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Abstract

Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and a

family of proteins containing the PIH1 domain, PIH proteins, are involved in the assembly

process. However, the functional differences and relationships between members of this

family of proteins remain largely unknown. Using Chlamydomonas reinhardtii as a model,

we isolated and characterized two novel Chlamydomonas PIH preassembly mutants,

mot48-2 and twi1-1. A new allele of mot48 (ida10), mot48-2, shows large defects in ciliary

dynein assembly in the axoneme and altered motility. A second mutant, twi1-1, shows com-

paratively smaller defects in motility and dynein assembly. A double mutant mot48-2; twi1-1

displays greater reduction in motility and in dynein assembly compared to each single

mutant. Similarly, a double mutant twi1-1; pf13 also shows a significantly greater defect in

motility and dynein assembly than either parent mutant. Thus, MOT48 (IDA10), TWI1 and

PF13 may define different steps, and have partially overlapping functions, in a pathway

required for ciliary dynein preassembly. Together, our data suggest the three PIH proteins

function in preassembly steps that are both common and unique for different ciliary dyneins.

Author summary

Motile cilia are hair-like organelles that protrude from many eukaryotic cells, and play

vital roles in organisms including cell motility, environmental sensing and removal of

infectious materials. Motile cilia are driven by gigantic motor protein complexes, called

ciliary dyneins, defects in which cause abnormal ciliary motility, ultimately resulting in

human diseases collectively called primary ciliary dyskinesia (PCD). Ciliary dyneins are

preassembled in the cytoplasm before being transported into cilia, and preassembly

requires a family of potential co-chaperones, the PIH proteins. Mutations in the PIH pro-

teins cause defective assembly of ciliary dyneins and can result in PCD. However, despite

their importance, the precise functions, and functional relationships, between the PIH

proteins are unclear. In this study, using Chlamydomonas reinhardtii, we assessed the

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009126 November 3, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yamamoto R, Yanagi S, Nagao M,

Yamasaki Y, Tanaka Y, Sale WS, et al. (2020)

Mutations in PIH proteins MOT48, TWI1 and PF13

define common and unique steps for preassembly

of each, different ciliary dynein. PLoS Genet

16(11): e1009126. https://doi.org/10.1371/journal.

pgen.1009126

Editor: Susan K. Dutcher, Washington University

School of Medicine, UNITED STATES

Received: March 18, 2020

Accepted: September 21, 2020

Published: November 3, 2020

Copyright: © 2020 Yamamoto et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This study was partially funded by grants

from the Uehara Memorial Foundation (https://

www.ueharazaidan.or.jp/), the Ito Chubei

Foundation (https://www.chubei-foundation.or.jp/),

JSPS Grant-in-Aid for Young Scientists (B)

(JP17K15117) and for Scientific Research (C)

(JP20K06622)(https://www.jsps.go.jp/)(to RY),

https://orcid.org/0000-0002-5282-2343
https://orcid.org/0000-0002-9450-0967
https://orcid.org/0000-0003-2799-3623
https://orcid.org/0000-0003-4966-2120
https://orcid.org/0000-0002-1379-460X
https://orcid.org/0000-0002-1231-7609
https://doi.org/10.1371/journal.pgen.1009126
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009126&domain=pdf&date_stamp=2020-11-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009126&domain=pdf&date_stamp=2020-11-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009126&domain=pdf&date_stamp=2020-11-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009126&domain=pdf&date_stamp=2020-11-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009126&domain=pdf&date_stamp=2020-11-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009126&domain=pdf&date_stamp=2020-11-03
https://doi.org/10.1371/journal.pgen.1009126
https://doi.org/10.1371/journal.pgen.1009126
http://creativecommons.org/licenses/by/4.0/
https://www.ueharazaidan.or.jp/
https://www.ueharazaidan.or.jp/
https://www.chubei-foundation.or.jp/
https://www.jsps.go.jp/


functional relationship between three PIH proteins with respect to dynein preassembly

and motility. We found that these PIH proteins have complicated and related roles in

dynein assembly, possibly with each playing common and unique roles in dynein assem-

bly. Our results provide new information on each conserved PIH protein for dynein

assembly and provide a new understanding of PCD caused by PIH mutations.

Introduction

Motile cilia (also interchangeably referred to as flagella) are intriguing antenna-like organelles

that play various important roles in eukaryotes [1, 2]. In lower eukaryotes such as Paramecium
and Trypanosoma, these organelles play an indispensable role in cell motility. In higher

eukaryotes including humans, cilia are essential for proper development, fertilization, and

homeostasis. Defects in ciliary motility cause various symptoms including situs inversus, infer-

tility, congenital heart disease and hydrocephalus in humans, collectively called as primary cili-

ary dyskinesia (PCD) [3, 4]. While diagnosis of PCD has attracted a good deal of attention,

diagnosis can be difficult and a permanent treatment for PCD has not been established [5, 6].

The motility of cilia is driven by gigantic motor-protein complexes, referred to as ciliary

dyneins that are composed of several subunits (HC: heavy chain, IC: intermediate chain, LC:

light chain) and located on ciliary microtubules [1, 7–9]. Ciliary dyneins are classified into two

major classes: outer dynein arm (ODA) and inner dynein arm (IDA). ODAs are particularly

important for the high beat frequency of cilia, whereas IDAs are essential for creating a proper

ciliary waveform [10]. Large ciliary components, including ciliary dyneins, are first assembled

in the cytoplasm before being transported into and within the cilia by the intra-flagellar trans-

port (IFT) mechanism [11–13]. This process is referred to as cytoplasmic preassembly, and

many factors that are essential for the preassembly of ciliary dyneins (referred to as preassem-

bly factors) have been reported increasing our understanding of this enigmatic process [14,

15]. Moreover, defects in the preassembly of ciliary dyneins understandably cause motility

defects in cilia, resulting in PCD in humans [16–20]. In spite of its importance, the detailed

mechanism of ciliary dynein preassembly in the cytoplasmic compartment, and the relation-

ship between each preassembly factor, largely remain obscure.

