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Abstract: Malignant pleural mesothelioma (MPM) is a rare neoplasm, mainly caused by asbestos
exposure, with a high mortality rate. The management of patients with MPM is controversial due
to a long latency period between exposure and diagnosis and because of non-specific symptoms
generally appearing at advanced stage of the disease. Breath analysis, aimed at the identification of
diagnostic Volatile Organic Compounds (VOCs) pattern in exhaled breath, is believed to improve
early detection of MPM. Therefore, in this study, breath samples from 14 MPM patients and 20 healthy
controls (HC) were collected and analyzed by Thermal Desorption-Gas Chromatography-Mass
Spectrometry (TD-GC/MS). Nonparametric test allowed to identify the most weighting variables
to discriminate between MPM and HC breath samples and multivariate statistics were applied.
Considering that MPM is an aggressive neoplasm leading to a late diagnosis and thus the recruitment
of patients is very difficult, a promising data mining approach was developed and validated in order
to discriminate between MPM patients and healthy controls, even if no large population data are
available. Three different machine learning algorithms were applied to perform the classification task
with a leave-one-out cross-validation approach, leading to remarkable results (Area Under Curve
AUC = 93%). Ten VOCs, such as ketones, alkanes and methylate derivates, as well as hydrocarbons,
were able to discriminate between MPM patients and healthy controls and for each compound which
resulted diagnostic for MPM, the metabolic pathway was studied in order to identify the link between
VOC and the neoplasm. Moreover, five breath samples from asymptomatic asbestos-exposed persons
(AEx) were exploratively analyzed, processed and tested by the validated statistical method as
blinded samples in order to evaluate the performance for the early recognition of patients affected
by MPM among asbestos-exposed persons. Good agreement was found between the information
obtained by gold-standard diagnostic methods such as computed tomography CT and model output.
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1. Introduction

Malignant pleural mesothelioma (MPM) is a rare neoplasm mainly correlated to asbestos exposure.
Asbestos mainly refers to six fibrous silicate minerals (chrysotile, amosite, crocidolite, anthophyllite,
tremolite and actinolite) and it was widely used in building construction during the 20th century due
to its strong chemical, abrasion and fire resistance [1,2]. In the last few decades, the production and
the commercial use of asbestos have been banned in Europe [3–5] because it is known that asbestos
is so carcinogenic that all asbestos fibers are classified in group 1 by the International Agency for
Research on Cancer (IARC) of the World Health Organization (WHO) [6,7]. However, although the
use of asbestos in developed countries has been banned since 2005, MPM is still a major public health
issue. Indeed, its incidence is steadily increasing worldwide and substantial decreases are not expected
before 2025 because of the long latency of the disease, up to 40 years between asbestos exposure and
the onset of mesothelioma [8–10]. Moreover, the reported median survival for MPM is less than 1 year,
with a 5-year survival rate below 5%. This dismal prognosis is mainly due to generally late diagnosis in
advanced stages, and invasive diagnostic procedures such as a tissue biopsy obtained by thoracoscopy
are often necessary to discriminate benign conditions from uncertain and/or neoplastic pleural lesions.
Hence the need for a non-invasive and reliable method based on the identification of a disease-related
biomarker or pattern of biomarkers correlated to the disease-risk [11].

In the last few decades, the use of a breath test based on the determination of VOCs concentrations
has proven to be a promising and challenging research field for early detection of cancer. This screening
method is non-invasive, simple, fast, safe for the patient and for the medical staff and could be
a promising tool for screening and early diagnosis of MPM. In fact, it is well documented that asbestos
inhalation determines the production of cytokine and reactive oxygen species (ROS), therefore inducing
lipid peroxidation of the mesothelial cell wall, mutagenic DNA lesions and thus, malignant pleural
mesothelioma [12]. VOCs deriving from these biological processes could be transported through the
bloodstream to the lungs, where they enter the alveoli by the alveolar gas exchange mechanism and
thus, are exhaled in the breath. Therefore, VOCs profile in breath may reflect changes in the subject’s
health status [13–15].

