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Abstract

Metaproteomic studies adopt the common bottom-up proteomics approach to investigate

the protein composition and the dynamics of protein expression in microbial communities.

When matched metagenomic and/or metatranscriptomic data of the microbial communities

are available, metaproteomic data analyses often employ a metagenome-guided approach,

in which complete or fragmental protein-coding genes are first directly predicted from meta-

genomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting

protein sequences are then used as the reference database for peptide/protein identification

from MS/MS spectra. This approach is often limited because protein coding genes predicted

from metagenomes are incomplete and fragmental. In this paper, we present a graph-cen-

tric approach to improving metagenome-guided peptide and protein identification in meta-

proteomics. Our method exploits the de Bruijn graph structure reported by metagenome

assembly algorithms to generate a comprehensive database of protein sequences encoded

in the community. We tested our method using several public metaproteomic datasets with

matched metagenomic and metatranscriptomic sequencing data acquired from complex

microbial communities in a biological wastewater treatment plant. The results showed that

many more peptides and proteins can be identified when assembly graphs were utilized,

improving the characterization of the proteins expressed in the microbial communities. The

additional proteins we identified contribute to the characterization of important pathways

such as those involved in degradation of chemical hazards. Our tools are released as open-

source software on github at https://github.com/COL-IU/Graph2Pro.

Author Summary

In recent years, meta-omic (including metatranscriptomic and metaproteomic) tech-

niques have been adopted as complementary approaches to metagenomic sequencing to

study functional characteristics and dynamics of microbial communities, aiming at a

holistic understanding of a community to respond to the changes in the environment.

Currently, metaproteomic data are largely analyzed using the bioinformatics tools origi-

nally designed in bottom-up proteomics. In particular, recent metaproteomic studies
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employed a metagenome-guided approach, in which complete or fragmental protein-cod-

ing genes were first predicted from metagenomic sequences (i.e., contigs or scaffolds),

acquired from the matched community samples, and predicted protein sequences were

then used in peptide identification. A key challenge of this approach is that the protein

coding genes predicted from assembled metagenomic contigs can be incomplete and frag-

mented due to the complexity of metagenomic samples and the short reads length in

metagenomic sequencing. To address this issue, in this paper, we present a graph-centric

approach that exploits the de bruijn graph structure reported by metagenome assembly

algorithms to improve metagenome-guided peptide and protein identification in meta-

proteomics. We show that our method can identify much more peptides and proteins,

improving the characterization of the proteins expressed in the microbial communities.

Introduction

Microbiome studies have produced massive metagenomic data, and more recently other meta-

omics including metatranscriptomic and metaproteomic data [1]. Analyses of these data reveal

insights into the composition, function and regulatory characteristics of the microbial commu-

nities associated with different ecosystems, habitats and hosts [2–8]. While metagenomic

sequencing reveal important properties of microbial communities, other meta-omic (e.g.,

metatranscriptomic [9, 10] and metaproteomic [11–13]) techniques can provide additional

insights, in particular on functional characteristics, such as gene activities, their regulation

mechanisms and the dynamics of microbial communities, to understand how microbial

organisms work as a community to respond to the changes in their environment, e.g., the

health condition of the host of human microbiome [14–16]. Current metatranscriptomic and

metaproteomic studies often directly adopt protocols originally developed for the transcrip-

tomic and proteomic studies of model bacterial species; for examples, many metatranscrip-

tomic projects exploited the bacterial RNA-seq protocol [17, 18], while most metaproteomic

studies applied the common bottom-up proteomics approach, in which the proteins extracted

from community samples are first tryptically digested and then analyzed by using one-dimen-

sional or two-dimensional liquid chromatography tandem mass spectrometry (LC-MS/MS)

[19–24].

Similarly, metaproteomic data are analyzed using the bioinformatics approaches used in

bottom-up proteomics. Specifically, the first step of metaproteomic data analysis is the peptide

identification, achieved by searching MS/MS spectra from an LC-MS/MS experiment against

the tryptic peptides in silico digested from a target database of proteins that are potentially

present in the metaproteomic sample. Many peptide search engines have been developed for

this purpose in the proteomics field, including commonly used tools such as Mascot [25],