In recent studies aimed at understanding of the dynein preassembly mechanism, a family of

chaperone-cofactor-like proteins referred to as PIH proteins, which contain a Protein Interact-

ing with HSP90 1 (PIH1) domain, have been shown to be tightly linked to this process [13, 17,

21] (Table 1). In vertebrates, at least four main PIH proteins (DNAAF2/KTU, PIH1D1,

PIH1D2, and DNAAF6/PIH1D3) have been identified to date [13, 21, 22], and each protein

has been shown to play a role in ciliary dynein preassembly [22] (Table 1), possibly residing in

cytoplasmic complexes including the dynein axonemal particles (DynAPs) [23]. In Chlamydo-
monas reinhardtii, a ciliated green alga, PF13, a DNAAF2/KTU orthologue, has been shown to

play an important role in the preassembly of ODAs as well as one species of IDA (IDA c)[13,

17]. Another PIH protein, MOT48 (also known as IDA10) has been shown to be necessary for

the preassembly of the ODAs and a fraction of several IDA species (IDAs b, c, d, and e)[13]. In

addition, a third PIH protein, TWI1 was identified in Chlamydomonas as an orthologue of

DNAAF6/PIH1D3 [13, 21]. Among these three Chlamydomonas PIH proteins, knowledge of

the precise function of MOT48 and TWI1 is limited, partly due to the lack of mutant alleles of

the genes encoding the PIH proteins. Only the original mutant allele ofmot48,mot48-1
(ida10-1), was available for study [13]. A recent report briefly described the phenotype of a

twi1mutant found in the CLiP library [24] as similar to wild-type [25], suggesting that there is
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no relationship between TWI1 and dynein preassembly. However, neither detailed study of cil-

iary dynein assembly nor an examination of the relationship of TWI1 to the other PIH pro-

teins has been performed.

In this study, we report the isolation/characterization of a twi1-1mutant and a new allele of

themot48,mot48-2. Themot48-2mutants swim more slowly than wild-type and have a large

defect in assembly of dyneins in the ciliary axoneme. The twi1-1mutant has only a slightly

reduced motility, as previously described [25], and has only a slight defect in dynein assembly

in the axoneme. In addition, a double mutantmot48-2; twi1-1 are more severely defective in

motility and dynein assembly than either of the parent PIH mutant strains. Similarly, the dou-

ble mutant pf13; twi1-1 also shows a more severe phenotype than the parent, single mutants.

These results strongly suggest that PIH proteins MOT48, TWI1 and PF13 define different

steps, and have partially overlapping functions, in a pathway required for ciliary dynein

preassembly.

Results

Isolation and characterization of mot48-2, a novel allele of mot48 (ida10)

We identified a slow swimming strain (LMJ.RY0402.055540) in the Chlamydomonasmutant

library (CLiP) [24], with a swimming pattern that was reminiscent of themot48-1mutant pre-

viously described [13]. The strain carried an additional mutation other than the original APH-
VIII insertion used to establish the library [24]. After back-crossed to wild type (CC-125) cells,

we determined the MOT48 protein [13, 28] is indeed missing from mutant progeny from the

cross (Fig 1A). We examined theMOT48 sequence in the mutant progeny, and found a muta-

tion (G>T) in the fourth exon, which results in a pre-mature stop codon. Thus, we named the

new mutant allelemot48-2 (Fig 1B) [13]. Immunoblots of whole cell samples frommot48-1
andmot48-2 show no evidence of MOT48 (Fig 1A) [13]. The mutation inmot48-2 is predicted

to disrupt the PIH1 domain in MOT48, deleting the potential binding motif for chaperones

including HSP90 (Fig 1C) [13, 17, 29, 30]. As has been noted formot48-1 [13], themot48-2
mutants typically swim much slower (~ 85 ± 14 μm/s) than wild-type (CC-125 = ~

136 ± 21 μm/s), although the motility varies slightly from day to day and culture to culture. A

transgene expressing the wild-type MOT48 with a 3HA tag at the C-terminus (mot48-2;
MOT48::HA) rescued swimming velocity (~ 131 ± 31 μm/s) and expression of the 3HA-tagged

Table 1. PIH proteins involved in dynein preassembly.

Protein Name Dynein Defects Caused by a Single PIH Mutation Organism Reference

PIH1D1 ODA, IDA “c” Danio rerio [22]

MOT48/IDA10 a ODA, IDAs “b, c, d, e”, Some minor dyneins Chlamydomonas reinhardtii This study, [13, 26]

PIH1D2 ODA Danio rerio [22]

DNAAF6/PIH1D3 ODA, IDAs “f, g” Homo sapiens [18, 19, 27]

DNAAF6/PIH1D3 ODA and IDAs Mus musculus [21, 27]

PIH1D3/Twister ODA, IDAs “c, d, g” Danio rerio [22]

TWI1 a IDA “c” Chlamydomonas reinhardtii This study

DNAAF2/KTU ODA and IDAs Homo sapiens [17, 27]

KTU ODA and IDAs Oryzias latipes [17]

KTU IDA “c” Danio rerio [22]

PF13 a ODA, IDAs “b, c, g”, Minor dynein “DHC11” Chlamydomonas reinhardtii This study, [17, 26]

a For dynein defects in a single Chlamydomonas PIH mutant, dynein species which showed > 30% reduction in spectral numbers compared to wild-type in this study

were included.

https://doi.org/10.1371/journal.pgen.1009126.t001
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MOT48 (Fig 1D). The Mot48 phenotype was also rescued by a transgene expressing MOT48

with an added C-terminal mCherry-3HA tag (mot48-2; MOT48::mCherry-HA)(swimming

velocity = ~ 120 ± 21 μm/s)(Fig 1D and S1 Fig).