However, to date very few studies have addressed determination of VOCs in human breath samples
for MPM diagnosis. Among these, several studies were conducted using innovative, user-friendly
and online technologies such as multicapillary column-ion mobility spectrometry (MCC/IMS) and
sensors such as e-nose [16–22]. Dragonieri et al. [16] and Chapman et al. [17] were able to use e-nose to
discriminate between MPM patients and controls with 92.3% and 90% sensitivity, analyzing 13 and
20 MPM patients’ breath samples, respectively. By using ion mobility spectrometry (IMS), Cakir et al.
discriminated between 25 patients affected by asbestos-related diseases and 12 healthy controls (HC),
with 99.9% accuracy [18]. In the same way, Lamote et al. analyzed breath samples collected from
23 MPM patients, 20 asbestos-exposed subjects and 21 healthy controls (HC) by using MCC/IMS,
discriminating among different groups with 87% sensitivity [19]. Subsequently, the same research
was extended to a larger data population discriminating between MPM and HC groups with 89%
sensitivity [20]. Although easy to use, the instrumentations used in the above-mentioned studies were
not able to identify VOCs or patterns of VOCs characterizing the disease. In fact, the gold standard
analytical technique for this purpose remains gas-chromatography coupled with mass spectrometry
combined with a thermal desorber (TD-GC/MS). To the best of our knowledge, only two studies have
addressed the identification of VOCs in breath samples by using TD-GC/MS for early detection of MPM.
Firstly, de Gennaro et al. discriminated between MPM patients and healthy volunteers with 97.4%
accuracy starting from the analysis of breath samples collected from 13 MPM patients and 13 healthy
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not-exposed controls [21]. Secondly, Lamote et al. validated eNose against GC-MS, identifying VOCs in
the exhaled breath of 14 healthy controls, 19 asymptomatic former asbestos-exposed (EXP) individuals,
15 patients with benign asbestos-related diseases (ARD) and 14 MPM patients [22]. Therefore, taking
into account that MPM is a rare and aggressive neoplasm making patient recruitment difficult, this study
aims to identify a distinct mesothelioma-related VOCs profile through breath analysis by developing
and validating a promising data mining approach able to discriminate between MPM patients and
healthy controls, even if no large population data are available.

2. Materials and Methods

2.1. Study Design and Participants

A cross-sectional and case-control study was conducted after approval by the Ethical Committee
of the IRCCS-Istituto Tumori “Giovanni Paolo II” in Bari, Italy on 14 January 2019 (Prot. No. 679/CE).
A total of 39 adult subjects aged between 49 and 82 were recruited from the Thoracic Oncology Unit
after a computed tomography (CT) scan or chest radiograph confirming healthy conditions for all
volunteers and before starting pharmacological treatment for advanced MPM patients. According
to specific inclusion criteria, subjects affected by upper or lower respiratory tract infection during
the last 4 weeks before the breath sampling, asthma, chronic obstructive pulmonary disease and
systemic diseases, such as diabetes and malignancy, were not included in the study. As a consequence,
the groups of recruited subjects were not completely matched for age due to difficulty in recruiting
older volunteers without significant comorbidities as healthy controls. Demographic information and
detailed data about medical conditions (potential comorbidities and pharmacological treatments),
habits (smoking behavior) and previous asbestos exposure were collected and recorded on tailored
questionnaires for all recruited volunteers (Table 1). All volunteers gave written informed consent
before inclusion in the study and refrained from eating, drinking and smoking for at least 12 h before
breath sampling.

Table 1. Patient characteristics.

Variation MPM * HC * AEx *

Subject 14 20 5
Male/female 6/8 10/10 2/3

Age 73.6 (57–82) 53.6 (37–68) 63.5 (53–81)
Body Mass Index 24.9 24.0 24.4

BMI (Kg/m2) (19.2–29.4) (21.6–27.8) (20.8–25.9)

Smoking status
Current 0 3 (15%) 0

Ex 4 (29%) 4(20%) 2 (40%)
Never 10 (71%) 13 (65%) 3 (60%)

Pack/years 34.7 (19–62) 40.5 (21–73) 36.2 (32–55)

* MPM: malignant pleural mesothelioma patients; HC: healthy controls; AEx: asymptomatic former
asbestos-exposed individual.