Sequest [26], X!Tandem [27], InSPEct [28] and MSGF+ [29]. Their applications in metapro-

teomics rely on the pre-assembly of a protein database. Early metaproteomic studies used the

collection of proteins encoded by fully sequenced bacterial genomes that likely live in the envi-

ronment (e.g., human gut [11]) as the target database. This collection may be largely incom-

plete, e.g., a large fraction (10%-34%) of genes from HMP [30] or MetaHIT [31] shotgun

sequencing are completely novel [6]. As a result, more recent metaproteomic studies employed

a metagenome-guided approach, in which complete or fragmental protein-coding genes were

first predicted from metagenomic sequences (i.e., contigs or scaffolds), acquired from the

matched community samples, and predicted protein sequences were then used in peptide

identification [24]. Several software tools have been developed for protein coding gene
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prediction from metagenomic sequences, including MetaGeneMark [32] and our own soft-

ware FragGeneScan [33, 34]. A key challenge of this approach is that the protein coding genes

predicted from assembled metagenomic contigs can be incomplete and fragmented due to the

complexity of metagenomic samples and the short reads length in metagenomic sequencing.

As the linear representations of contigs and scaffolds in metagenome assembly do not capture

their putative connections, the short contigs contain only gene fragments, and even long con-

tigs contain broken genes at their ends. As a result, the target peptides collected in this manner

may miss many full-length tryptic peptides that are potentially observed in the metaproteomic

experiments.

To alleviate the peptide/protein identification problem caused by incomplete/fragmental

reference proteins, we propose a graph-centric approach to improving metagenome-guided

peptide identification in metaproteomics. Many short read assemblers, including those com-

monly used for metagenome assembly such as Velvet [35], SOAPdenovo [36], MegaHIT [37]

and SPAdes [38], employed the de Bruijn graph [39, 40] as the core data structure, in which

each edge represents an assembled unique sequence from metagenomic reads (i.e., the con-

tigs), and the graph structure represents the ambiguous connections between contigs that can-

not be resolved by using sequencing reads. Some assemblers including SOAPdenovo [41] and

metaSPAdes [42] report the de Bruijn graph of the assembly along with contigs. As demon-

strated in our previous work, by exploiting the de Bruijn graph structure in metagenome

assembly, we can reconstruct longer and more complete transcript sequences from short meta-

transcriptomic reads than the straightforward approach based solely on contigs [43]. Here, we

attempt to predict protein coding genes directly from the sequences in the de Bruijn graph,

including the proteins that span multiple edges in the graph, to expand the target protein data-

base for metaproteomic data analysis. We implemented an algorithm that takes as input the de
Bruijn graph of a metagenome assembly, traverses the graph in a depth-first search (DFS) fash-

ion, and outputs a target database consisting of the tryptic peptides in all putative open reading

frames (ORFs) encountered during the traversal. In the following step, the identified tryptic

peptides were used to retrieve potential protein sequences by traversing the graph for the sec-

ond time. Using three metaproteomic datasets with matched metagenomic sequencing data,

we show that much more peptides and proteins can be identified when the targeted database is

constructed from graph structures of matched metagenomic sequences than those from the

database only consisting of proteins predicted from contigs, indicating the metagenome-

guided graph-centric approach can improve the peptide and proteins identification in

metaproteomics.

Materials and Methods

Overview

As illustrated in Fig 1, we developed a pipeline for protein identification from metaproteomic

data when metagenomic and metatranscriptomic data are acquired from matched samples.

The pipeline exploits the maximum information available when both metagenomic and meta-

transcriptomic data are obtained from matched samples, and attempts to address the objective

of protein identification in metaproteomics.

The pipeline is particularly useful when the depth of metagenomic and metatranscriptomic

sequencing are not sufficiently high, and thus they complement to each other to provide a

comprehensive coverage of the whole set of genes encoded in the metagenome. In this pipe-

line, we first assemble the metagenomic and metatranscriptomic sequencing data together

(note that because there is no split gene structures in bacterial genes, metatranscriptomic

sequencing reads represent contiguous segments in corresponding bacterial genomes in the
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same manner as metagenomic reads), and the resulting assembly (denoted as Assembly-Com-
bined) are used to construct the target protein database for protein identification.

We emphasize that in the pipeline, the metagenome/metatranscriptome assembly is repre-

sented as de Bruijn graphs instead of a collection of contig sequences as used in conventional

methods. As a result, peptide/protein sequences are extracted from the de Bruijn graphs, and

thus may span multiple edges (contigs) in the graph. In order to retain the de Bruijn graph

representation in the assembly, we take the SOAPdenovo assembly algorithm [41] as an

example in this paper, which reports the de Bruijn graph structures in addition to the contig

sequences in the assembly. Other assemblers can also be used in our pipeline, as long as they

report graph structures of the assembly. Below we will present software tools (Graph2Pep and

Graph2Pro) to extract peptides/proteins from the de Bruijn graphs of metagenome and/or

metatranscriptome assembly.

