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We herein report an asymmetric protocol to access a series of
orthogonally functionalized acyclic chiral target molecules
containing a quaternary stereogenic center by carrying out the
enantioselective α-alkylation of novel orthogonally functional-
ized dioxolane-containing cyanoacetates under chiral
ammonium salt catalysis. By using just 1 mol% of Maruoka’s
spirocyclic ammonium salt catalysts enantioselectivities up to
e.r.=97.5 : 2.5 could be achieved and further functional group
manipulations of the products were carried out as well.

1. Introduction

The enantioselective construction of quaternary stereogenic
centers, or so called all-carbon stereocenters, has for decades
been a topic of uttermost importance[1] and the development
of novel, especially asymmetric catalysis-based, strategies is a
worthwhile task.[1–3] Enantioselective catalytic α-alkylation reac-
tions of suited prochiral C-pronucleophiles,[4] i. e. enolate
analogues, are amongst the most versatile approaches to install
stereogenic centers and the use of appropriately α-trisubsti-
tuted carbonyl- or carboxylic acid-analogues allows for the
direct formation of quaternary stereogenic centers.[3,4] Asym-
metric ion-pairing organocatalysis, i. e. chiral ammonium salt
catalysis, has emerged as one of the outstanding non-covalent
catalysis principles over the last four decades.[5] Very remark-
ably, this concept has proven its potential for stereoselective
enolate α-functionalizations ever since the pioneering contribu-
tions by Merck scientists, who first reported the chiral
ammonium salt catalyzed α-alkylation of phenylindanone
derivatives in 1984 already,[6] and O’Donnell’s group who
introduced glycine Schiff base α-alkylations in 1989.[7] Following
these seminal contributions, the use of chiral ammonium salts

became a well-described methodology for asymmetric α-
alkylations and over the years also various approaches for the
construction of quaternary stereocenters by reacting cyclic[6,8] as
well as acyclic[9] prochiral enolate analogues with Csp3-alkylating
agents (i. e. alkylhalides) have been introduced. Our groups
have been engaged in the design and use of chiral ammonium
salt catalysts for (novel) asymmetric α-(hetero)functionalizations
of prochiral C-nucleophiles for a while.[10,11] Based on the general
high interest in acyclic compounds bearing a quaternary
stereogenic center we now became interested in introducing
the novel orthogonally functionalized α-cyanoacetates 3 as a
versatile substrate for (chiral ammonium salt-catalyzed) asym-
metric α-alkylations.[12] As outlined in Scheme 1, these starting
materials should be accessible by alkylation of cyanoacetates 1
with the dioxolane-based electrophile 2 and asymmetric α-
alkylations with Csp3-based electrophiles 4 will give access to
the highly functionalized chiral acyclic targets 5 then.

2. Results and Discussion

We started our investigations by focusing on the α-benzylation
of the t-butyl ester 3a, which was accessed by alkylation of the
corresponding cyanoacetate 1a with 2,[13] in the presence of the
established chiral ammonium salts A,[5–7,14] B,[10b,c] and C[5,15]

(Table 1 gives an overview about the most significant results
obtained in a detailed screening of different conditions). First
experiments with Cinchona alkaloid-based ammonium salts A1
and A2 under classical biphasic phase-transfer conditions
(toluene / aqueous KOH) allowed for very clean reactions and
gave product 5a in excellent yields after 2 h, but in a more or
less racemic manner only (entries 1 and 2). Other Cinchona
alkaloid-based ammonium salts were tested under various
conditions too, but no improvement was possible (details not
given in the table). We next tested our own bifunctional
ammonium salts B, but unfortunately these systems were not
selective at all either (for a representative example see entry 3).
Gratifyingly however, when using Maruoka’s structurally more
rigid spiro ammonium salt C1 next, literally the first experiment
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Scheme 1. Investigated use of compounds 3 to access acyclic targets 5
under asymmetric ammonium salt catalysis.
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with 5 mol% of this catalyst gave product 5a in a high isolated
yield (87%) and with good enantioselectivity (e.r.=94 :6).
Remarkably, when lowering the catalyst loading to 1 mol%
only, the e.r. could even be improved to 96.5 : 3.5 (entry 5).
Interestingly, catalyst C2 performed notably less selective
(entry 6) and we therefore screened a variety of different
conditions with C1 next (entries 7–13). Surprisingly however,
neither the use of other solvents (entries 7 and 8), nor the use
of other aqueous or solid bases (entries 9–11) did allow for any
improvement. When lowering the temperature, the e.r. could
not be improved further, but instead the reaction only slowed
down significantly.