Since MOT48 has previously been reported to function in ciliary dynein preassembly and

mot48-1 cilia lacked a subset of dynein species [13], we assessed ciliary dynein assembly in the

mot48-2mutants. To semi-quantitatively estimate the amount of each dynein species in the

Fig 1. Characterization of a novel mot48 allele, mot48-2. A) Immunoblotting analysis of whole cell samples from wild-type (CC-

124, cw15),mot48-1, and two clones ofmot48-2 (G2/G5) using an anti-MOT48 antibody. The MOT48 protein band (red

arrowhead) is missing in allmot48 strains, although we cannot completely rule out the possibility that tiny amounts of MOT48 are

expressed in an altered form inmot48-1. Gray arrowheads: non-specific bands. B) Sequence analysis of themot48-2 genomic

DNA identified a point mutation (G>T) in the fourth exon of MOT48, resulting in a premature stop codon. TheMOT48 genomic

structure is based on/from Phytozome (v5.5: https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias = Org_Creinhardtii) and

JGI (v4: https://genome.jgi.doe.gov/Chlre4/Chlre4.home.html) Chlamydomonas genome databases (Pink: Exon, Blue: Intron,

Green: UTR). The mutation sites inmot48-1 andmot48-2 are indicated. C) The molecular structure of the MOT48 protein was

predicted using a SMART analysis (http://smart.embl-heidelberg.de/). MOT48 has a PIH1 domain in the middle of its structure

(gray). The pink bar represents a low-complexity region. Themot48-1mutant has a mutation near the C-terminus of the MOT48

molecule [13], while the new allele (mot48-2) has a mutation in the middle of the molecule. D) Immunoblot analyses of whole cell

samples of wild-type (cw15),mot48-2, three independent colonies ofmot48-2; MOT48::HA (5D, 6B, 7D) and one colony ofmot48-
2; MOT48::mCherry-HA using the anti-MOT48 and anti-HA antibodies. The MOT48 protein band (black arrowhead) present in

the wild-type strain is absent inmot48-2. In themot48-2; MOT48::HA strain, exogeneous MOT48 with a 3HA tag is expressed in

all three independent colonies (green arrowheads). In themot48-2; MOT48::mCherry-HA, exogeneous MOT48 with a large

mCherry-3HA tag is expressed (pink arrowhead), partially rescuing the Mot48 (Ida10) phenotype. Gray arrowheads: non-specific

bands.

https://doi.org/10.1371/journal.pgen.1009126.g001
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mot48-2 cilia compared to wild-type (CC-124), spectral counting experiments were performed

on isolated axonemes (Fig 2). Among the 15 species of ciliary dynein HCs present in the Chla-
mydomonas genome [8, 26], ODA α, IDAs b (DHC5), c (DHC9), and e (DHC8), and three

minor dyneins DHC3, DHC4, and DHC11 levels are greatly reduced compared to wild-type

axonemes (< 50%). In addition, ODAs β and γ, IDAs a (DHC6), d (DHC2), and g (DHC7),

and one minor dynein (DHC12/PCR4 [26, 31]) show a more modest reduction in themot48-2
mutants (50% ~ 80% of the levels of wild type) (Relationship of dynein subunits in Chlamydo-
monas and humans is summarized in S1 Table). Immunofluorescent microscopic observation

also confirmed the defects of IDA c (DHC9) and DHC11 (a minor species) in themot48-2 axo-

nemes (S2 Fig). The HCs of the two-headed IDA f/I1 showed only a slight reduction inmot48-
2mutants (Fig 2).

Characterization of the twi1-1 mutant, which lacks a PIH protein required

for dynein preassembly

In addition to MOT48, two other PIH proteins have been identified in Chlamydomonas [13].

One is PF13, a protein required for ciliary dynein assembly based on characterization of the

dynein-deficient mutant pf13 [32]. Defects of its orthologue in mammals (DNAAF2/KTU)

have been reported to cause the ciliopathy [17] (Table 1). The other is the TWI1 protein (Fig

3A) (predicted molecular weight = ~ 20590), and defects in the TWI1 orthologue (DNAAF6/

PIH1D3) also cause the ciliopathy [18, 19, 21] (Table 1). In addition, the expression of TWI1 is

highly induced upon deciliation [33]. A twi1 strain (LMJ.RY0402.076787) was recently identi-

fied in the CliP library [24], and reported that the swimming phenotype of this LMJ.

RY0402.076787 strain is similar to wild-type [25]. Thus, we back-crossed the LMJ.

Fig 2. Several IDAs are deficient in the mot48-2 ciliary axonemes. Spectral counting results (first set) of ciliary axonemal dyneins in wild-type (CC-124 and cw15),

mot48-1, andmot48-2 strains. The spectral numbers observed in the mutants were normalized using spectral numbers observed in the CC-124 wild-type strain.

Asterisks indicate the ciliary axonemal dynein species for which the spectral numbers inmot48-2 were below 50% of the levels in the CC-124 strain.

https://doi.org/10.1371/journal.pgen.1009126.g002
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RY0402.076787 strain to wild-type (CC-125) and the twi1 progeny (twi1-1) phenotype was

characterized. Compared to wild-type Chlamydomonas (CC-125)(~ 136 ± 21 μm/s), the twi1-1
swims at a slightly reduced rate (~ 103 ± 14 μm/s) after the 3-day liquid culture, suggesting

twi1-1 had subtle defects in assembly of ciliary dyneins (S1 Fig). Like other mutants defective

in genes encoding PIH proteins, the swimming phenotypes vary slightly from day to day.

An antibody against TWI1 was generated, and we noticed that TWI1 shows two or three

bands on immunoblots (Fig 3B-3D). Since these TWI1 bands could be observed even in

freshly-boiled Chlamydomonas whole cell SDS-PAGE samples, we presume that these band

shifts represent modified forms of TWI1, rather than protein degradation. We assessed if the

TWI1 band patterns were altered following treatment with calf intestinal phosphatase, and

found that no changes occurred, suggesting these shifts did not arise as a result of TWI1 phos-

phorylation. Also, we could not identify alternative-splicing variants of TWI1 cDNA. One pos-

sibility is that the TWI1 protein is structurally stable, and that boiling/SDS-treatment is not

sufficient to completely denature the protein, as has been observed for another preassembly

factor CCDC103 [34].

