OPEN ACCESS **MOLECULES** ISSN 1420-3049 www.mdpi.com/journal/molecules

Article

Development and Molecular Characterization of 55 Novel Polymorphic cDNA-SSR Markers in Faba Bean (*Vicia faba* L.) Using 454 Pyrosequencing

Sundan Suresh, Jong-Hyun Park, Gyu-Taek Cho, Ho-Sun Lee, Hyung-Jin Baek, Sok-Young Lee and Jong-Wook Chung *

National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-853, Korea

* Author to whom correspondence should be addressed; E-Mail: jwchung73@korea.kr; Tel.: +82-31-299-1880; Fax: +82-31-294-6029.

Received: 4 January 2013; in revised form: 17 January 2013 / Accepted: 23 January 2013 / Published: 31 January 2013

Abstract: Faba bean (*Vicia faba* L.) is a major food source and fodder legume, popularly known for its high content of seed-protein. Its role is critical in crop rotation, and for fixing nitrogen effectively. Polymorphic simple sequence repeat markers from transcript sequences (cDNA; simple sequence repeat [SSR]) were developed for faba bean (*Vicia faba*). We found that 1,729 SSR loci from 81,333 individual sequence reads and 240 primer pairs were designed and synthesized. In total, 55 primer pairs were found to be polymorphic and scorable consistently when screened in 32 accessions. The number of alleles ranged from 2 to 15, frequency of major alleles per locus varied from 0.17 to 0.91, the genotypes number ranged from 2 to 17, observed and expected heterozycosity values ranged from 0.00 to 0.44 and 0.17 to 0.89 and overall PIC values ranged from 0.16 to 0.88 respectively. These markers will be a useful tool for assessing the genetic diversity, understanding the population structure, and breeding patterns of faba bean.

Keywords: cDNA-SSR; genetic diversity; 454 sequencing; Vicia faba

1. Introduction

Faba bean (*Vicia faba* L.) is currently the third most important winter season food legume globally. Faba bean represent an important source for dietary protein to human beings, edible oil and animal feed. Its

critical role in crop rotation, effective nitrogen fixation, soil improvement abilities, and contribution to reducing energy input costs have long been recognized. Faba bean is a diploid with 2n = 2x = 12 chromosomes, is partially cross pollinated (ranging from 4 to 84%) and possesses one of the largest genomes among crop legumes (~13,000 Mb) [1,2]. Despite being an alternative source of protein for human and effective in nitrogen fixation, the number of molecular markers available for faba bean is still scarce, with only 100 microsatellite (simple sequence repeat; SSR) markers [3,4] and only 32 EST–SSR markers [5,6] having been reported. The development of more reliable and informative molecular markers needs to be improved to enhance our understanding about the faba bean.

Next-generation transcriptome sequencing is an efficient means to generate superior resources for the development of cDNA–simple sequence repeat (SSR) markers. cDNA-SSR markers present some intrinsic advantages over genomic SSRs in their direct association with transcribed genes, low expense for development cost, and higher level of transferability to related species [7] and cDNA-SSRs, are highly polymorphic, rather than EST-derived SSR markers [8]. In a recent study, the authors sequenced faba bean transcriptomes using 454 pyrosequencing technologies and found that 1,729 SSR loci from 81,333 individual sequence reads and limited number of sequence 240 were submitted to GenBank, which paved the way for microsatellite marker development. In our study, we developed and characterized polymorphic cDNA-SSR markers based on these sequences for *V. faba* to facilitate the studies on molecular diversity of this species.

2. Results and Discussion

The *V. faba* transcriptome sequencing yielded 29.61 Mb and GS De Novo yielded 81,333 raw sequencing reads, based on the GS-FLX sequencer. SSR is one of the most popular marker systems, consisting of varying numbers of tandem repeated di-, tri-, or tetra-nucleotide DNA motifs. To identify SSR markers, we used the ARGOS program with default settings for the *V. faba* unigene collections. In total, 1,729 potential SSR motifs were identified, and the majority belonged to trinucleotide (67.61%) and dinucleotide (19.08%) repeats. All other types of SSRs such as tetra-, penta-, and hexa- nucleotide motifs were relatively low (13.3%), and the majority of trinucleotide SSRs had the GAA/AAG/AGA motif, followed by those with the TGG/CGT/GGT motif, and others with the CTT/TTC/TCT motif. The GA/AG, AT/TA, and GT/TG motifs were identified among the dinucleotide cDNA-SSRs. The relative proportion of SSR motif types in faba bean [9] were observed as similar to that of other plant species [10–12].