Fig 1. An overview for protein identification using metaproteomic data, with metagenomic (MG)

sequencing and metatranscriptomic (MT) data obtained from matched samples. We report two novel

graph traversal algorithms (Graph2Pep and Graph2Pro, highlighted in red in the figure) to extract peptides

and proteins from the de Bruijn graph representation of metagenome/metatranscriptome assemblies,

respectively. We note the same pipeline can be applied when only matched metagenomic or

metatranscriptomic data (but not both) is available, in which the graph algorithms will be applied to the

assembly graph of metagenome (or metatranscriptome).

doi:10.1371/journal.pcbi.1005224.g001
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Prediction of peptides and protein sequences from de Bruijn graphs

To utilize de Bruijn graphs of metagenome assembly for protein identification, we use a two-

step strategy: in the first step, all putative tryptic peptides are predicted from the de Bruijn
graph, while in the second step, full-length protein sequences are predicted to cover the whole

set of tryptic peptides identified from the initial database searching results of the metaproteo-

mic data. This way, we will not overburden the MS/MS spectra identification with excessive

and potentially error-prone reference protein sequences that could be predicted from the

graphs.

As illustrated in Fig 2, our core algorithms (Graph2Pep and Graph2Pro) for peptide/protein

identification from graphs both take as input a contracted de Bruijn graph, a directed graph

reported by a fragment assembly algorithm (such as SOAPdenovo), in which each vertex rep-

resents a k-mer, and each edge represents a DNA sequence resulting from the collapse of the

one-in-one-out k-mers between the two terminal vertices. Because both DNA strands are rep-

resented in the graph, it has a symmetric property: each edge (and vertex) has a counterpart

that represent the reverse complement of the DNA sequence represented by the edge (and ver-

tex); when an edge represents a palindromic sequence, its counterpart is itself.

The combined set of tryptic peptides, including those predicted from long edges and those

extracted from one or more short edges in the graph (by Graph2Pep), are used as the target

database for peptide identification in the metaproteomic data by using a peptide search engine

(such as MSGF+ as used here). Note that this step is not going to generate the final report of

protein identification; instead, it will produce a collection of tryptic peptides that are encoded

in the de Bruijn graph assembly, and are likely to be present in the sample. Therefore, we can

use a less stringent criterion to filter peptide identifications (i.e., by using a relatively low FDR

threshold 5% in this work) so that more putative peptides can be taken into consideration

when we attempt to construct the target database of potential proteins in the sample (using

Graph2Pro; see below) for the second (and final) step of protein identification.

The Graph2Pep algorithm. The first algorithm (Graph2Pep) attempts to extract all tryp-

tic peptides in the input de Bruijn graph (Fig 2A), where a tryptic peptide is defined as a peptide

Fig 2. A schematic illustration of the graph traversal algorithms for extracting tryptic peptides (Graph2Pep; A) and proteins (Graph2Pro; B)

from the de Bruijn graph assembly.

doi:10.1371/journal.pcbi.1005224.g002
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encoded by a contiguous DNA sequence corresponding to a path spanning one or more edges

in the graph that starts from a start codon (i.e., ATG) or after the codons encoding the trypsin

cleavage sites (i.e., Lysine or Arginine), and ends before a stop codon or at the codons encod-

ing trypsin cleavage sites. To accomplish this goal, the Graph2Pep algorithm adopts a depth-

first search (DFS) strategy, starting from every start codon in each edge connecting to a source

vertex, and traversing the graph until a desirable codon (i.e., a stop codon or a codon encoding

a trypsin cleavage site) is encountered. The traversal continues from the next codon in the

same reading frame until a trypsin cleavage site is encountered. On the other hand, when a

stop codon is encountered, the traveral re-starts from a start codon in the same reading frame

of the same edge where it terminates. Note that the algorithm enumerates the start codons in

all three reading frames in every edge, but will not go through those in the reverse complemen-

tary strand because the reverse complementary strands are represented by different edges in

the graph. Because the lengths of the edges in a de Bruijn graph from metagenome assembly

can be substantially different, ranging from a few bases to hundred thousands of bases, to fur-

ther accelerate the search, the Graph2Pep algorithm first predicts the protein-coding genes

in all edges longer than a threshold (e.g., 500 bps by default) by using FragGeneScan, and

includes the tryptic peptides in these proteins into the final results. After that, the depth-first

search concentrates on the tryptic peptides encoded by DNA sequences on the short edges, in

particular those encoded by DNA sequences spanning multiple short edges, and the search is

automatically terminated when an edge longer than the threshold is encountered.