To test if the IFT-related or preassembly-related mutations affect the stability of the TWI1

proteins, we performed the immunoblots using the TWI1 antibody on the whole cell samples

from various IFT-related and preassembly-related mutants. Immunoblots reveal the TWI1

protein is present in most IFT-related and preassembly-related mutants (e.g. ift46-1, ift74-1,

and oda5)(Fig 3B)(See S1 Table summarizing Chlamydomonas and human proteins). Surpris-

ingly, pf22 (CC-1382) and pf23 (CC-1383 and CC-3660) strains completely lack TWI1 (Fig

3B–3D). In contrast, immunoblots of whole cell samples from pf22 (CC-2495), pf22A (CC-

2493), and pf23 (5–4) strains have normal levels of TWI1 (Fig 3C and 3D). The result strongly

suggested TWI1 loss in pf22 (CC-1382) and pf23 (CC-1383 and CC-3660) strains occurs

because of an additional mutation. TWI1 sequence in these mutant strains revealed the trans-

poson MRC1 (~ 1,600 bp) [35] inserted in the fourth intron of the TWI1 gene (Fig 3A). Since

these strains were first isolated in Dr. David Luck’s laboratory in the 1970’s [32], we suspect

that some of the parent strains used for mutagenesis in Luck laboratory had this transposon

insertion in TWI1 gene, and that these strains (pf22 (CC-1382) and pf23 (CC-1383 and CC-

3660)) are actually double mutants lacking their respective proteins (Chlamydomonas PF22 or

PF23) and TWI1. Other pf strains from Luck laboratory might also carry this twi1 (twi1-2)

background. We carried out spectral counting experiments (Fig 4) of the ciliary axonemal

dyneins in the twi1-1mutant, and found that only the levels of IDAs c (DHC9) and e (DHC8)

were modestly reduced compared to wild-type (CC-125). This observation is consistent with

the mild motility phenotype of twi1-1.

Chlamydomonas PIH proteins MOT48, TWI1, and PF13 have overlapping

and unique roles in assembly of different ciliary dyneins

We took advantage of Chlamydomonas genetics by isolating double PIH mutants (mot48-2;
pf13,mot48-2; twi1-1 and pf13; twi1-1) from crosses between single PIH mutants (pf13,mot48-
2, and twi1-1). The predictions included that if deleted proteins function together in the same

path and a phenotype of one mutant is similar or the same as the other, then the double mutant

phenotype would nearly match the phenotype of the single mutants. Also, if deleted proteins

function together in the same path but a phenotype of one mutant is more severe to the other,

then the double mutant phenotype would match the phenotype of the more deleterious single

mutant. Alternatively, if the deleted proteins operate in different pathways, or have some over-

lapping function but do not function together in the same path, then the double mutants

would have a more severe phenotype than the single mutants.
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The motility phenotype of themot48-2; twi1-1 double mutant is worse than themot48-2
single mutant (swimming velocity:mot48-2 = ~ 85 ± 14 μm/s;mot48-2; twi1-1 = ~ 49 ±
13 μm/s). Furthermore, about half of the double mutant cells have completely non-motile cilia

while the other half of the cells display a slow swimming phenotype (S1 Fig). In addition, the

Fig 3. TWI1 is a dynein preassembly factor present in various ciliary mutants. A) Genomic structure of Chlamydomonas TWI1 gene based on/from the Phytozome

(v5.5: https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias = Org_Creinhardtii) and JGI (v4: https://genome.jgi.doe.gov/Chlre4/Chlre4.home.html) genome

databases (Pink: Exon, Blue: Intron, Green: UTR). The insertional mutation site in the twi1-1mutant is based on previous reports [24, 25]. The insertion site of the

transposon, MRC1, in some of the pf22/pf23 strains determined in this study is shown with a light blue arrowhead. The molecular structure of the TWI1 protein

predicted by SMART analysis (http://smart.embl-heidelberg.de/) is also shown. TWI1 has a PIH1 domain in the middle of its structure (gray). B) Immunoblot of whole

cell samples from various IFT-related and dynein preassembly mutants using anti-PF23, MOT48, and TWI1 antibodies. All mutants, except for twi1-1 and pf22 (CC-

1382) show the presence of TWI1 in whole cells. As discussed in the text, TWI1 protein was visualized as consisting of two or three bands on immunoblots (pink

arrowheads). The pf23 (5–4) strain had a slightly smaller and mutated PF23 protein, as described previously (red arrowhead) [28]. Themot48-2mutant lacked the

MOT48 protein (green arrowhead). C) Immunoblotting of whole cell samples from wild-type (CC-125) and three pf22 strains (pf22 (CC-1382), pf22 (CC-2495), and

pf22A (CC-2493)) using an anti-TWI1 antibody. pf22 (CC-1382) lacked the TWI1 protein (pink arrowheads) in whole cells, because of the insertion of the

Chlamydomonas transposon, MRC1, in the fourth intron (see A in this figure). D) Immunoblotting of whole cell samples from wild-type (CC-125) and three pf23
strains (pf23 (CC-1383), pf23 (CC-3660), and pf23 (5–4)) using the anti-TWI1 antibody. pf23 (CC-1383) and pf23 (CC-3660) lacked the TWI1 protein (pink

arrowheads) in whole cells, because of insertion of the transposon, MRC1. pf23 (5–4) had a normal TWI1 protein. Gray arrowheads: non-specific bands. E)

Immunoblottings of the de-ciliated cell body samples from wild-type (CC-125) and single or double PIH mutants using the antibodies against various IDA subunits

(p28/IDA4, actin/IDA5, IC138/BOP5, and DHC9/IDA c HC).

https://doi.org/10.1371/journal.pgen.1009126.g003
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percentage of ciliated cells of the pf13; twi1-1 double mutant (~ 16%) is much lower than the

pf13 (~ 58%) single mutant. These observations strongly suggest that TWI1 protein is involved

in ciliary dynein preassembly.

To further test the idea that dynein assembly is more defective in the double mutants, we

performed spectral counting experiments on dyneins in isolated axonemes from the double

and single PIH preassembly mutants to compare the amount of ciliary dyneins assembled (Fig

4). Themot48-2; pf13 double mutant grew extremely short cilia or was missing cilia. This

severe phenotype hindered comparison of the amount of ciliary dynein assembled in this

strain. This short cilia phenotype was also previously observed in themot48-1; pf13mutant

[13]. Predictably, this short-cilia phenomenon was a consequence of pre-assembly failure of

sufficient number of ciliary dyneins required for ciliary elongation.