2.2. Breath Sample Collection and Analysis

Exhaled breath collection was standardized for all subjects and was carried out in the same
room of the Thoracic Oncology Unit where the volunteers remained for at least 10 min before breath
collection so that an equilibrium was created between the lung and ambient air. More specifically,
the volunteers breathed calmly through a mouthpiece with the nose clipped and slowly exhaled the
full expiratory vital capacity. The procedure was repeated 2–3 times after 2 to 5 min of rest to fill the
entire volume of the inert 3 L-Tedlar bags (Restek Corporation, Bellefonte, PA, USA). A statistical
analysis was conducted before the study to evaluate the background VOCs of Tedlar bags used in this
study and the most effective approach to reduce it. This consisted of filling ten different bags with



Cancers 2020, 12, 1262 4 of 15

wet high-purity grade air and measuring the VOCs content over the time and in different cleaning
conditions. The VOCs background, mainly characterized by Phenol, CS2 and N,N-dimethylacetamide,
drastically decreased after use. Moreover, memory effects were excluded when bags were flushed
three times with high-purity grade inert gases and conditioned at a temperature higher than 40 ◦C.
Therefore, in order to guarantee a minimum medium background, before using, bags were purged
three times with high-purity grade air (S.I.A.D. S.p.A, Bergamo, Italy), then conditioned at 50 ◦C
and finally flushed with another 3 L of ultrapure air. After breath collection, samples were either
promptly transferred to a sorbent tube or sample bags were stored at room temperature and protected
from direct sunlight and heat sources for a time period not longer than 1 h before the breath sample
was transferred to a sorbent tube. In order to improve the breath analysis performance by making
the analytical approach more specific for breath samples, the whole methodology, including VOCs
sampling and pre-concentration on sorbent tube followed by thermal desorption and determination of
VOCs by GC/MS analysis, was revised with respect to that reported in the previous works published
by de Gennaro et al. [21,23]. In particular, more specific adsorbents for packing sorbent tubes and
a cold trap were chosen in order to better manage wet samples. Moreover, a new chromatographic
column and the optimization of TD-GC/MS parameters made it possible to analyze a wide range of
VOCs useful for breath analysis. More specifically, two-bed sorbent tubes packed with Tenax TA and
Carbograph 5 TD were used to collect exhaled VOCs (Bio-monitoring steel tube, Markes International
Ltd., Llantrisant, UK), while a cold trap specific for wet samples (U-T4WMT-2S Water Management,
Markes International Ltd., Llantrisant, UK) was used to trap organic compounds between ethane and
C20 in a narrow band at the head of the column and a diphenyl dimethyl polysiloxane capillary column
was used for VOCs speciation (VOCOL®-Supelco). Analysis of VOCs was carried out using a thermal
desorber (TD) Unity 2 (Markes International Ltd., Llantrisant, UK) coupled with a gas chromatographer
GC-Agilent 7890 and a mass spectrometer MS-Agilent 5975 (Agilent Technologies, INC. Santa Clara,
CA, USA). The operating conditions of analysis are reported in Table 2. The GC-MS chromatograms
were analyzed using the GCMS post-run analysis program and 103 VOCs were identified through
spectral library matching (Compounds library of the National Institute of Standards and Technology,
Gaithersburg, MD 20899-1070 USA) and through comparison with GC-MS chromatograms obtained
by analysis of standard solutions of VOCs (Ultra Scientific Cus-5997). Among the identified VOCs,
compounds linked to the Tedlar bags background were excluded, while VOCs related to ambient
air contaminations, even if evaluated, were preliminarily used in data analysis in order to consider
their potential contribution by discriminating between MPM patients and healthy controls, taking into
account the hypothesis that exogenous VOCs could be differently catabolized by patients affected
by cancer.

Table 2. Operative condition of TD-GC/MS analysis.

Step Parameters Value

Tube desorption Purge time 3 min at 5 mL/min–trap in line
Desorption time 10 min

Desorption temperature 300 ◦C
Temperature of cold trap 20 ◦C

Desorption flow 30 mL/min, no split

Focusing trap desorption Temperature of cold trap desorption 300 ◦C
Split low 5 mL/min

Transfer Line Temperature 200 ◦C

GC analysis Gas carrier He
Gas flow 1.7 mL/min

Analytical column
VOCOL® (Supelco), diphenyl dimethyl polysiloxane

with crosslinking moieties, 60 m × 0.25 mm ID,
1.5 µm stationary phase thickness

Oven temperature

37 ◦C hold for 5 min
37–190 ◦C at 6 ◦C/min

190–200 ◦C at 2 ◦C/min
220–220 ◦C at 15 ◦C/min

220 ◦C hold for 3 min
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2.3. Statistical Data Analysis

Statistical data analysis was carried out using the R studio interface, version 3.6.1 (R foundation
for statistical Computing, Vienna, Austria), starting from the peak area related to each detected VOC.
A total of p = 103 compounds was identified in each chromatogram obtained from breath samples’
analysis. We applied a machine learning framework with three classifiers to discriminate the MPM
patients from the controls. The aim of this approach is two-fold: (i) to investigate the predictive power
of the compounds in classifying the two populations, and (ii) to identify the most predictive features
among the total set of compounds.