Among the identified SSR loci, we selected 240 sequences that were deposited in GenBank (GenBank accession number: KC218573–KC218812). Of the 240 primer pairs, only 55 primer pairs produced consistently amplified (Table 1). These 55 cDNA-SSR loci were screened in 32 accessions. The number of alleles (N_A) per locus varied widely among the markers (Table 2), ranged from 2 to 15, with an average of 6.0 alleles. The frequency of major alleles (M_{AF}) per locus varied from 0.17 to 0.91 with an average of 0.563, the genotypes number (N_G) ranged from 2 to 17, with an average of 6.3. The H_O values were ranged from 0.00 to 0.44 with an average of 0.074, the H_E values were ranged from 0.17 to 0.89 with an average of 0.587 and overall *PIC* values ranged from 0.16 to 0.88, with an average of 0.550 respectively. Similar observation was also found in the *Vicia faba* [6]. These cDNA-SSR markers were developed in our study are found to be a useful tools for further studies on molecular diversity and population structure of faba bean.

 Table 1. Characteristics of the 55 cDNA-SSR markers for faba bean (Vicia faba L.).

Locus	Primer sequences (5'-3')	Product	Modif	GenBank	Ta	BLAST top hit	Description	E-value
	E-TAAACCACCTCCCCATCA	Size		Accession No.	(°C)	accession no.		
GBSSR-VF-8	RTCGGTGGAGGAGTTGTTG	242	(TTG)5	KC218580	58	None	None	None
							hypothetical protein	
GBSSR-VF-19	F:TCCATCAACCTCAAATCCA	201	(CAA)5	KC218591	58	XP_003637109.1	MTR_072s1002	1.00E-41
	R:CCGTACTIGTCCACGGAA						[Medicago truncatula]	
GBSSR-VF-20	F:TCCACCAAGTCCACCTGA	198	(GTG)6	KC218592	58	None	None	None
	R:AATAAGGGCGCAGGAGAG	170	(010)0	KC210372	50	None	TYONG	rone
GBSSR-VF-21	F:CGAAGCCTCCTCCTCTTC	199	(CCT)4	KC218593	58	ABF66654.1	EBP1	3.00E-37
	R:TGGTGTTGTATTCGGGGA		× /				[Ammopiptanthus mongolicus]	
GBSSR-VF-22		271	(CCT)4	KC218594	58	None	None	None
	R:CAAGIGGCCGIIIIICAA						hypothetical protein	
GBSSR-VF-32	F:CGAAGCCTCCTCCTCTTC	197	(CCT)4	KC218604	58	XP 0036143151	MTR 50048060	5 00E-44
GD551(11 52	R:GGTGTTGATTCGGGGAGT	177	(001)1	110210001	20	<u></u>	[<i>Medicago truncatula</i>]	5.00E 11
CDCCD LE M	F:CGGGAACCAACTCAACAA	107		WC010606	50	N		ŊŢ
GBSSR-VF-34	R:CCACCACCGCAACTATGT	186	(CGA)4	KC218606	58	None	None	None
GBSSR_VF_38	F:ACCATTTGGCCTGTTCCT	226	(GTG)6	KC218610	58	CAA61402 1	phloem specific protein	$7.00E_{-}18$
00558-11-58	R: CGCTACCCAAATGCTGAA	220	(010)0	KC210010	58	CAA01492.1	[Vicia faba]	7.00L-18
GBSSR-VF-52	F:GGTTTCTTGTCCAAATAAGACG	261	(CAG)5	KC218624	58	AFW76468.1	putative protein phosphatase 2A	5.00E-27
	R:TGCGATTCTGGAAATTGG		()-				family protein [Zea mays]	
	F:CGGCGTCTAGAACGTTTG	2.42		WC010/5/	50	ND 000555500 1	PREDICTED: ammonium	1.005.40
GBSSR-VF-84	R:AACTAGCGCAGCTCATCG	243	(GCG)5	KC218656	58	XP_003555/33.1	transporter 1 member 1-like	1.00E-40
							1soform 1 [<i>Glycine max</i>]	
GBSSR_VF_113	F:TGGTGGTGCTTCTTTCCA	213	(CTT)5	KC218685	59	XP 002524296 1	Auscisic suess ripering protein,	4 00E-05
00001-11-110	R:TGGTGAGCTTGGAACTGC	213	(011)5	KC21000J	59	M_002324230.1	[Ricinus communis]	00D-03
	R:TGGTGAGCTTGGAACTGC	215	(011)5	KC210003	57	<u> </u>	[Ricinus communis]	F.00L 05