The peptide numbers for a subset of ciliary dyneins in themot48-2; twi1-1 double mutant

are greatly reduced compared tomot48-2 (Fig 4). In particular, the IDAs b (DHC5), c

(DHC9), and e (DHC8), and one minor dynein, DHC3 are greatly reduced in the double

mutant compared tomot48-2 alone. This result indicates that both MOT48 and TWI1 func-

tion in the preassembly of these dynein species, but in possibly different steps. Alternatively,

MOT48 and TWI1 have overlapping functions in the same step of preassembly, and loss of the

two PIH proteins cause severe defects for some ciliary dyneins. Peptide numbers of ODAs α
and β, and IDA b (DHC5) in the pf13; twi1-1 double mutant are modestly reduced compared

to the pf13mutant, indicating that PF13 and TWI1 both function in the preassembly of these

dyneins possibly in different steps, and/or have some overlapping function in the same step

(see Discussion).

It is intriguing that peptide numbers of some minor dyneins (DHC12 in themot48-2; twi1-
1 double mutant, and DHC11 and DHC12 in the pf13; twi1-1 double mutant) are much greater

in the double PIH mutants than in the single PIH mutants (pf13,mot48-2, and twi1-1)(Fig 4).

Fig 4. Dynein defects are profound in double PIH preassembly mutants. Spectral counting results (second and third sets combined) of ciliary axonemal

dyneins from wild-type (CC-125), twi1-1,mot48-2,mot48-2; twi1-1, pf13, pf13; twi1-1 and twi1-1; TWI1::HA. The spectral numbers observed in the mutants

were normalized using the spectral numbers from the CC-125 strain. Asterisks indicate the ciliary dynein species for which the spectral numbers in themot48-
2; twi1-1 strain showed more than a 50% reduction compared to themot48-2 strain. The black triangles indicate the ciliary dynein species for which the spectral

numbers in the pf13; twi1-1 strain showed a more than 30% reduction compared to the pf13 strain. DHC11 and DHC12 showed ~ 50% increase in pf13; twi1-1
compared to pf13 (white triangles).

https://doi.org/10.1371/journal.pgen.1009126.g004
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This result suggests that the preassembly of these minor dynein species is not affected by the

double PIH mutations and that these minor dyneins partially replace the major dynein species

that are affected in these double mutants. While some major IDAs are predicted to be replaced

by minor dynein species at the proximal end of the cilia [36, 37], replacement of major dynein

species by minor dynein species, especially DHC12 in the double PIH mutants, must be con-

firmed by future biochemical studies.

In addition, to check the stability of various dynein subunits in the cytoplasm, we performed

immunoblots of de-ciliated cell-body samples. Immunoblots of dynein subunits (S1 Table) on

the de-ciliated cell-body samples of the single or double PIH mutants revealed that one IDA sub-

unit, p28/IDA4 was apparently reduced in the cell bodies from PIH mutants withmot48 back-

ground (Fig 3E). In contrast, another IDA subunit, actin/IDA5 appeared to accumulate in the

cell bodies from PIH mutants with the pf13 and/ormot48 background (Fig 3E). The reduction

in p28/IDA4 and increase in actin/IDA5 were also previously observed inmot48-1 [13]. In addi-

tion, IDA c HC (DHC9) is reduced in the PIH mutants with themot48 background (Fig 3E).

As a further test, we performed rescue experiments to see if recovery of the TWI1 protein

in the twi1-1 andmot48-2; twi1-1 would rescue the observed phenotypes. Exogenously

expressed TWI1::3HA proteins in twi1-1; TWI1::HA andmot48-2; twi1-1; TWI1::HA (S2

Table) successfully rescue both the swimming defects (swimming velocity: twi1-1 = ~

103 ± 14 μm/s; twi1-1; TWI1::HA = ~ 121 ± 21 μm/s;mot48-2; twi1-1 = ~ 49 ± 13 μm/s;

mot48-2; twi1-1; TWI1::HA = ~ 71 ± 11 μm/s) and ciliary dynein assembly (Figs 4 and 5A–5C

and S1 Fig). Notably, the expressed exogeneous TWI1::3HA proteins by the cDNA rescue

show several forms in the immunoblots (Fig 5A), suggesting these variants most likely derive

from structural differences or some modification rather than alternative splicing or protein

degradation. These results indicate that the observed phenotypes in twi1-1 andmot48-2; twi1-
1 were indeed derived from loss of the TWI1 protein.

TWI1 may work together with other preassembly factors

In addition to the PIH mutants, we also performed spectral counting of dyneins in isolated axo-

nemes from pf23 (5–4) and pf22A (CC-2493)(which contain a wild-type TWI1 gene) and com-

pared to pf23 (CC-1383) and pf22 (CC-1382)(which contain a mutation in the TWI1 gene,

described above). The dynein defects in pf23 (CC-1383) are more profound than pf23 (5–4)(S3A

Fig). Particularly, the defects in IDA d (DHC2) and IDA g (DHC7) are larger in pf23 (CC-1383)

than in pf23 (5–4) [28]. On the other hand, the dynein defects in pf22A (CC-2493) and pf22 (CC-

1382) are relatively similar to each other (S3A Fig). In addition to ODAs and IDAs b (DHC5) and

c (DHC9) as previously described [16, 32], these pf22mutants have large defects (< 50% of wild-

type) in IDAs a (DHC6) and e (DHC8) and minor dyneins DHC3 and DHC4. Also, the axone-

mal amount of one minor dynein DHC12 is increased in the pf22mutants (S3A and S3B Fig).

Given that DNAAF4/DYX1C1 (PF23 orthologue)(S1 Table) and DNAAF6/PIH1D3 (TWI1

orthologue)(Table 1) in mammals are predicted to form a complex and work together in dynein

preassembly [18], the large dynein defects observed in pf23 (CC-1383; with twi1-2 background)

may indicate that Chlamydomonas TWI1 is needed for efficient function of the PF23 protein in

dynein preassembly. Additionally, the swimming phenotype of the pf23 (CC-1383) strain, rescued

with the wild-type PF23 gene, which also harbored the twi1-2mutation, was indistinguishable

from wild-type [28], consistent with the subtle swimming defect observed in the twi1-1mutant.