An overview of the framework is shown in Figure 1. We applied a cross-validation scheme to
quantify the predictive ability of the statistical model. In k-fold cross-validation, the whole dataset is
partitioned into k parts with k analyses, where k − 1 folds are used for training while the omitted part is
involved in the test. Here, a leave-one-out cross-validation (LOOCV) scheme was adopted. It represents
a special case of k-fold cross-validation with k = N, N being the number of observations. This validation
scheme is particularly appealing when the dataset is small in size in order to maximize the size of the
training set. The application of LOOCV requires N analyses, each corresponding to a specific round of
the cross-validation. In each round, we used N-1 samples to train three classifiers, select sub-samples
of the compounds in order to identify the most significant set of compounds by means of a features’
selection technique and test the independent left out-of-sample subject. In particular, a “stepwise”
training procedure was applied to evaluate the predictive power of the ranked subset of compounds.
This approach involves a feature ranking algorithm and the evaluation of stepwise models trained
for ranked subsets of increasing size (e.g., the top 5, 6, 7, and so on, up to P ranked features). It was
introduced to identify the subset of features that maximizes the accuracy of the classification algorithm
and it has proven to be an effective method in case of collinearity between features and high data
dimensionality (i.e., P >> N) [24].
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In this work, we compared three classifiers: Naive Bayes (NB) [25], Support Vector Machine
(SVM) [26] and Random Forest (RF) [27]. These approaches are based on different assumptions and
use distinct formulations to implement instance classifications. As an example, all the methods achieve
high performance even with non-linear dependence between features, but SVM and RF are able to
cope with the multicollinearity problem, unlike the NB method, which assumes independent variables.

In order to perform an exploratory analysis on the predictive features selected by the different
classifiers, we chose algorithms with interpretable outcomes. Indeed, both filter and embedded feature
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selection techniques were implemented to select the most predictive features. Filters evaluate each
feature without interaction with classifiers by using several criteria related to correlations among
features or the amount of shared information, while embedded methods incorporate variable selection
as part of the training process [28]. Both the SVM and RF models support embedded feature selection
methods. We applied Recursive Feature Elimination (RFE) [29] for the SVM classifier and the Gini
Index [30] for RF. For the Naive Bayes classifier, we applied a filter approach by using only the most
significant features resulting from the Wilcoxon rank sum test in each iteration. It is worth noting that
for all the methods, the output of the analysis is the number of non-redundant features to consider to
yield the best performance of the models.

In order to evaluate the classification performance, the false positive rate (FPR) was computed as:

FPR =
FP

FP + TN

and the true positive rate (TPR) as:

TPR =
TP

TP + FN

where TP are the true positive samples, TN the true negative samples, FP are the false positives and FN
are the false negative samples at the end of the N iterations. A receiver operating characteristic ROC
analysis was carried out to highlight the accuracy of the classification algorithms at various threshold
settings. We also computed the area under the ROC (AUC) as a comprehensive index of classification
performance [31].

The machine learning framework provides a binary decision system with multivariate input and
offers the important advantage of translating the binary decision value (i.e., 0/1) into a numerical
probability score that identifies the probability that a given sample belongs to each of the two classes.
In this work, we also used the ensemble of the best N models to evaluate the risk score for a group of
exposed subjects. A consensus of the N probability scores were obtained to create the final score for
each subject.

3. Results and Discussion

3.1. Discrimination between Malignant Pleural Mesothelioma Patients and Healthy Controls

Figure 2 shows the ROC curves resulting from the best stepwise model of each classifier. The AUC
values are reported in Table 3.Cancers 2020, 12, x 7 of 15 
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Table 3. AUC values resulting from the three classification models.

Naive Bayes SVM RF

0.80 0.83 0.93

The Random Forest algorithm outperformed the other methods. This classifier is an ensemble
learner of tree-structured base learners. Each tree individually predicts the target response while the
final predictions result from the average of the individual tree predictions [27]. It is a nonparametric
algorithm and the lack of a predefined form of the interactions between the features and the outcome
variable allows the complex interactions between predictor variables to be modeled automatically.