Locus	Primer sequences (5'–3')	Product Size	Modif	GenBank Accession No.	Ta (°C)	BLAST top hit accession no.	Description	E-value
GBSSR-VF-115	F:TGCTGCTTTTCCAACCAT R:GTGCATGCCATAACAAAA	177	(AT)7	KC218687	57	XP_003600578.1	NAD(P)H-quinone oxidoreductase subunit N [Medicago truncatula]	0.018
GBSSR-VF-119	F:GTGGCCTGTACTGGTGGA R: ACTCGTTGGGGGCTAGGAA	225	(GAA)5	KC218691	58	AFK37381.1	unknown [<i>Medicago truncatula</i>]	1.00E-80
GBSSR-VF-131	F:CCGTACTAAATGAAGCCTTT R:GGCAATCAAGTCCGGTAA	238	(TA)6	KC218703	57	XP_003546500.1	RNA polymerase-associated protein CTR9 homolog [<i>Glycine max</i>]	1.00E-05
GBSSR-VF-149	F:ACGACATGGTGATGAATCCT R:ACGTGACCGAGTGACGAC	211	(CAA)8	KC218721	58	XP_003610732.1	hypothetical protein MTR_5g006400 [<i>Medicago truncatula</i>]	1.00E-58
GBSSR-VF-153	F:TCCCGACGCTACTTCTCA R:CCGAGATCTGCAAACAGC	225	(CCA)5	KC218725	58	AFK44330.1	unknown [Medicago truncatula]	3.00E-44
GBSSR-VF-154	F:ACACCAATGTTTTTGCGG R:TCCTGACTTTGCTGAGGC	247	(GAA)5	KC218726	58	XP_003522646.1	uncharacterized protein LOC100777431 [<i>Glycine max</i>]	1.00E-22
GBSSR-VF-159	F:GTGCCATCATCCTCGAAA R:CAGCTGCTAGGTTGCCTG	235	(TCT)4	KC218731	58	ABD32307.2	Nuclear factor related to kappa-B-binding protein, related [Medicago truncatula]	3.00E-61
GBSSR-VF-164	F:ACCATTTGGCCTGTTCCT R:CAAGGAGGGTTGTTTACGA	199	(GTG)6	KC218736	57	CAA61492.1	phloem specific protein [<i>Vicia faba</i>]	3.00E-11
GBSSR-VF-168	F:TCTCCAAACCCTCCTCGT R:TCAGCCACAAAATCAGCA	250	(TGT)6	KC218740	57	XP_003605197.1	GRAS family transcription factor [Medicago truncatula]	9.00E-05
GBSSR-VF-172	F:CGGTTTCTAAATCTGGCG R:GCTCCATTGAAACCAATTCT	232	(TTG)5	KC218744	57	XP_003552039.1	uncharacterized protein LOC100790537 [<i>Glycine max</i>]	1.00E-15

 Table 1. Cont.

1848

 Table 1. Cont.

Locus	Primer sequences (5'-3')	Product Size	Modif	GenBank Accession No.	Ta (°C)	BLAST top hit accession no.	Description	E-value
GBSSR-VF-173	F:CACAGACAGGTTTCGGGA R:TTGGGTGCAACATCATCA	247	(CAC)	KC218745	58	XP_003607781.	Low-temperature inducible	7.00E-10
GBSSR-VF-175	F:TGCCATTCCATCTGAACC	256	(TCC)7	KC218747	58	ABN08705.1	[<i>Medicago truncatula</i>] DDT; Homeodomain-related	1.00E-16
GBSSR-VF-180	F:TTGGGTGCAACATCATCA R:CGGGAAAGAATCAGAGGC	230	(GTG)	KC218752	58	XP_003607781.	[<i>Medicago truncatula</i>] Low-temperature inducible	0.002
GBSSR-VF-184	F:CCATCAACGGAGGACTCA	183	(TGC)4	KC218756	58	XP_003594716.	Prefoldin subunit	2.00E-56
GBSSR-VF-185	F:GTTTCTTGTCCAAATAAGACG R:CCTGACACTACACGAAAGAC	184	(CAG) 5	KC218757	58	ACJ83506.1	unknown	0.47
GBSSR-VF-190	F:TTTTATGAAAGCGAAACCG R:TGGACAAAGGCAACAATCA	156	(TCT)5	KC218762	58	XP_003608427. 1	Myocyte-specific enhancer factor 2B [Medicago truncatula]	3.00E-17
GBSSR-VF-203	F:TTCCCTGACCTTTCAGCA R:TGTTGGGCACCTCAAGTT	231	(CTC)4	KC218775	58	XP_003555847. 1	CAX-interacting protein 4-like [<i>Glycine max</i>]	2.00E-14
GBSSR-VF-209	F:CCATCAACGGAGGACTCA R:GGGAACAGGGGGCTAGAGA	181	(TGC)4	KC218781	58	XP_002519249. 1	prefoldin subunit, putative [<i>Ricinus communis</i>]	3.00E-28
GBSSR-VF-213	F:CCAGGTTTCTTCCTCCGA R:TTTAATTTTGGGCCGGAT	271	(TC)7	KC218785	58	None	None	None
GBSSR-VF-215	F:ACAAACTGAGTCCAACCATGT R:TGCCACTGCTTCTCTTGG	279	(CAA) 4	KC218787	58	XP_003638360. 1	Cytochrome b reductase [<i>Medicago truncatula</i>]	1.00E-79
GBSSR-VF-216	F:CCCATTCAGAACGTGGAA R:GGCTGCAATCTACCACCA	194	(ACA) 4	KC218788	58	ACM50914.1	aquaporin [Medicago falcata]	9.00E-18
GBSSR-VF-218	F:GCTCCGCATATACAAAGATG R:ATGGCGGTGGTCACTATG	211	(CCA) 5	KC218790	57	None	None	None