The Graph2Pro algorithm. Our second algorithm Graph2Pro is to further predict pro-

tein sequences from de Bruijn graph of metagenome assembly, using identified peptides as

constraints. Given a de Bruijn graph assembly, and a set of identified (tryptic) peptides each

mapped to a DNA segment (spanning one or more edges) in the graph, Graph2Pro attempts

to retrieve a minimum set of protein sequences, each encoded by a series of codons starting

from a start codon and ending in front of a stop codon, such that every identified peptide is

contained in at least one protein. The Graph2Pro algorithm adopts the similar depth-first

search strategy to traverse the de Bruijn graph, but will only traverse the subset of edges, in

which each edge is spanned by the DNA segment of at least one identified peptide (Fig 2B).

The predicted peptide sequences by Graph2Pro will compose a final target protein database

subject to peptide identification in the metaproteomic data by using a search engine (i.e.,

MSGF+).

Implementation and benchmarking experiments

We implemented the Graph2Pep and Graph2Pro algorithms in C++ and incorporated them

into a pipeline for metaprotomics data analysis. We also included in our pipeline open source

software tools (e.g., FragGeneScan and MSGF+) released by us and others previously, and sev-

eral wrapper scripts in Python. These programs have been assembled in a streamline, and thus

can be conveniently used for peptide/protein identification in metaproteomics when matched

metagenomic and/or metatranscriptomic data are available. The package is available as open

source software at https://github.com/COL-IU/Graph2Pro. In this study, we only consider

the fully tryptic peptides in Graph2Pep algorithm. However, the program has one parameter

allowing for adjusting the maximum number of mis-cleavages (default = 0). Note that it takes

longer time to run the Graph2Pep program when mis-cleavages are allowed. In addition, the

users can adjust another parameter of length threshold (default = 6 as used in this study) in

the Graph2Pep program to filter peptides shorter than the threshold to be used in the first

round of database searching. In a test case, the de Bruijn graph contains 18,523,653 edges

and 37,047,308 vertices, from which 44,798,054 putative tryptic peptides are generated by
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Graph2Pep. The programs runs in 11 minutes and 22 seconds on a single CPU of Intel(R)

Xeon(R) E5-2670 0 @ 2.60GHz.

Meta-omics data. We tested our tools and the pipeline using the experimental data from

a recently published multi-omic study of oleaginous mixed microbial communities (OMMC)

sampled from an anoxic biological wastewater treatment tank [24]. In particular, the metage-

nomic, metatranscriptomic and metaproteomic data were acquired from the community at

four sample dates, denoted as SD3 (January 25th, 2011), SD5 (October 5th 2011), SD6 (Octo-

ber 12th, 2011) and SD7 (January 11th, 2012), respectively, in which SD3 and SD7 represent

replications with similar physico-chemical conditions (e.g., temperatures), while SD5 and SD6

represent the control replications for the study of the microbial community in the sample SD3.

As the metagenomic sequences of the sample SD5 yielded a poor coverage of the metagenome

[24], we did not use the SD5 dataset in our benchmarking experiment and focused on the

remaining three datasets (SD3, SD6 and SD7). For each of these datasets, the metagenomic

(MG) and metatranscriptomic (MT) sequences were acquired by using the Illumina Genome

Analyser (GA) IIx sequencers, resulting in paired-end reads. Metaproteomic samples were

first processed by 1D-SDS-PAGE and in-gel reduction, prior to the alkylation and tryptic

digestion. The resulting peptides were separated and analyzed by liquid chromatography (LC)

coupled with tandem mass spectrometry (LC-MS/MS) by using LTQ-Orbitrap Elite (Thermo

Fisher Scientific). We downloaded the metagenomic and metatranscriptomic datasets from

the SRA website (SD3-MG: SRR1046369; SD3-MT: SRR1046681; SD6-MG: SRR1544596;

SD6-MT:SRR1544599; SD7-MG: SRR1611146; and SD8-MT: SRR1611147). Raw reads were

preprocessed using Trimmomatic (version 0.32) [44] and only reads of at least 80 bps were

used in downstream analyses. We downloaded the spectra data from PeptideAtlas [45]: SD3

(ID: PASS00359), SD6 (PASS00577) and SD7 (PASS00578).

Metagenomic/metatranscriptomic assembly. We use SOAPdenovo2 [36] for the com-

bined assembly of metagenomic and metatranscriptomic sequences. We selected the default

parameters of SOAPdenovo2, and the k-mer size of 31. We have shown in our previous study

that k-mer size of 31 is useful for maintaining the structure of assembly graph for later exploi-

tation; when k-mer size gets too large, the graph becomes fragmented [43].

