. It is also important to note here that we
use A1C� 1 as a cutoff to define well (A1C< 7) and poorly
(A1C> 7) controlled diabetes to select the subjects. How-
ever, in the well-controlled groups, the A1C is 6.31± 0.29
and in the poorly controlled group, the A1C is 9.44± 0.78.
'e values are aligned with other clinical recommendations
and studies [35, 36].'e A1C of 6.5 or lower represents a low
risk or well-controlled diabetes [35], whereas A1C> 9
represents poorly controlled diabetes [36].

Orthogonal Projections to Latent Structures Discrimi-
nant Analysis (OLPS-DA) is a supervised statistical tech-
nique that determines the best difference between the
phenotypic groups, as opposed to the unsupervised principal
component analysis (PCA). OPLS-DA ideally allows for
improved biomarker discovery via differentiating groups
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Table 1: Demographic data of subjects.

Type Glycemic control∗ Gender ratio (n� 10) Age A1C
Female/male Average Standard deviation Average Standard deviation

Type 1 Well-controlled 4/6 44.3 14.95 6.27 0.4
Poorly controlled 4/6 45.9 21.14 10 2.25

Type 2 Well-controlled 4/6 59 7.7 6.31 0.29
Poorly controlled 4/6 56.3 6.67 9.44 0.78

∗A cutoff point of A1C� 7 was used to determine glycemic control in this study.
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Figure 1: Continued.
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Figure 1: Salivary metabolomics for diabetes. (a) Unsupervised multivariate analysis (PCA) of type I and II diabetes salivary samples with
pooled quality control samples tightly clustered and centered; unsupervised PCA analysis did not differentiate poorly and well controlled
type I (b) and II (c) diabetes salivary samples; (d) supervised analysis (OPLS-DA) of type I diabetes (d) and type II (e) saliva samples
differentiated these poorly and well controlled subjects saliva samples.

Table 2: Summary of salivary metabolites differentially expressed in poorly controlled vs. well-controlled type I diabetes.

Metabolite compound ID VIP P value∗ Fold change∗∗

(1967 peaks) 0.1–2.4 0.001–1 −475, −733.6
(4Z)-4-(3,3-Dimethyltriazanylidene)-4H-imidazole-5-carboxamide 1.4 0.016 1.5
17β-Estradiol 3-benzoate 1.5 0.101 1.4
2-Isopropyl-4a-methyl-8-methylenedecahydro-1-naphthalenol 1.3 0.118 −3.8
2-Methyl-3-ketovaleric acid 1.2 0.302 −1.3
2-Oxo-4-methylthiobutanoic acid 1.4 0.044 1.7
5,6-Dihydrouridine 1.1 0.212 1.3
APGPR enterostatin 1.3 0.173 −2
Androsterone glucuronide 1.1 0.234 2
Coumarin 1.1 0.081 2.7
Cytidine monophosphate N-acetylneuraminic acid 1.4 0.359 −1.6
D-Arginyl-L-arginyl-D-isoleucine 1.1 0.308 −1.3
DG (14:1/25:0/0:0) 1.4 0.177 −1.9
DL-Glutamine 2 0.051 1.2
DL-Asparagine 1.6 0.062 −1.5
Deoxypyridinoline 1.4 0.136 1.5
Dopamine 1 0.91 1
Edoxudine 1.7 0.026 −1.3
GPA (4:0/18:3) 1.6 0.068 1.5
GPSer (9:0/12:0) 1.8 0.049 2.1
Glycyl-phenylalanine 1.2 0.434 1.2
Glycylproline 1.8 0.086 1.3
L-Acetylcarnitine 1.1 0.567 −1.2
L-Proline 1.5 0.105 1.4
N-Acetyl-L-phenylalanine 1.2 0.761 1.1
N-Glycolylneuraminic acid 1.7 0.041 2.7
N6-Acetyl-L-lysine 1 0.766 −1.1
Ne, Ne dimethyllysine 1 0.927 1
PE (24:0/18:2 (9Z,12Z)) 1.9 0.044 −2.3
Paramethasone 1.1 0.578 1.2
Salicylic acid 1 0.268 1.7
Stearic acid 1.7 0.037 −1.7
Tyrosyl-proline 1.8 0.015 1.9
∗ t-test with Satterthwaite correction. ∗∗A positive fold change indicates mean of poorly controlled>mean of well controlled. VIP, variable influence on
projection.
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and is useful when dealing with datasets with a large number
of correlated variables such as metabolites [37]. Unlike PCA
which considers each biomarker as an independent variable,
OPLS-DA considers all variables have some interdepen-
dency. 'is results in a variable importance plot (VIP) value
that indicates the variables’ importance in differentiating the
groups.