		Product		GenBank	Та	BLAST top hit			
Locus	Primer sequences (5'–3')	Size	Modif	Accession No.	(°C)	accession no.	Description	E-value	
CDGGD VE 220	F:ACCATTTGGCCTGTTCCT	217		V.C210701	50	CAA(1402.1	phloem specific protein	2 00F 12	
GB888-VF-220	R:CAAATGCTGAAATGGCCT	217	(010)6	KC218/91	38	CAA61492.1	[Vicia faba]	2.00E-13	
GRSSD VE 221	F:CCGAAATGAAGATGATGATGA	243	(CAT)5	VC218702	58	None	None	None	
UD55K-V1-221	R:TGAAAGGGAAACTGAAAGTCA	245	(CAI)5	KC210792	58	None	INOIIC	None	
GBSSR_VF_237	F:TTGGGTGCAACATCATCA	234	(GTG)5	KC218703	58	AKE45200 1	unknown	2.00E-05	
00558-01-257	R:CGGGAAAGAATCAGAGGC	234	(010)5	KC210775	58	AKI 45200.1	[Medicago truncatula]	2.001-05	
GBSSR-VF-245	F:TTGTACCAAGCATTTAATTTTC	279	(TCA)5	KC218794	57	None	None	None	
00551(-11-245	R:CATTACCACCGTGAGGCA	21)	(10A)5	KC210774	57	ivone	TVOILE	Ivone	
	F·GGAGATGCTTTTGGCCTC						uncharacterized protein		
GBSSR-VF-255	R'TGGTCCTGCAGTTTCCAT	262	(GTT)5	KC218795	58	XP_003544671.1	LOC100809022	2.00E-24	
	Riterretretretretretri						[Glycine max]		
GBSSR-VF-258	F:AAACCCTCCATCTTCGGA	165	(GTG)4	KC218796	58	CAB16318 1	cysteine proteinase precursor	5 00E-30	
	R:CAGGAGAGTATCTTGATAAGGC	100	(010)1	110210790		CHB10510.1	[Vicia narbonensis]	0.002.00	
GBSSR-VF-262	F:TCTGGCGAGTGGCATACT	224	(GAA)5	KC218797	58	CAB07811.1	sucrose transport protein	9 00E-14	
020011 11 202	R:GCCTTCTACACAACGGCTT		(0111)0	110210131	00	01120701111	[Vicia faba]	<i>y</i>	
							Polypyrimidine		
GBSSR-VF-263	F:ATGCCACCCTCACTTTCC	157	(ACA)6	KC218798	58	XP 003592083 1	tract-binding protein-like	27	
020011 11 200	R: TCCTTCCAAATTCAGAATCC	107	(11011)0	110210790	00		protein		
							[Medicago truncatula]		
GBSSR-VF-266	F:CAAATGCAATGCTGCAAA	292	(TCA)5	KC218799	58	None	None	None	
020011 11 200	R:AACAGGTGGTGGCTGATG	_/_	(1011)0	110210777	00			1,0110	
GBSSR-VF-270	F:CAGGGATTGCACACAACA	252	(TCA)4	KC218800	58	AAD50628 1	alpha-tubulin	0.017	
UB35K-VF-2/0	R:TGAAAGGAATGGAAGAGGG		(101)1	KC210000	50	AAD30020.1	[Gossypium hirsutum]	0.017	

 Table 1. Cont.