Discussion

In this report, we characterized two novel PIH preassembly mutants in Chlamydomonas rein-
hardtii,mot48-2 and twi1-1. Although recent studies reveal a conserved role(s) of PIH proteins
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Fig 5. Exogeneous TWI1 protein can rescue the Twi1 phenotype. A) Immunoblot of whole cell samples from wild-type

(CC-125 and cw15), twi1-1,mot48-2; twi1-1, twi1-1; TWI1::HA andmot48-2; twi1-1; TWI1::HA strains using anti-HA (left)/

MOT48 and TWI1 (right) antibodies. The black arrowheads indicate the wild-type endogenous TWI1 protein. Red

arrowheads indicate the exogeneous TWI1 protein with the 3HA tag. The cDNA-driven exogeneous TWI1::3HA proteins
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in ciliary dynein preassembly [13, 17–19, 21, 22], the specificity of their molecular function(s)

and interaction(s) is not fully understood. Our study of assembly of specific dyneins in the axo-

neme, in the single and double PIH mutants, revealed partially overlapping and specific roles

for three Chlamydomonas PIH proteins, MOT48, TWI1, and PF13. Accordingly, we have

updated our previous model [13] of the preassembly pathway involving PIH proteins and cili-

ary dynein species (Fig 6). The preassembly pathway of the PIH proteins is more complicated

than previously predicted [13], with assembly of each ciliary dynein requiring a specific com-

plement of PIH proteins (Fig 6). We observed assembly defects in some dynein species are

more severe in the double preassembly mutants (e.g.mot48-2; twi1-1, pf13; twi1-1 and pf23;
twi1-2 (CC-1383)) than a single mutant (e.g.mot48-2, pf13 and pf23). In addition, dynein f/I1,

and possibly IDA a, do not require PIH proteins for assembly (Fig 6 and see [22]). We discuss

possibilities in context to the severe phenotypes in the double PIH mutants.

Preassembly of ciliary dyneins likely requires a series of ordered steps each requiring a PIH

preassembly protein. For example, full assembly of dynein species IDAs b and c in the axo-

neme require the activity of at least two PIH proteins including PF13, MOT48 and possibly

TWI1 (Figs 4 and 6). Sequential steps in the dynein preassembly have been predicted in previ-

ous studies [38–40]. PIH proteins and other preassembly factors may be organized in com-

plexes/organelles such as the DynAP [23] or organized in a series of individual complexes

operating in ordered steps (Table 2). Thus, whether in a single complex or in a series of com-

plexes, each PIH protein may operate in a different step in preassembly, and loss of PIH pro-

teins would attenuate the whole preassembly process.

The apparent functional overlap between PIH proteins required for preassembly of certain

dyneins, such as IDA c, suggests that the PIH proteins can work with partially overlapping

function. Thus, loss of two PIH proteins would cause a more severe phenotype than a single

mutation. Consistent with this idea, missing PIH proteins appear to be partially compensated

by the other PIH proteins to some extent. For example, the apparent subtle motility defect in

twi1-1 likely derives from a compensatory function of MOT48 and PF13 in the cytoplasm of

twi1-1 cells (see IDA c in Fig 4). This hypothesis is also consistent with our observation that

the motility of themot48-1/mot48-2mutant improves as the cells in liquid culture grow old,

implying that in themot48 cells, PF13 and TWI1 eventually compensate and help to preassem-

ble ciliary dyneins that are usually dependent on MOT48. This idea could explain the occa-

sional ODA assembly in pf13 axonemes observed by Huang et al., [32]. Predictably, MOT48

and/or TWI1 partially compensate, with time, for PF13 in the pf13mutant.

As mentioned above, preassembly factors including PIH proteins, PF22 and PF23 may

form in the molecular complex/organelle DynAPs [23]. Based on our data, loss of one subunit

protein from this complex may have a modest effect on the activity of the whole complex, but

loss of two or more specific subunits largely blocks the activity of the complex for dynein pre-

assembly. Interestingly, in contrast to IDAs b and c, assembly of the minor dyneins, particu-

larly DHC12, only seems to require MOT48. Although we focused on the assembly of dynein

show two bands in these blots (red arrowheads). A green arrowhead indicates the MOT48 protein. B) Urea-PAGE of

axonemes from wild-type (CC-125), twi1-1, twi1-1; TWI1::HA,mot48-2,mot48-2; twi1-1, andmot48-2; twi1-1; TWI1::HA
strains. For presentation, gel regions of ciliary dyneins and lower parts are shown. The relative positions of ciliary dyneins

were adjusted between all strains for comparison. The black arrowheads indicate the HCs of ODA. The red arrowheads

indicate the HCs of IDAs. HCs of ODAγ and IDAs a, d, e and fβ form a large band in the urea gel. A green arrowhead

indicates HC degradation products. In themot48-2; twi1-1 strain, the ODAα and IDA bands were missing (asterisks), but

these dyneins were recovered in themot48-2; twi1-1; TWI1::HA strain. The correspondence between bands in the Urea-

PAGE gel and DHCs was based on [65–67]. C) Immunoblots of axonemal samples from wild-type (CC-125),mot48-2,

mot48-2; twi1-1 andmot48-2; twi1-1; TWI1::HA strains using dynein-subunit antibodies (anti-p28/IDA4, p38, actin/IDA5,

centrin/VFL2, and IC2/IC69/ODA6; S1 Table).

https://doi.org/10.1371/journal.pgen.1009126.g005
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HCs in the axoneme, we also observed either an increase or decrease in specific LCs in the

cytoplasmic compartment. For example, DHC9 (IDA c HC) and p28/IDA4, a LC of several

Fig 6. Updated model of the PIH-protein pathways in the dynein preassembly. A proposed model of the functional pathways of PIH preassembly proteins in

Chlamydomonas adapted from [13]. The bold lines indicate the primary pathways, showing the dynein species that were reduced more than 30% in spectral

numbers in each PIH mutant compared to the wild-type. The dotted thin lines indicate relatively secondary pathways, showing the dynein species that were

reduced more than 30% in spectral numbers in the double PIH-mutants compared to the single PIH-mutants. The pathways are more complicated than

previously thought [13]. Since the three-headed ODA of Chlamydomonas cannot be assembled in axonemes in the absence of ODA β or γ HC [68, 69], in this

study we could not assess the direct contribution of each PIH protein in the cytoplasmic preassembly of each ODA HC since the amount of ODA α in cilia could

be reduced simply in the absence of ODA β or γ HC. Thus, we categorized ODA HCs into one group in this model (asterisk). This is also the case for the two-

headed IDA f/I1, in which this species cannot be assembled without each HC (f/I1α or f/I1β)[70, 71], thus we also categorized IDA f/I1 HCs into one group

(asterisk). In this study, we could not find any primary pathway of the PIH proteins for the preassembly of IDAs a and f/I1. These dynein species may be

preassembled by factors other than PIH proteins (e.g. PF22 or PF23, see S3 Fig), or can assemble spontaneously in cytoplasm to some extent without the help of

preassembly factors.

https://doi.org/10.1371/journal.pgen.1009126.g006
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single-headed IDAs, are reduced in the cytoplasm of PIH mutants with themot48 background

(Fig 3E, see also [13]). In addition, actin/IDA5, another LC of single-headed dyneins, accumu-

lates in the cytoplasm of PIH mutants with the pf13 and/ormot48-2 background (Fig 3E).