Accordingly, the initially identified conditions (entry 5)
remained the best-suited, giving product 5a in excellent yield
and very good enantioselectivity under operationally simple
conditions.

With this optimized procedure at hand, we next inves-
tigated the application scope of this methodology by testing
the synthesis of a variety of novel acyclic targets 5 containing a
quaternary stereogenic center as outlined in Scheme 2 (all
reactions were run for 20 h to ensure complete conversion of
starting material 3 in each case). Varying the ester group R1 of
starting material 3 revealed that less bulky esters perform
clearly less selective compared to the initially used t-butyl ester
(compare products 5a–c). Carrying out the alkylation of 3a with
different electrophiles showed that different benzylic halides
allow for more or less similar selectivities and high yields
(products 5g–q), while allylbromide (product 5d), methyliodide
(product 5e) and 2,2-difluoroethyl triflate (product 5f) gave

Table 1. Identification of the best-suited conditions for the asymmetric synthesis of 5a.[a]

Entry Cat. Solv. Base T [°C] t [h] Yield [%][b] e.r.[c]

1 A1 (5%) toluene KOH(50%) (30 eq.) 0 2 86 56 :44
2 A2 (5%) toluene KOH(50%) (30 eq.) 0 2 88 51 :49
3 B1 (5%) toluene KOH(50%) (30 eq.) 0 2 75 47 :53
4 C1 (5%) toluene KOH(50%) (30 eq.) 0 2 87 94 :6
5 C1 (1%) toluene KOH(50%) (30 eq.) 0 2 86 96.5 : 3.5
6 C2 (1%) toluene KOH(50%) (30 eq.) 0 2 89 84 :16
7 C1 (1%) CH2Cl2 KOH(50%) (30 eq.) 0 2 89 66 :34
8 C1 (1%) MTBE KOH(50%) (30 eq.) 0 2 88 89 :11
9 C1 (1%) toluene KOH(s) (6 eq.) 0 2 85 95 :5
10 C1 (1 %) toluene Cs2CO3(s) (6 eq.) 0 20[d] 87 88 :12
11 C1 (1%) toluene NaOH(50%) (30 eq.) 0 2 87 93 :7
12 C1 (1%) toluene KOH(50%) (30 eq.) � 20 20[d] 93 96 :4
13 C1 (1%) toluene KOH(50%) (30 eq.) � 78 20[d] 70 96 :4

[a] Unless otherwise stated all reactions were carried out using 0.1 mmol 3a and 0.12 mmol 4a in the indicated solvent (0.09 M with respect to 3a); [b]
Isolated yields. [c] Determined by HPLC using a chiral stationary phase. Given as the ratio of (� )-5a : (+)-5a. [d] Incomplete conversion after 2 h.

Scheme 2. Applications scope of the asymmetric α-alkylation of dioxolane-
containing cyanoacetates 3.
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lower selectivities only. Nevertheless, the application scope was
in general relatively broad and robust and we also found that
the use of the (S,S)-catalyst enantiomer always gives (+)-5
derivatives, while (R,R)-C1 results in the formation of the (� )-
enantiomers exclusively.