Locus	Primer sequences (5'-3')	Product	Modif	GenBank	Та	BLAST top hit	Description	E-value
		Size		Accession No.	(°C)	accession no.	_ · · · · · F · · · · ·	
CDCCD VE 271	F:TTTTATGAAAGCGAAACCG	150	(TOT)	VC210001	57	1 010 150 (1	unknown	1.000 05
GB55K-VF-2/1	R:TTGGAACAAAGGCAACAA	158	(101)5	KC218801	50	ACJ84526.1	[Medicago truncatula]	1.00E-05
CDCCD VE 27(F:GCTCTTCAACCTGCCCTT	150		VC210002	50	A A T T 1 1 400 1	monodehydroascorbate	0.000 55
GB55K-VF-2/6	R:GGGACAGTTGCTGTTGGA	150	(CAA)4	KC218802	38	AAU11490.1	reductase I [Pisum sativum]	9.00E-55
CDCCD VE 295	F:AAGAAGGTGTCGCGGAAG	176		VC219902	50	Nono	None	Nono
UD35K-VF-265	R:CCGCACCTTCTCCTCTCT	170	(GAT)5	KC218803	38	INOILE	None	INOILE
CRSSD VE 288	F:GCCTGTGGCTAGAAGCAA	227	(TCA)5	KC218804	57	None	None	None
UD55K- V1-288	R:TAATGGTCCCAGCACCTC	237	(ICA)5	RC210004	57	None	None	None
GBSSR_VF_203	F:CCCATTCAGAACGTGGAA	160	$(\Lambda C \Lambda)$	KC218805	58	ACU17538 1	unknown [Glycing max]	0.018
OD55K- V1-295	R:TCAGCAATAAAAGCTCTTGGA	100	(ACA)4	KC210005	50	AC017556.1		0.010
GBSSR_VF_205	F:CAGGGTTACGATTGCTCG	175	(TGC)4	KC218806	58	XP 0035947161	Prefoldin subunit	3 00E-35
OD55K- V1-295	R:AAATGGCAAGAGATTAAAAGCA	175	(100)4	RC210000	50	M_000004710.1	[Medicago truncatula]	5.00E-55
GBSSR-VF-297	F:AGACCAAGAATCAAGGTCACA	150	$(\Delta \Delta T)6$	KC218807	58	CAB39664 1	putative protein	4 00E-05
GD55R VI 277	R:CTCTTCACAAAGCGACCCT	150	(1111)0	RC210007		0/11/20/00 1.1	[Arabidopsis thaliana]	4.001 05
	FAATCATCCGGAACCATCC						hypothetical protein	
GBSSR-VF-298	R'GACGTCTGAGGAGAGGGC	249	(TTC)4	KC218808	58	XP_003624491.1	MTR_7g083930	3.00E-25
							[Medicago truncatula]	
GBSSR-VF-311	F:GGCCTTTCAACAAGAGGG	207	(CAC)6	KC218809	58	CAA61492.1	phloem specific protein	2.00E-16
ODSSR VI SII	R:ACCATTTGGCCTGTTCCT	207	(0/10)0	1(021000)	50	0/11/01/1/2.1	[Vicia faba]	2.001 10
GBSSR-VF-312	F:GGCTATGGTGGTCATGGA	151	(TGG)5	KC218810	58	CAH40798 1	putative glycine rich protein	6 00E-08
GD55R VI 512	R:TTACGCCGCCTCCAC	101	(100)5	RC210010	50	C/11140790.1	precursor [Pisum sativum]	0.001 00
GBSSR-VF-319	F:CATGCATTTGCTGCTCAA	158	(TTG)5	KC218811	58	NP 0012372691	VHS and GAT domain protein	5 00F-28
	R:GTGCAGGCACTACATGGG	150	(110)5	RC210011	50	111_001237209.1	[Glycine max]	5.00L 20
GBSSR-VF-373	F:TCTGCTTCCATCTTCATCG	180	$(ACA)^4$	KC218812	58	None	None	None
UD35K-VF-323	R:TTGCTGAAGTTGCTCTGTGA	180	(ACA)4	AC210012	50	none	NONC	TNOLLE

Table 1. Cont.

Note: T_a, annealing temperature.