Thus, stability of dynein subunits in the cytoplasm may offer another approach toward under-

standing PIH protein function. One model is that the PIH proteins play roles in the folding

and stability of dynein HCs, and also in the following LC assembly to HC [17–19, 21, 40]. Fur-

ther biochemical analyses, in combination with the in vitro reconstitution, are required to

define the details of PIH protein function.

Although ChlamydomonasMOT48 was first identified as a protein that is conserved in

organisms with motile cilia [44], an exact orthologousMOT48 gene in vertebrates remains

unclear. A recent study showed that among the four PIH proteins found in vertebrates,

PIH1D1, PIH1D2, DNAAF6/PIH1D3 (TWI1 orthologue), and DNAAF2/KTU (PF13 ortholo-

gue), MOT48 groups near DNAAF2/KTU and PIH1D1 in a phylogenetic tree [22]. We also

generated a phylogenetic tree using the full-length sequences of PIH proteins (S4 Fig), and also

found that MOT48 fell into a group with PIH1D1 proteins. A BLAST search against the NCBI

database (https://blast.ncbi.nlm.nih.gov/Blast.cgi) also revealed that among the four PIH pro-

teins in vertebrates, PIH1D1 showed the highest similarity to MOT48, although the E-values

were relatively low (< 7E-15). In addition, recently MOT48 has been reported to interact with

RPAP3 and RuvBL1 [25], components of the known R2TP chaperone complex [41] to form a

potential R2TP-like complex in Chlamydomonas cytoplasm (Table 2). Thus, MOT48 may have

a function as a co-factor in the Chlamydomonas R2TP-like complex, which is similar to the

PIH1D1 function in higher eukaryotes [41].

Table 2. Interacting partners of PIH proteins predicted/identified in previous studies.

Protein Name Potential Interacting Partnera Reference

PIH1D1/MOT48/IDA10 DNAAF4/DYX1C1 [25]

HSP90 [18, 40, 41]

RPAP3 [18, 25, 40–43]

RuvBL1/Pontin [18, 25, 40–43]

RuvBL2/Reptin [18, 25, 40–43]

WDR92/Monad [25, 40, 43]

PIH1D2 HSP70 [27]

HSP90 [27]

SPAG1 [42, 43]

RuvBL1/Pontin [42, 43]

RuvBL2/Reptin [42, 43]

DNAAF6/PIH1D3/Twister/TWI1 DNAAF4/DYX1C1 [18, 19, 40, 42, 43]

DNAAF2/KTU/PF13 [19]

HSP70 [21]

HSP90 [18, 21]

DNAAF2/KTU/PF13 DNAAF4/DYX1C1 [18, 40, 42, 43]

HSP70 [17]

HSP90 [18]

RuvBL1/Pontin [18, 43]

RuvBL2/Reptin [18, 43]

SPAG1 [42, 43]

a Potential interacting partners of PIH proteins predicted/identified in various organisms are summarized in one

table.

https://doi.org/10.1371/journal.pgen.1009126.t002
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The TWI1 orthologue, DNAAF6/PIH1D3, has also been postulated to interact with

DNAAF4/DYX1C1 [18], orthologous to the PF23 protein in Chlamydomonas [28]. Thus,

TWI1 may function as part of a large chaperone complex [18, 19, 23](Table 2). Using the

3HA-tagged rescued strains (mot48-2; MOT48::HA and twi1-1; TWI1::HA) for identification

of interacting partners, we failed to identify chaperone related proteins. This negative result

could indicate weak and/or transient interactions of the PIH proteins with chaperones and/or

interacting partners of MOT48 and TWI1. Further structural and biochemical studies of PIH

interacting proteins, including specific dynein HC/IC/LCs, are required for understanding

assembly complexes, steps and specificity of each PIH protein required for ciliary dynein

assembly.

Summary

The mechanisms for PIH proteins in assembly of ciliary dyneins are more complicated than

previously thought. Chlamydomonas uses the three PIH proteins, MOT48, TWI1, and PF13,

for ciliary dynein preassembly. Based on analysis in single and double PIH mutants, specific

PIH proteins are required for assembly of specific dyneins, in some cases, and in other cases

the PIH proteins can work in partially overlapping fashion. Further biochemical studies, and

the two novel Chlamydomonas PIH preassembly mutants,mot48-2 and twi1-1, from this

study, will define our understanding of dynein assembly.

Materials and methods

Chlamydomonas strains and samples

The Chlamydomonas strains used in this study are listed in S2 Table. The novelmot48 (ida10)

allele, referred to asmot48-2 was isolated from a CLiP library strain (LMJ.RY0402.055540)[24]

having a mutation that was unlinked to the paromomycin resistant (APHVIII) insertional cas-

sette used for selection but caused a slow-swimming phenotype. The original LMJ.RY0

402.055540 strain was backcrossed with the wild-type (CC-125) strain to separate this muta-

tion, and twomot48-2 progeny were isolated. The identification of themot48 background was

confirmed by Sanger sequencing using the primer pair: Ida10-2 GF2 (5’-TGGCAGCACATTC

ATAAGCA-3’) and Ida10-2 GR2 (5’-CGCTGTACTAGAGCCCCTCA-3’). The twi1 strain

was first obtained from the CLiP library (LMJ.RY0402.076787)[24] and backcrossed with the

wild-type strain (CC-125), and the twi1mutant progeny (twi1-1) were used for experiments.