Future studies should include a replication of this study
with a larger population.We propose to conduct an in-depth
analysis to identify signals as salivary biomarkers associated
with worsening glycemic control which may be related to
diabetic-associated clinical symptoms or complications. We
also propose to target certain salivary metabolites in patients
with type 1 and type 2 diabetes to further develop novel
noninvasive saliva-based analytical tools.

Measuring blood glucose levels can be painful, costly, and
bothersome for people with diabetes. Identifying biomarkers

in saliva associated with poor glycemic control may provide
an alternative avenue for diabetes management. Good gly-
cemic control may reduce diabetes-related complications and
improve quality of life. 'us, a simpler method for measuring
glycemic control would be an attractive opportunity for
people with diabetes and health professionals alike. A device
to quantitatively measure salivary biomarkers [9–11, 37]
would allow for a simpler evaluation of an individual’s gly-
cemic control. An accurate, biomarker-specific, and cost-
effective tool could revolutionize diabetes management by
using saliva as a diagnostic tool.

5. Conclusion

Salivary metabolomic profiles can differentiate well-con-
trolled lowHbA1c levels from poorly controlled high HbA1c
levels in both type 1 and type 2 diabetes. Saliva metabolites

Table 3: Summary of salivary metabolites differentially expressed in poorly controlled vs. well-controlled type II diabetes.

Metabolite compound ID VIP P value∗ Fold change∗∗

1490 peaks 0.2–2.4 0.002–0.999 −107, −382
(2S)-3-Hydroxy-1,1-dimethyl-2-pyrrolidiniumcarboxylate 1.6 0.075 −1.5
(3α,4β,8α,12R)-15-Acetoxy-3,4-dihydroxy-12,13-epoxytrichothec-9-en-8-yl 3-methylbutanoate 1.2 0.792 1.1
(3beta)-Gonan-3-yl beta-D-glucopyranoside 1.5 0.302 −1.1
(4Z)-4-(3,3-Dimethyltriazanylidene)-4H-imidazole-5-carboxamide 1 0.344 96.7
(6E)-3,7,11-Trimethyl-6,10-dodecadien-1-yl dihydrogen phosphate 1.4 0.211 −1.2
2,3-Dinor-6-keto-prostaglandin F1 a 1.4 0.364 −1.2
2-Isopropyl-4a-methyl-8-methylenedecahydro-1-naphthalenol 1.5 0.117 10
2-Oxo-4-methylthiobutanoic acid 1.9 0.093 −1.4
3-Hydroxycoumarin 1.3 0.427 −1.1
3-Hydroxybenzoic acid 1.6 0.267 −1.3
3-Hydroxyhexadecanoylcarnitine 1.4 0.362 −1.2
8-Isoprostane 1.6 0.159 −1.2
Androsterone glucuronide 1.3 0.616 −1.1
Arginyl-aspartate 2.1 0.023 −1.4
Coumarin 2 0.038 −3.1
DL-Serine 1.7 0.07 −1.4
Deoxypyridinoline 1.6 0.054 1.4
Endomorphin-2 1.2 0.734 1.1
GPA (4:0/18:3) 1.2 0.638 −1.1
Hippuric acid 1.6 0.108 −1.3
L-Valine 2.1 0.037 −1.3
Lauramide 1.4 0.339 −1.1
LysoPE (0:0/16:0) 1.1 0.902 −1
Lysyl-asparagine 1.3 0.351 −1.2
MG (11:0/0:0/0:0) 1.5 0.154 −1.4
MGDG (20:5/14:1) 1.6 0.236 −1.2
MGDG (4:0/5:0) 2.3 0.013 −1.5
Methylimidazoleacetic acid 1.9 0.034 1.7
N-Glycolylneuraminic acid 1.2 0.264 2.3
N-Methylserotonin 2.1 0.016 −1.5
N6,N6,N6-Trimethyl-L-lysine 1.6 0.118 −1.6
Neurine 1.2 0.923 1
Pyrimidine 1.8 0.043 1.8
Pyrrolidine 1.2 0.587 −1.2
Saccharopine 1.9 0.065 −1.3
Salicylic acid 1.4 0.17 −1.3
Stearic acid 1.6 0.071 2.4
Ureidosuccinic acid 1.5 0.168 −1.3
Lauryl sulfate 1.6 0.105 −1.4
∗ t-test with Satterthwaite correction. ∗∗A positive fold change indicates mean of poorly controlled>mean of well-controlled.
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may in the future be developed as a noninvasive tool for
monitoring diabetic-related glycemic control.
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