Marker	M _{AF}	N_{G}	N _A	H_0	H_E	PIC
GBSSR-VF-8	0.17	17	15	0.28	0.89	0.88
GBSSR-VF-19	0.50	6	6	0.00	0.66	0.61
GBSSR-VF-20	0.42	8	9	0.09	0.74	0.71
GBSSR-VF-21	0.38	6	6	0.06	0.74	0.70
GBSSR-VF-22	0.47	7	8	0.03	0.71	0.67
GBSSR-VF-32	0.66	5	5	0.00	0.54	0.51
GBSSR-VF-34	0.65	6	6	0.00	0.56	0.53
GBSSR-VF-38	0.69	7	7	0.10	0.49	0.46
GBSSR-VF-52	0.47	7	7	0.00	0.69	0.65
GBSSR-VF-84	0.58	4	4	0.00	0.60	0.56
GBSSR-VF-113	0.38	7	7	0.00	0.76	0.73
GBSSR-VF-115	0.34	10	9	0.03	0.79	0.76
GBSSR-VF-119	0.28	6	6	0.00	0.80	0.77
GBSSR-VF-131	0.30	8	8	0.06	0.80	0.78
GBSSR-VF-149	0.47	9	9	0.00	0.73	0.70
GBSSR-VF-153	0.50	4	4	0.00	0.67	0.62
GBSSR-VF-154	0.47	7	7	0.06	0.71	0.68
GBSSR-VF-159	0.41	5	5	0.00	0.70	0.65
GBSSR-VF-164	0.52	8	7	0.06	0.67	0.64
GBSSR-VF-168	0.25	10	11	0.13	0.81	0.78
GBSSR-VF-172	0.30	18	14	0.44	0.85	0.84
GBSSR-VF-173	0.52	7	7	0.09	0.66	0.63
GBSSR-VF-175	0.23	13	12	0.25	0.82	0.80
GBSSR-VF-180	0.50	5	5	0.09	0.66	0.61
GBSSR-VF-184	0.61	5	5	0.03	0.56	0.51
GBSSR-VF-185	0.91	3	3	0.06	0.17	0.17
GBSSR-VF-190	0.56	9	9	0.28	0.64	0.61
GBSSR-VF-203	0.91	2	2	0.00	0.17	0.16
GBSSR-VF-209	0.77	4	4	0.03	0.39	0.35
GBSSR-VF-213	0.47	5	5	0.00	0.69	0.64
GBSSR-VF-215	0.72	3	3	0.00	0.44	0.39
GBSSR-VF-216	0.75	2	2	0.00	0.38	0.30
GBSSR-VF-218	0.81	2	2	0.00	0.30	0.26
GBSSR-VF-220	0.68	4	4	0.06	0.50	0.46
GBSSR-VF-221	0.45	7	6	0.13	0.68	0.63
GBSSR-VF-237	0.63	6	5	0.09	0.56	0.53
GBSSR-VF-245	0.72	5	5	0.00	0.45	0.42
GBSSR-VF-255	0.75	4	4	0.00	0.41	0.37
GBSSR-VF-258	0.56	6	6	0.13	0.63	0.60
GBSSR-VF-262	0.44	11	10	0.25	0.74	0.71
GBSSR-VF-263	0.41	8	8	0.19	0.70	0.65
GBSSR-VF-266	0.59	4	4	0.00	0.58	0.53
GBSSR-VF-270	0.69	3	3	0.00	0.48	0.43
GBSSR-VF-271	0.38	10	8	0.22	0.74	0.70

Table 2. Diversity statistics from initial primer screening in 32 accessions of faba bean (Vicia faba L.).

Marker	M _{AF}	N _G	N _A	H_0	H_E	PIC
GBSSR-VF-276	0.72	3	3	0.00	0.44	0.40
GBSSR-VF-285	0.73	5	5	0.26	0.45	0.43
GBSSR-VF-288	0.64	5	5	0.03	0.53	0.49
GBSSR-VF-293	0.78	3	3	0.00	0.35	0.31
GBSSR-VF-295	0.70	5	5	0.03	0.47	0.43
GBSSR-VF-297	0.59	8	6	0.16	0.59	0.55
GBSSR-VF-298	0.72	3	3	0.00	0.44	0.40
GBSSR-VF-311	0.72	7	6	0.09	0.45	0.42
GBSSR-VF-312	0.69	2	2	0.00	0.43	0.34
GBSSR-VF-319	0.80	4	4	0.03	0.35	0.32
GBSSR-VF-323	0.66	7	6	0.23	0.52	0.49
Mean	0.563	6.3	6.0	0.074	0.587	0.550

Table 2. Cont.

 (M_{AF}) , Major allele frequency; (N_G) , number of genotype; (N_A) , number of allele; (H_O) , observed heterozygosity; (H_E) , expected heterozygosity; (PIC), polymorphic information content.

3. Experimental

3.1. Plant Material

Faba bean seeds were selected from the National Agrobiodiversity Center, Rural Development Administration, Suwon, Korea. Seedlings were germinated and grown in a glasshouse. The leaves of young seedlings were used to extract the mRNA required to synthesize the cDNA library and for 454 sequencing.

3.2. cDNA Preparation

Total RNA was extracted from *V. faba* leaves that were frozen in liquid nitrogen, ground well into a powder, and then extracted using an RNeasy Plant Mini kit (Qiagen, Valencia, CA, USA) following the manufacturer's instructions. The integrity of total RNA was determined using a BIOSPEC-NANO spectrophotometer (Shimadzu, Kyoto, Japan) and agarose gel electrophoresis. mRNA was purified using the PolyATract mRNA Isolation System IV (Promega, Madison, WI, USA), and the purified products were used to synthesize full-length cDNAs using a ZAP-cDNA Synthesis kit (Stratagene, Santa Clara, CA, USA). Finally, cDNA was fragmented by nebulization for library construction.

3.3. Library Preparation

Approximately 1 µg of cDNA was used to generate a DNA library to use with the rapid library preparation method manual (Roche Life Science Inc., Branford, CT, USA). The cDNA fragment ends were polished (blunted), and two short adapters were ligated to both ends according to standard procedures described previously. The adapters provided priming of the sequences for both amplification and sequencing of the sample library fragments, as well as the sequencing key, a short sequence of four nucleotides used by the system's software for base calling. Following repair of any nicks in the double-stranded library, the unbound strand of each fragment was released (with

5-Adaptor A). Finally, the quality of this single-stranded template DNA library was assessed using a 2100 BioAnalyzer (Agilent, Waldbronn, Germany). The library was quantified to determine the optimal amount of the library needed as input for emulsion-based clonal amplification.