These advantages have been exploited in many applications in different clinical scenarios, making
this classifier one of the most popular for the development of computer-aided diagnosis (CAD)
systems [32]. Since RF proved to be the best classifier among the three models, we investigated the
most significant features ranked by the RF classifier. Indeed, an ensemble strategy should combine
different classification approaches with comparable performance. In this case, the other two classifiers
exhibit lower performance so they could prevail as a noise component in an ensemble logic resulting
in a less reliable CAD system.

Figure 3 shows the AUC values resulting from incremental values of the number of features
ranked by the RF model. As it can been noted, the first 10 features could be employed to reach the
maximum value of performance. These features are listed in Figure 4.
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In this study, a pattern of VOCs consisting of ketones, alkanes and methylate derivates,
and hydrocarbons was found to be discriminate between MPM patients and healthy controls, with 93%
accuracy. More specifically, as reported in Figure 4, the main VOCs identified as potentially diagnostics
were acetophenone, α-pinene, 1-hexonol-2-ethyl, p-benzoquinone, 2,2,4,6,6-pentamethyl-heptane,
1-propanol, benzonitrile, benzene, ethylbezene and toluene. Although numerous studies have reported
altered levels of VOCs in the breath of patients with lung cancer, to the best of our knowledge, only
two studies have identified a VOCs pattern in breath specific enough to discriminate between MPM
and healthy controls [18,21]. Moreover, even if the methodological approach used for breath sample
analysis significantly affects the obtained results, some VOCs determined in our study as potentially
diagnostic for MPM are coherent with those found by Lamote et al. [22] and de Gennaro et al. [21]
in their studies focused on mesothelioma (acetophenone, α-pinene, 1-hexonol-2-ethyl, benzonitrile,
toluene and 1-propanol). The other four VOCs, such as p-benzoquinone, 2,2,4,6,6-pentamethyl-heptane,
benzene and ethylbezene, have been, to date, reported as potentially diagnostic in previous studies
focused on lung cancer [14,18,21,33–40]. This result suggests that some VOCs found in human breath
are common markers for both LC and MPM and this could be explained by considering that these VOCs
probably originate from oxidative stress in the inflamed stroma. Moreover, among the studies on breath
analysis, very few have been focused on the identification of metabolic pathways determining VOCs
or altered patterns of VOCs in the breath of patients affected by cancer. In fact, to date, the association
between cancer and the presence of specific VOCs in breath is reported as correlative or anecdotal,
and the link between metabolic pathways altered by cancer and VOCs exhaled by patients affected by
this pathology remain obscure [41]. This is even more the case for MPM that is a rare neoplasm still
little researched. Therefore, for this study, we have reviewed several papers focused on biochemical
processes probably activated by cancer in order to provide a comprehensive discussion on the potential
metabolic pathways determining the presence of VOCs in breath samples among those found as
markers of MPM in this study. It is easy to speculate that pathological processes such as metabolic
disorders determined by cancer can produce new VOCs or change the ratio between the VOCs that
are exhaled under normal conditions. It has been demonstrated that cancer alters or over-activates
several metabolic pathways, such as glycolysis and oxidative stress, thus affecting the presence of
VOCs in the different biological fluids. In fact, according to the well-known Warburg effect, even in
aerobic conditions, cancer cells tend to favor metabolism via glycolysis rather than the much more
efficient oxidative phosphorylation pathway [42,43]. This finding also explains the reason why the
cancer cells survive and proliferate in a hypoxic microenvironment. De Berardinis and Fan conducted
pioneering studies using 13C-glucose to investigate metabolic dysfunction of human lung cancer [44–47],
demonstrating that, as compared to healthy tissue, in cancer cells, the glucose metabolism through
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glycolysis prevails over the full oxidation of glucose in the mitochondria due to increased production
of ROS [48]. The high concentrations of mitochondrial ROS in the presence of lipids that can act as
electron acceptors suggests that the mitochondria could be an important site of lipid peroxidation.
In addition, mitochondria-derived ROS can diffuse into the cytosol and attack extra-mitochondrial
lipids, as well as other molecules and, consequently, several VOCs could be released due to peroxidation
of cancer-specific lipid species and/or due to ROS-mediated oxidation [49–51].