Peptide identification. We use MSGF+ [29] for peptide identification from a given pro-

tein sequence database. The parameters for the MSGF+ database searching is as the following:

1) instrument type: high-resolution LTQ; 2) precursor mass tolerance: 15ppm; 3) isotope error

range: -1,2; 4) modifications: oxidation as variable and carboamidomethy as fixed; 5) maxi-

mum charge: 7; and 6) minimum charge: 1. The false discovery rate (FDR) is estimated by

using a target-decoy search approach [46]. If the database consists of full length proteins pre-

dicted from FragGeneScan or Graph2Pro, we use the reverse protein sequences as decoy. If the

database consists of peptides predicted from Graph2Pep, the decoy peptides were then gener-

ated by reversing the peptide sequences while preserving the C-terminal residues (K/R).

Functional annotation of identified proteins. We further predicted putative functions

for identified proteins using similarity search based approaches. We used EggNOG database

[47], which is the database of orthologous protein groups with annotated functions for func-

tional annotation. Specifically, we searched identified proteins against the EggNOG protein

database consisting of 14,875,530 protein sequences in 190,648 annotated COG (Cluster of

Orthologous Groups) families by using RAPSearch2 [48] with its default parameter settings. A

query protein is considered to hit a COG protein family if there is at least one protein in the

family whose sequence alignment with the query protein has the sequence identity above 60%

and e-value� 10−4.

We also predicted putative pathways involving identified proteins as follows. First, the

proteins were searched against the 90% non-redundant set of UniProt sequences (uniref90,

A Graph-Centric Approach for Improving Identifications in Metaproteomics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005224 December 5, 2016 7 / 16



downloaded from the Uniprot ftp website at ftp://ftp.uniprot.org) by RAPSearch2 [48]. Simi-

larity search results were then used to predict potential enzymes (with EC assignments), which

were further used to infer MetaCyc metabolic pathways by using MinPath [49]. MinPath takes

the EC assignments as the input (and the EC to pathway mapping file ec2path, prepared based

on the MetaCyc files pathways.dat and reactions.dat available at http://metacyc.org/download.

shtml) and identifies the list of metabolic pathways that are needed to cover all annotated

enzymes.

Results

We implemented our graph-centric algorithms Graph2Pep and Graph2Pro in C++, and incor-

porated them into a pipeline for protein identification from metaproteomic MS/MS spectra

data. We applied our pipeline to the waste water microbiome data, and the results show that

our pipeline can significantly improve the identification of proteins from MS/MS spectra.

Detailed information of identified proteins and their functional annotations are available in

the supplementary data.

Summary statistics of sequence assemblies

For each sample (SD3, SD6 and SD7), we assembled the combined datasets of metagenomic

and metatranscriptomic sequences. The statistics of the assembly results and the protein-cod-

ing genes predicted from the contigs in the assemblies are summarized in Table 1. There are

19,553 contigs from the assembly of SD3 dataset with the N50 contig length of 840 bps, while

more and longer contigs are assembled in SD6 and SD7 datasets. FragGeneScan predicted

32,760 protein-coding genes in the SD3 dataset, 113,135 genes for SD6 and 111,849 genes for

SD7. Based on the graph structures of the assemblies, Graph2Pep output * 16 million, * 35

million and * 33 million peptides in SD3, SD6 and SD7 datasets, respectively.

Using assembly graph dramatically improves the protein identification

The assembly results (both the contigs and the assembly graph) of the combined metagenomic

and metatranscriptomic datasets were used to predict peptides/proteins for MS/MS spectra

identification. 603,867, 150,216, 148,310 MS/MS spectra in the samples of SD3, SD6 and SD7,

respectively, were given as the input to the database search by MSGF+. The peptide identifica-

tion results at the false-discovery rate of 1% are summarized in Table 2. We also showed MS/

MS spectra identification based on proteins predicted from contigs for comparison. In SD3

dataset, we identified 18,498 spectra (PSMs, or peptide spectrum matches) using proteins pre-

dicted from contigs (by FragGeneScan), and 43,946 PSMs using peptides predicted from the

assembly graph (by Graph2Pep) both at 1% FDR. In total, the first round of database searching

identifies 13,928 unique peptides from 52,498 spectra, including 2,354 unique peptides and

9,496 spectra identified in both sets of FragGeneScan-predicted proteins and Graph2Pep-pre-

dicted peptides. The Venn diagrams of overlap between the identified unique peptides pre-

dicted by FragGeneScan and those predicted by Graph2Pep in the SD3, SD6 and SD7 datasets

Table 1. Summary of the assemblies for three data sets used in the benchmarking experiments.