3.4. 454 Pyrosequencing

Single effective copies of template species from the DNA library to be sequenced were hybridized to DNA capture beads. The immobilized library was then resuspended in an amplification solution, and the mixture was emulsified, followed by polymerase chain reaction (PCR) amplification. The DNA carrying beads were recovered from the emulsion and enriched after amplification. The second strands of the amplified products were melted, leaving the amplified single-stranded DNA library bound to the beads. The sequencing primer was then annealed to the immobilized amplified DNA templates. After amplification, a single DNA carrying bead was placed into each well of a PicoTiterPlate (PTP) device. Simultaneous sequencing with multiple samples on a single PTP (four region gasket) was used. The PTP was then inserted into the FLX Genome Titanium sequencer for pyrosequencing [13,14], and sequencing reagent was sequentially flowed over the plate. Information from the PTP wells was captured simultaneously by a camera, and the images were processed in real-time by an onboard computer. Multiplex identifiers were used to specifically tag unique samples in a GS FLX Titanium sequencing run, which were recognized by the GS data analysis software after the sequencing run and provided high confidence for assigning individual sequencing reads to the correct sample. Sequence assembly was performed after sequencing using GS De Novo Assembler software (Roche) to produce contigs and singletons. All sequence data were conformed to references using GS Reference Mapper software (Roche).

3.5. Discovery of cDNA-SSR Markers

All contigs and singletons from both transcriptomes were then used to mine SSR motifs, and the SSR motifs were identified using the ARGOS pipeline program (version 1.46) at the default settings to survey the molecular markers present in the V. faba accessions [15]. Parameters were designed for identifying perfect di-, tri-, tetra-, penta-, and hexa-nucleotide motifs with a minimum of six repeats. Primer design parameters were set as follows: length range, 18–23 nucleotides with 21 as optimum; PCR product size range, 100-400 bp; optimum annealing temperature, 55 °C; and GC content 40-60%, with 50% as optimum. Faba bean genomic DNA was extracted from 18 diverse faba bean accession samples for EST-SSR marker validation using a DNeasy® Plant Mini kit (Qiagen, Valencia, CA, USA), according to the manufacturer's instructions. Fresh leaf tissue from each accession was used for each extraction and ground well using liquid nitrogen. DNA was resuspended in 100 µL water, and dilutions were made to 10 ng/µL followed by storage at either -20°C or -80°C. Randomly selected EST-SSR primer pairs were validated experimentally, and forward primers were synthesized by adding the M13 sequence to enable fluorescent tail addition through the PCR amplification process [16]. PCR conditions included a hot-start at 95 °C for 10 min, followed by 10 cycles at 94 °C for 30 s, 60-50 °C for 30 s and 72 °C for 30 s, followed by 25 cycles at 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 30 s, and a final elongation step of 72 °C for 10 min. PCR products were separated and visualized using the QIAxcel Gel Electrophoresis System (Qiagen).

3.6. Data Analysis

These 55 SSR loci were screened in 32 accessions (Table 3). The number of alleles (N_A), major allele frequency (M_{AF}), observed heterozygosity (H_O), Expected heterozygosity (H_E), number of genotype (N_G), and polymorphism information content (*PIC*) were calculated using GenAlEx (version 6.5) [17].

No.	Temp. ID	ARS No.	Origin
1	K193517	PI 221516	Afghanistan
2	K193518	PI 223418	Iran
3	K193519	PI 234634	Australia
4	K193520	PI 251331	Israel
5	K193521	PI 253806	Iraq
6	K193522	PI 254920	Spain
7	K193523	PI 275641	Ethiopia
8	K193524	PI 284338	Lebanon
9	K193525	PI 284345	Italy
10	K193526	PI 319901	Soviet Union
11	K193527	PI 358270	Serbia and Montenegro
12	K193528	PI 371806	United Kingdom
13	K193529	PI 415027	France
14	K193530	PI 415050	Sudan
15	K193531	PI 430133	Egypt
16	K193532	PI 442559	BEL
17	K193533	PI 458504	Mexico
18	K193534	PI 469135	Japan
19	K193535	PI 469144	Cyprus
20	K193536	PI 469180	Greece
21	K193537	PI 469182	Jordan
22	K193538	PI 469189	India
23	K193539	PI 478506	Bolivia
24	K193540	PI 499959	China
25	K193541	PI 577723	Kyrgyzstan
26	K193542	PI 577735	Chile
27	K193543	PI 577741	Nepal
28	K193544	PI 655323	Morocco
29	K193545	PI 655325	Peru
30	K193546	PI 655326	Ecuador
31	K193547	PI 655330	Kenya
32	K193548	PI 655344	Pakistan

Table 3. List of faba bean (Vicia faba L.) accessions and details of collection sites.