Regarding malignant pleural mesothelioma, it is well-know that asbestos is a fibrogenic and
carcinogenic dust and that exposure to these mineral dusts induces the generation of reactive oxygen
species that can damage macromolecules constituting cells such as phospholipids, proteins, enzymes
and DNA, thus affecting physiological processes and/or causing cell death [48–50]. Therefore, the altered
oxidative stress and the increased ROS concentration could produce high levels of oxidated organic
species such as acetophenone, p-benzoquinone, propanol and 1-Hexonol-2-ethyl in human breath
from MPM patients. For example, in several studies, acethophenone has been found to be a marker
of lung cancer and MPM [14,20,21,33,52,53]. Moreover, Mamatha et al. found an increased level
of acetophenone in the headspace of lung cancer cells as compared with cancer cell-free growth
medium [40,54,55]. This finding could be linked to phenylalanine hydroxylase enzyme (PAH) deficiency
due to oxidative stress, leading to the production of phenyl ketones by an alternative pathway to the
main one, therefore determining the catalytic conversion of L-Phe to L-Tyr [46]. In addition, oxidative
stress could also determine the conversion of benzene to phenol by means of oxygen and cytochrome
P-450, and by further oxidation in the presence of cytochrome P-450 to hydroquinone and then, to
p-benzoquinone [56–58].

Regarding alcohols, several studies have shown increased levels of 1-Hexonol-2-ethyl and
1-propanol in the headspace of different types of cancer cells as compared to the medium [36,38–40,52].
Moreover, 1-Hexonol-2-ethyl was also found exclusively in lung cancer patients’ saliva [59].
The presence of alcohols in breath is probably due to the metabolism of alkanes [40], that are
partially excreted into the breath within minutes due to their low solubility in blood as well as to their
oxidation to alcohols by cytochrome p450 (CYP450), a group of enzymes that are over-activated in cancer
tissue [59]. As alkanes result from lipid peroxidation resulting from oxidative stress, the increased level
of these two alcohols could be the result of increased oxidative stress and upregulated CYP450 [60,61].

Although hydrocarbon compounds such as benzene, ethylbenzene and toluene are exogenous
pollutants related to exposure to tobacco smoke, pollution and radiation, several studies focused on
breath analysis have found these VOCs as possible diagnostic biomarkers of cancer able to discriminate
between cancer patients and healthy controls. It is reasonable to assume that patients affected by
cancer have been exposed to excessive smoking and/or have experienced continuous occupational
exposure to such exogenous compounds thus, up-taking these compounds into the fatty tissues of the
body. These absorbed compounds could cause peroxidative damage to proteins, polyunsaturated fatty
acids PUFA, and DNA, leading to age-dependent diseases such as cancer; furthermore, they might
then be slowly and constantly released into the breath of patients affected by cancer. Even if hazardous
compounds and xenobiotics in the body are first functionalized by the cytochrome p450 enzyme
system, and then conjugated to a more soluble and excretable form by other enzyme systems, such as
glutathione transferases, sulfotransferases and N-acetyltransferases, the altered catabolism of these
compounds induced by cancer could probably determine their accumulation in the body and their
release into the breath [37,62]. Even if benzonitrile and α-pinene have been identified among VOCs
markers of MPM and lung cancer in several studies, further insights are needed to understand the
metabolic pathway and/or the altered catabolic pathway induced by cancer for determining the
presence of Benzonitrile and α-pinene in the breath of patients affected by lung and pleural neoplasms.

3.2. Independent Validation on Asymptomatic Former Asbestos-Exposed Subjects

Finally, in order to explore the potential application of the model proposed in this study for the
early detection of patients affected by MPM among asbestos-exposed subjects, five breath samples
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collected from asbestos-exposed volunteers without symptoms were also exploratively analyzed and
processed as blinded samples. We used the average value obtained from the test on models trained on
MPM/HC classes to obtain a prediction score on asymptomatic former asbestos-exposed individual
subjects. For each subject, the results were expressed in terms of the probability of belonging to the HC
or the MPM class given by the RF classifier.