SD3 SD6 SD7

No. of contigs 19,553 61,978 62,831

N50 840 934 938

No. of predicted genes 32,760 113,135 111,849

No. of predicted peptides (by Graph2Pep) 16,985,304 35,405,606 33,016,460

doi:10.1371/journal.pcbi.1005224.t001
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are shown in S1 Fig. Following the initial database searching, the identified unique peptides

were mapped back to the assembly graph using Graph2Pro, and a total of 14,174 proteins were

retrieved covering all identified peptides. To be noted here, in this step, we used the peptides

of 5% FDR in order to increase the coverage of potential proteins in the sample.

Proteins generated by Graph2Pro were then used as the new target database for a second

round of peptide identification using MSGF+ on the same set of MS/MS spectra in the SD3

dataset, which identified a total of 18,162 unique peptides from 73,527 PSMs, corresponding

to 12.18% of the whole input set of MS/MS spectra at 1% FDR. Comparing to the conventional

protein identification procedure that identified 3.06% of MS/MS spectra from the proteins

predicted in the contigs, the proposed pipeline identified about four times (398%) PSMs and

unique peptides (383%). In particular, the second round of database search identified 21,029

(40.06%) more PSMs and 4,234 (30.40%) more unique peptides comparing with the first

round of search, indicating the second traversal of the de Bruijn graph substantially increased

the coverage of the target metaproteome. Similar levels of improvement were achieved on the

other two datasets (252% and 321% for SD6 and SD7 datasets, respectively).

Our results showed that using assembly graphs of metagenome also significantly improved

the identification of proteins from MS/MS spectra (Table 3). We take SD3 dataset as an exam-

ple. A total of 2,043 proteins (that contains one or more identified peptides) can be identified

using only the contigs. Out of 2,043 proteins, there are 1,065 proteins with at least two identi-

fied peptides. We note this number is comparable to the original results reported in Muller

et al. [24], which reported 1,815 identified proteins. By contrast, 13,431 proteins can be identi-

fied when the assembly graph is used, while 3,245 proteins have at least two identified peptides.

We clustered the combined set of 15,474 protein sequences based on a similarity cutoff of 0.8

by using CD-HIT [50], resulting in 11,209 clusters. Only 290 out of these 10,996 clusters con-

tain proteins identified without using assembly graph, while 9,338 protein clusters contain

Table 2. Summary of peptide identification in wastewater datasets based on the assembly of combined metagenomic and metatranscriptomic

data.

SD3 SD6 SD7

PSMs (%) Unique Pep PSMs (%) Unique Pep PSMs (%) Unique Pep

FragGeneScan (i.e., using contigs only) 18,498 (3.06%) 4,736 9,055 (6.03%) 4,607 6,524 (4.40%) 3,540

Graph2Pep (1st) 43,946 (7.28%) 11,546 14,514 (9.66%) 7,528 16,761 (11.30%) 8,488

Union (1st) 52,498 (8.69%) 13,928 18,468 (12.29%) 9,743 19,184 (12.94%) 10,002

Graph2Pro (2nd) 73,527 (12.18%) 18,162 23,849 (15.88%) 11,617 23,750 (16.01%) 11,366

doi:10.1371/journal.pcbi.1005224.t002

Table 3. Improvement of protein identification by using assembly graph.

SD3 SD6 SD7

Muller et ala 1,815 - -

#Proteins identified using contigs only 2,043 3,385 2,578

#Proteins identified using contigs only with at least two peptides 1,065 1,285 881

#Proteins identified using assembly graph 13,431 9,657 9,761

#Proteins identified using assembly graph with at least two peptides 3,245 2,340 2,164

#Clusters of proteins (-c 0.8) 11,209 7,928 7,926

#Clusters of proteins identified without using assembly graph 290 708 519

#Clusters of proteins rescued by using assembly graph 9,338 5,114 5,663

a: the number of identified proteins was reported only for the SD3 sample in the paper [24].

doi:10.1371/journal.pcbi.1005224.t003
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only proteins identified by using using the assembly graph (and thus is rescued by the graph-

centric approach). Similar results were obtained on the other two datasets (SD6 and SD7).

Improved protein identification leads to a better functional profiling of the

microbial communities

We studied the impact of the expanded set of identified proteins by the graph-centric

approaches on the downstream analysis. We focused on the functional categories of identified

proteins and the metabolic pathways they are involved in.