Temp ID, Korean Gene Bank ID; ARS No, USDA-ARS Number.

4. Conclusions

In our study we have developed 55 cDNA-SSR markers, and they were successfully used to investigate the genetic diversity among 32 accessions of faba bean. However, there seems to be a relatively higher genetic diversity within *V. faba*, as only 55 of 240 cDNA-SSR loci exhibited polymorphism. The availability of co-dominant polymorphic cDNA-SSR markers provided a tool set for further study on molecular diversity, and will greatly facilitated the genetic structure studies of *V. faba* populations, the identification and conservation of faba bean.

Acknowledgments

This study was carried out with the support of "Research Program for Agricultural Science & Technology Development (Project No. PJ008623)", National Academy of Agricultural Science, Rural Development Administration, Korea.

References

- 1. Bennett, M.D.; Smith, J.B. Nuclear DNA amounts in angiosperms. *Proc. Royal Soc. London. Ser. B. Biol. Sci.* **1982**, *216*, 179–199.
- 2. Johnston, J.S.; Bennett, M.D.; Rayburn, A.L.; Galbraith, D.W.; Price, H.J. Reference standards for determination of DNA content of plant nuclei. *Am. J. Bot.* **1999**, *86*, 609–613.
- Pozarkova, D.; Koblizkova, A.; Roman, B.; Torres, A.M.; Lucretti, S.; Lysak, M.; Dolezel, J.; Macas, J. Development and characterization of microsatellite markers from chromosome 1-specifi cDNA libraries of *Vicia faba. Biol. Plant* 2002, *45*, 337–345.
- Zeid, M.; Mitchell, S.; Link, W.; Carter, M.; Nawar, A.; Fulton, T.; Kresovich, S. Simple sequence repeats (SSRs) in faba bean: New loci from Orobanche-resistant cultivar 'Giza 402'. *Plant Breed.* 2009, 128, 149–155.
- Gong, Y.M.; Xu, S.C.; Mao, W.H.; Hu, Q.Z.; Zhang, G.W.; Ding, J.; Li, Z.Y. Generation and characterization of 11 novel EST derived microsatellites from *Vicia faba* (Fabaceae). *Am. J. Bot.* 2010, *97*, e69–e71.
- Ma, Y.; Yang, T.; Guan, J.; Wang, S.; Wang, H.; Sun, X.; Zong, X. Development and characterization of 21EST-derived microsatellite markers in *Vicia faba* (fava bean). *Am. J. Bot.* 2011, *98*, e22–e24.
- Wang, Z.; Fang, B.; Chen, J.; Zhang, X.; Luo, Z.; Huang, L.; Chen, X.; Li, Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (*Ipomoea batatas*). *BMC Genom.* 2010, *11*, 726–739.
- Thiel, T.; Michalek, W.; Varshney, R.K.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) *Theor. Appl. Genet.* 2003, 106, 411–422.
- 9. Kaur, S.; Pembleton, L.; Cogan, N.; Savin, K.; Leonforte, T.; Paull, J.; Materne, M.; Forster, J. Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. *BMC Genom.* **2012**, *13*, 104–115.

- Kaur, S.K.; Cogan, N.O.I.; Pembleton, L.W.; Shinozuka, M.; Savin, K.W.; Materne, M.; Forster J.W. Transcriptome sequencing of lentil based on second generation technology permits large-scale unigene assembly and SSR marker discovery. *BMC Genom.* 2011, *12*, 265–275.
- 11. Kumpatla, S.P.; Mukhopadhyay, S. Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. *Genome* **2005**, *48*, 985–998.
- Luro, F.L.; Costantino, G.; Terol, J.; Argout, X.; Allario, T.; Wincker, P.; Talon, M.; Ollitrault, P.; Morillon, R. Transferability of the EST-SSRs developed on Nules clementine (*Citrus clementina* Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. *BMC Genom*. 2008, 9, 287–290.
- 13. Ronaghi, M. Pyrosequencing sheds light on DNA sequencing. Genom. Res. 2001, 11, 3-11.
- 14. Elahi, E.; Ronaghi, M. Pyrosequencing: A tool for DNA sequencing analysis. *Methods Mol. Biol.* **2004**, *255*, 211–219.
- 15. Kim, K.Y. *Developing one step program (SSR manager) for rapid identification of clones with SSRs and primer designing*. M.Sc. Thesis, the Graduate School, Seoul National University: Seoul, Korea, 2004.
- 16. Riley, M. Functions of the gene products of *Escherichia coli*. *Microbiol*. *Mol. Biol. Rev.* **1993**, *57*, 862–952.
- 17. Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics* **2012**, *28*, 2537–2539.

Sample Availability: Available from the authors' institute.

 \bigcirc 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).