Figure 5 shows the probability scores for the exposed subjects belonging to the HC or the MPM
class. Coherently with the statistical results, two of the five blind cases classified as “controls” by the
model proved to be healthy after more accurate diagnostic examination by CT scan. The second blind
case in Figure 5, classified as a pathological case with a probability score equal to 0.99, proved to be
affected by MPM, as confirmed by CT scan. Furthermore, the patients corresponding to the third
and fifth blind cases in Figure 5 were classified as pathological cases, probably due to the presence of
pleural plaques visible on the CT scan. The presence of pleural plaques could represent a diagnostic
challenge; in fact, this condition is generally correlated to asbestos exposure and its role as a risk factor
for mesothelioma is still controversial. While taking into account the possible influence represented
by the type of asbestos fibers and the exposure duration, as well as other factors such as smoking,
numerous studies suggest that the presence of pleural plaques, together with their size and extent,
may represent a risk factor for MPM [63–66]. Therefore, the group of asbestos-exposed subjects with
pleural plaques could represent a different risk-group to be evaluated.
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Although the study results are satisfying, we acknowledge some limitations. Firstly, as reported
above, the MPM, AEx and HC groups were not matched for age. The patients affected by MPM
were older than those in the other two groups due to the late diagnosis of MPM and because the
recruitment of age-matched healthy controls without significant comorbidities is usually difficult.
Even if age could be a confounding factor, some studies found that there was no correlation between
aging and VOCs in breath [20,35,67,68]. However, considering the promising results obtained until
now, the recruitment of patients and age-matched healthy controls is needed to optimize screening
and improve the research output.

Secondly, we cannot fully exclude the possibility that external VOCs could have influenced the
breath samples. However, in our opinion, the complete removal of environmental confounders is very
hard to achieve [20,22,69], and the inclusion of exogenous compounds in data analysis could provide
useful information about their kinetics, because inhaled VOCs, especially lipophilic compounds, can
be stored in the body’s fat compartments and slowly released over time in different ways by patients
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and healthy controls [70,71]. Finally, we performed a preliminary analysis on five AEx subjects in order
to explore the potential clinical application of the algorithm. We recognize that a new tailored model
for a real-at-risk population should be developed and trained on more samples in order to capture the
heterogeneity of asbestos-exposed persons, also considering the characteristics of asbestos exposure.
However, the preliminary results obtained by exploring prediction scores on asymptomatic former
asbestos-exposed individual subjects are encouraging enough to deserve the implementation of more
reliable screening programs.

In summary, taking into account that early detection in MPM is very challenging, on the basis of
the promising results obtained in this study, further research will be conducted in the framework of
the first Apulian Breath Analysis Center to be set up in the South of Italy. This research will aim to
extend this study on the external validation in a case-control series involving independent and in blind
patient cohorts, as well as following at-risk subjects over time. This will allow the identification of the
pattern of VOCs that is most responsive during the transition from chronic inflammation to malignant
pleural mesothelioma, demonstrating the clinical utility of the breath test.

4. Conclusions and Future Perspectives

Taking into account that MPM is a rare and aggressive neoplasm and that the recruitment of
MPM patients is very difficult due to late diagnosis, this study reported a promising data mining
approach which was developed and validated in order to discriminate between MPM patients
and healthy controls, even if large population data are not available. Three different statistical
classifiers with a leave-one-out cross-validation approach were applied to test and validate the
classification task, obtaining state-of-the-art results. Ten VOCs (ketones, alkanes and methylate
derivates, and hydrocarbons) were able to discriminate between MPM patients and healthy controls.
For each of them proving to be diagnostic for MPM, a potential metabolic pathway was analyzed
and studied in order to link VOCs to the investigated neoplasm. Moreover, five breath samples from
asymptomatic former asbestos-exposed (AEx) subjects were exploratively analyzed and processed
as blinded samples in order to evaluate the performance of the model for the early recognition of
patients affected by MPM among asbestos-exposed subjects. Interestingly, a good agreement was
found between the information obtained by gold-standard diagnostic methods such as CT and the
model output.

In conclusion, although the statistical approach in this study was developed and validated on
a small data sample, our results agree with the little previous research conducted on MPM and with
the majority of the results reported in the literature for lung cancer. The common markers detected in
human breath samples collected by both LC and MPM patients indicate that these VOCs originate
from oxidative stress in the inflamed stroma and thus, they are found in MPM, as in other cancers such
as lung cancer. Moreover, the results obtained in this study suggest that breath analysis is a promising
technique for the screening and early diagnosis of MPM due to its reliability and usefulness, as well as
its non-invasive and easy-to-use characteristics. Thus, based on these promising findings, this study
will be extended and further focused on the validation of our current results in an independent,
large-scale, multicenter series, including the monitoring of AEx subjects over time, and also thanks to
the recent institution of the first Apulian Breath Analysis Center in the South of Italy.
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