Our graph-centric approaches enabled the identification of more proteins from the MS/MS

spectra, revealing a more comprehensive functional profile of the microbial communities

(with more eggNOG families identified). For the SD3 datasets, 8,706 out of 13,431 (64.82%)

proteins in our expanded collection of identified proteins share similarity with eggNOG pro-

teins, resulting in the identification of 1,206 COG families. By contrast, only 626 COG families

were predicted using the 2,043 proteins identified by MS/MS spectra search against predicted

proteins from contigs only (1,555 proteins share sequence similarities with eggNOG proteins).

Table 4 lists the additional families predicted from our expanded collection of identified pro-

teins, each supported by at least 10 proteins, and their annotations. Fig 3 shows the numbers of

proteins in the top 20 eggNOG families with most proteins identified. Clearly, each of the

functional categories is supported by considerably more proteins identified by the graph-cen-

tric approaches. We also conducted the functional analysis for the other two datasets (SD6 and

SD7) and observed similar results (see S1 and S2 Tables and S2 and S3 Figs for details).

Next we show that a more comprehensive coverage of metabolic pathways can be achieved

by using our extended collection of proteins identified from metaproteomics data. A total of

213, 203, 223 MetaCyc metabolic pathways were reconstructured from SD3, SD6 and SD7

datasets, respectively, when proteins predicted from contigs only were used for MS/MS spectra

identification. These numbers were increased to 328, 262, 294, respectively, when additional

proteins were identified by our graph-centric approaches. In addition, our expanded collection

of identified proteins provide a higher coverage of the pathways. Below we show two interest-

ing pathways to demonstrate the importance of improved protein identification.

Table 5 shows the number of enzymes we identified in the wastewater datasets that are

involved in the Rubisco shunt pathway (MetaCyc ID: PWY-5723; see the diagram at http://

metacyc.org/META/NEW-IMAGE?type=NIL&object=PWY-5723). The results suggest that

using assembly graph helps to increase the coverage of the pathway across all three datasets,

SD3, SD6 and SD7. Rubisco shunt was first found in developing embryos of Brassica napus

Table 4. The additional EggNOGs protein families identified with at least 10 protein hits by the graph-centric method.

COG ID Category Annotation No.

COG0834 E (ABC) transporter 26

COG2224 C Isocitrate lyase 24

COG0359 J Binds to the 23S rRNA (By similarity) 24

ENOG410XPVG S hydroxylamine oxidase 20

COG0234 O Binds to cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter (By similarity) 20

COG0605 P Destroys radicals which are normally produced within the cells and which are toxic to biological systems (By similarity) 17

COG0724 S Rna-binding protein 15

COG4213 G (ABC) transporter 13

COG0227 J 50s ribosomal protein L28 10

COG0366 G alpha amylase, catalytic 10

COG0195 K Transcription elongation factor NusA 10

doi:10.1371/journal.pcbi.1005224.t004
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L. (oilseed rape), in which Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) acts

without the Calvin cycle and increases the efficiency of carbon, resulting in 20% more acetyl-

CoA and 40% less loss of carbon as CO2 [51]. We found MS/MS data supporting eight out

of the nine enzymes involved in the Rubisco shunt. The eight enzymes we identified are

EC.2.2.1.1, EC.2.2.1.2, EC.2.7.1.19, EC.2.7.1.40, EC.4.1.1.39 (Rubisco), EC.4.2.1.11, EC.5.1.3.1,

and EC.5.3.1.6. For example, we identified a putative Rubisco in the SD3 dataset. The protein

(Sequence ID: Protein12587; see the sequence in the FASTA file SD3.hybrid.fgsdbgraph.pro-

tein.fasta available at our website) contains 186 amino acids, which shares 94% sequence

identity with a putative Rubisco identified in an uncultured bacterium (Sequence ID:

gbjAIF32007.1) according to the NCBI BLAST search. Strikingly, only three out of these

enzymes were identified in the SD3 dataset when only the contigs were used (see Table 5). The

second example (Fig 4) involves 2-chlorobenzoate degradation pathway (MetaCyc ID: PWY-

6221) and catechol degradation to 2-oxopent-4-enoate I pathway (MetaCyc ID: P183-PWY).

Enzymes involved in the degration of 2-chlorobenzoate degradation were detected persistently

in all SD3, SD6 and SD7 samples. Chlorobenzoates are a group of compounds that occur in

the environment either because of their release as herbicides or as products of bacterial degra-

dation of polychlorinated biphenyls (PCBs; classified as a persistent organic pollutant, due to

their environmental toxicity [52]). The reaction that converts 2-chlorobenzoate to catechol

was first identified in Burkholderia cepacia 2CBS, which was shown to be able to grow with

Fig 3. Comparison of the numbers of proteins in top 20 eggNOG families receiving the most hits of proteins identified in the SD3 sample by the

graph-centric approach (Graph2Pro, blue) and the conventional approach (FragGeneScan, red).

doi:10.1371/journal.pcbi.1005224.g003

Table 5. The number of identified enzymes involved in the Rubisco shunt.