Finally, we also tested the suitability of product 5a to
undergo further functional group manipulations (Scheme 3; all
these reactions were carried out on racemic material without
any extensive optimization of conditions and yield and should
serve as a proof-of-concept mainly). It was possible to either
selectivity hydrolyze the nitrile group under basic oxidative
conditions (giving the primary amide-containing 6) or debut-
ylate the ester under acidic conditions (accessing the free acid
7). Surprisingly however, attempts to selectively hydrolyze the
acetal failed, resulting in several unidentified decomposition
products only. Furthermore, reduction with a stoichiometric
amount of LiAlH4 resulted in the formation of a separable
mixture of the alcohol 9 and the decarboxylated product 10,
while the use of an excess of LiAlH4 allowed for the reduction of
both, the nitrile and the ester group (giving the diacetate 8
after protection with Ac2O), demonstrating the versatility of
products 5 for further transformations.

3. Conclusions

Summing our investigations up, we identified robust and
functional group-tolerant conditions to carry out the asymmet-
ric α-alkylation of the novel orthogonally functionalized
dioxolane-containing cyanoacetates 3 under chiral ammonium
salt catalysis. Key to success was the use of the structurally rigid
spirocyclic Maruoka ammonium salt catalysts C, which gave
access to the acyclic products 5, which contain a quaternary
stereogenic center, with enantioselectivities up to e.r.=97.5 :2.5
when using just 1 mol% of the catalyst.

Experimental Section
General details can be found in the online supporting information.
This document contains the analytical data of the reaction products
as well as copies of NMR spectra and HPLC traces.

General asymmetric α-alkylation procedure: A solution of starting
material 3 (0.10 mmol) in 1.2 mL toluene is cooled to 0 °C (Ar-
atmosphere). Subsequently, catalyst C1 (1 mol-%, 1.1 mg), aq.
KOH50% (227 μL, 30 eq) and electrophile 4 (0.12 mmol, 1.2 eq.) are
added and the reaction mixture is stirred for 20 h (slow warm up to
RT). Then 3.0 mL diethyl ether and 1.5 mL water are added and the
phases are separated. The aqueous layer is extracted 5× with 2 mL
Et2O each and the combined org. phases are washed with 7 mL
brine. The org. phase is dried over Na2SO4, filtered over cotton and
the solvent is evaporated. Purification of the crude products are
performed by column chromatography using heptane:EtOAc 20/1
to 10/1.

Product 5a. Prepared according to the general procedure and
isolated as an almost colorless oil in 86% yield and with e.r.=
96.5 :3.5. 1H-NMR (300 MHz, CDCl3, 298.0 K, δ [ppm]): 7.28–7.37 (m,
5H), 5.19 (dd, J1=6.3 Hz, J2=3.2 Hz, 1H), 3.81–4.04 (m, 4H), 3.17 (d,
J=13.5 Hz, 1H), 3.07 (d, J=13.5 Hz, 1H), 2.38 (dd, J1=14.1 Hz, J2=

6.3 Hz, 1H), 2.13 (dd, J1=14.1 Hz, J2=3.2 Hz, 1H), 1.35 (s, 9H). 13 C-
NMR (75 MHz, CDCl3, 298.0 K, δ [ppm]): 167.1 (1C), 133.9 (1C), 130.5
(2C), 128.5 (2C), 127.9 (1C), 118.8 (1C), 101.4 (1C), 84.0 (1C), 65.3
(1C), 64.8 (1C), 47.7 (1C), 43.9 (1C), 40.4 (1C), 27.7 (3C). HRMS of
C18H23NO4: m/z calculated for [M+NH4]

+ : 335.1965; found:
335.1974. [α]D

24 (c=1.00, CHCl3)= � 24.5. HPLC (Chiralpak AD-H,
hexane/i-PrOH 10/1, 0.5 mLmin� 1, 10 °C) retention times: tmajor=

19.0 min, tminor=26.9 min.
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