SD3 SD6 SD7

Contigs only 3 6 5

Graph2Pro 8 7 6

doi:10.1371/journal.pcbi.1005224.t005
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2-chlorobenzoate as the sole source for carbon and energy [53]. Two key functions involved in

the 2-chlorobenzoate degradation, i.e., EC.1.14.12.24 and EC.1.13.11.2, were supported by

identified proteins in our collection (highlighted in purple in Fig 4; both enzymes were identi-

fied in SD3 dataset by our approach, but none were identified if only contigs were used to pre-

dict reference genes; and in SD7 dataset, EC.1.13.11.2 was rescued by using assembly graph).

Discussion

In this paper, we presented two algorithms (Graph2Pep and Graph2Pro) for metaproteomic

data analysis based on a graph-centric approach, in which the de Bruijn graph representation

of the assembly of metagenomic sequences (or of the combined set of metagenomic and meta-

transcriptomic sequences) is used to produce the target protein database subject to the protein

identification using metaproteomic data. We tested the algorithms on the metaproteomic

datasets from a wastewater study in which matched metagenomic and metatranscriptomic

data were also acquired. Comparing with the conventional method where the target protein

database was constructed from the proteins predicted from the assembly contigs, our graph-

centric approach significantly improved the protein identifications. Notably, although in this

study, we consider the trypsin as the digestion enzyme, which is used by most metaproteomics

projects, our algorithms can handle data collected by using other digestion enzymes, where the

users need to define a different set of amino acid residues as the cleavage sites (e.g., the gluta-

myl and aspartyl residues when Glu-C is used) in our programs. We also note that more pro-

teins can be identified when the assembly of combined metagenomic and metatranscriptomic

datasets is used, when both metagenomic and metatranscriptomic datasets are available.

The graph-centric approach presented here relies on the de Bruijn graph representation of

the sequence assembly (either from metagenomic sequences or from the combined metage-

nomic and metatranscriptomic sequences). In our pipeline, we utilized the output of SOAPde-

novo that contains the topology of the de Bruijn graph in addition to the contig sequences

(each corresponding to an edge in the graph). Many other metagenome assembly algorithms

(e.g., metaVelvet [55] and meta-IDBA [56]) are based on the data structure of de Bruijn graph,

Fig 4. The 2-chlorobenzoate degradation pathway. Circles represent compounds, and boxes (with EC

numbers) represent enzymes. Enzymes with MS/MS data support are highlighted in purple. The figure was

prepared using PathVisio [54] based on the MetaCyc’s diagrams of pathways PWY-6221 and P183-PWY.

doi:10.1371/journal.pcbi.1005224.g004
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which, however do not output the graph structure explicitly. As a successor of SOAPdenovo

for metagenome assembly, the MegaHIT algorithm [37] can output the de Bruijn graph topol-

ogy as temporary files in FASTG format, which is designed to incorporate allelic polymor-

phism and assembly uncertainty in an assembly graph [57]. The recently released metaSPAdes

assembler [42] adapted the core SPAdes algorithm for metagenome assembly, and also output

the assembly graph in FASTG format. Our current algorithms of Graph2Pep and Graph2Pro

can support the input assembly graph in FASTG format, but has not been tested for its perfor-

mance using the output from the other metagenome assemblers. Here, we would like to

encourage the de Bruijn graph based assembly algorithms to allow users to generate explicit

output of de Bruijn graphs (e.g., in FASTG format) that will be valuable for downstream

analysis (such as the metatranscriptomic and metaproteomic analysis guided by metagenome

assembly, as presented here).

Our graph-centric approaches are shown to be effective for improving the protein identifica-

tion from metaproteomic MS/MS data. However, considering the fact that complex microbial

communities contain hundreds or even thousands of species with highly uneven abundances, it

will be both experimentally and computationally challenging to detect all proteins produced by

the species, especially the proteins produced by the rare species in the community.

The ultimate goal of metaproteomics is not only to identify proteins expressed in the micro-

bial community, but also to estimate their abundances (i.e., their expression levels) under dif-

ferent conditions. Nevertheless, a protein can be quantified only if it can be identified by using

the metaproteomic data. Therefore, the methods presented here that increase the coverage

of protein identification will also help the subsequent steps for protein quantification. We plan

to implement the functionality of protein quantification based on label-free quantification

approaches in the future release of our software.
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