Cells were grown in the tris-acetic acid-phosphate (TAP) liquid/solid media as previously

described [45]. Double Chlamydomonas PIH mutants were obtained using the standard tetrad

procedure [45]. The deciliation was performed following the standard procedure [46]. For

preparation of whole cell samples or de-ciliated cell-body samples, whole cells/cell bodies were

extracted with water/methanol/chloroform (volume ratio = 3:4:1) to remove the nucleic acids,

lipids and chlorophyll, and the denatured proteins were boiled in the SDS-sample buffer as

previously described [47].

Rescue of mot48-2, twi1-1, and mot48-2; twi1-1
Phenotypic rescue of themot48-2, twi1-1, andmot48-2; twi1-1 strains was performed by the

electroporation method using each wild-type gene cloned in the modified pGend vector

(pGend-MCS-3HA-AphVIII/pGend-MCS-mCherry-3HA-AphVIII/pGend-MCS-3HA-Hyg)

[13, 48, 49]. The rescued strain,mot48-2; MOT48::HA expressed exogeneous MOT48 with a

3HA tag at the C-terminus. The rescued strain,mot48-2; MOT48::mCherry-HA expressed exo-

geneous MOT48 with the mCherry-3HA tag at the C-terminus. The pGend-MOT48-
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3HA-AphVIII vector was previously described [13] and also used in this study. The two twi1-1
rescued strains, twi1-1; TWI1::HA andmot48-2; twi1-1; TWI1::HA expressed exogeneous

TWI1 with a 3HA tag at the C-terminus. The primer pair used for wild-type TWI1 cloning

was as follows, TWI1-pGend-F1 (5’-CACAACAAGCCCATATGGACATTGGGAGCTTCA

CTGCTGA-3’) and TWI1-pGend-R1 (5’-GGTATCGATCGAATTCGAATGGCTCTTCCCG

AATGATGCG-3’). The NdeI/EcoRI sites used for cloning are underlined.

Spectral counting analysis

A semi-quantitative estimation of the amount of dyneins in the isolated axonemes [28, 50, 51]

was conducted using the spectral counting analyses on some LC-MS/MS spectrometers at Uni-

versity of Massachusetts Medical School Mass Spectrometry Facility.

A first set of experiments was performed on dyneins from the wild-type (CC-124, cw15),

mot48-1, andmot48-2 strains with the aim of comparing the dynein levels between themot48-
1 andmot48-2 strains. For normalization and comparison between samples, the peptide num-

bers of ciliary dyneins observed in the CC-124 strain were assigned a ratio of 1.0, and the

observed peptide numbers of Hydin [52], a central-pair protein were also used as an internal

standard. The first-set of experiments was generously performed by Dr. John Leszyk (Univer-

sity of Massachusetts Medical School). Thresholds in the Scaffold 4 software (http://www.

proteomesoftware.com/products/scaffold/) for the first-set of analyses were set as follows: Pro-

tein Threshold: 90%/Minimal Peptides Number: 2/ Peptide Threshold: 70%. The averages of

two independent experiments are summarized in Fig 2.

A second set of experiments was performed on dyneins from wild-type (CC-125), twi1-1,

mot48-2,mot48-2; twi1-1, pf13, pf13; twi1-1, and pf23 (5–4) strains with the aim of comparing

the dynein levels between the single and double PIH preassembly mutants. For normalization

and comparison between samples, observed peptide numbers in the CC-125 strain and also

the peptide numbers of Hydin were used. The second set of experiments was generously per-

formed by Drs. Scott Shaffer and Xuni Li (University of Massachusetts Medical School).

Thresholds in the Scaffold 4 software for the second-set analyses were set as follows: Protein

Threshold: 99%/Minimal Peptides Number: 2/ Peptide Threshold: 70%. The results are sum-

marized in Fig 4 and S3 Fig.

A third set of experiments was performed on dyneins from wild-type (CC-125), twi1-1;
TWI1::HA, pf22 (CC-1382 with the twi1-2 background) and pf22A (CC-2493) strains with the

aim to check the dynein rescue and effect of the twi1-2mutation in dynein assembly in pf22
strains. Observed peptide numbers were normalized using peptide numbers of CC-125 and

Hydin, and the results were combined/incorporated into Fig 4 and S3 Fig. The third set of

experiments was generously performed by Drs. Scott Shaffer and Roshanak Aslebagh (Univer-

sity of Massachusetts Medical School). Thresholds in the Scaffold 4 software for the third-set

analyses were set as follows: Protein Threshold: 99%/Minimal Peptides Number: 2/ Peptide

Threshold: 77%. The spectral counting data of pf23 (CC-1383 with the twi1-2 background)

normalized with the wild-type (137c) peptide counts were reanalyzed/refined from our previ-

ous paper [28] with the Hydin normalization in S3 Fig.

TWI1 antibody production

The TWI1 cDNA sequence was determined using the Chlamydomonas cDNA library (Chla-
mydomonas Resource Center) and cloned into the NdeI/BamHI site of the pET15b vector

(Novagen) by the In-Fusion HD Cloning enzyme (TAKARA). The primer pair to amplify the

TWI1 cDNA sequence was as follows: TWI1-CF1 (5’-CGCGCGGCAGCCATATGGACATT

GGGAGCTTCACTG-3’) and TWI1-CR1 (5’-GTTAGCAGCCGGATCCGAATGGCTCT
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TCCCGAATGATGCG-3’)(The NdeI/BamHI sites are underlined). The purified TWI1 pro-

tein with a 6His tag at the N-terminus was used as antigen to immunize two rabbits. The anti-

sera from rabbits were blot and Protein-A purified before use, as previously described [53, 54].

The Chlamydomonas TWI1 cDNA sequence determined in this study was deposited in the

DNA Data Bank of Japan (DDBJ) under the accession No. LC461993.

Other methods

SDS-PAGE and immunoblotting were performed following standard procedures [55, 56]. For

the immunoblotting, antibodies used included: primary antibodies (anti-MOT48 [28], anti-

HA (Y-11)(Santa Cruz), anti-HA (3F10)-HRP (Roche), anti-PF23 [28], anti-TWI1 (this

study), anti-actin/IDA5 [57], anti-p28/IDA4 [58], anti-centrin/VFL2 (20H5)(MilliporeSigma),

anti-p38 [59], anti-IC138/BOP5 [60], anti-IC2/IC69/ODA6 [61], anti-DHC9 (IDA c HC)

[37]); secondary antibody (Goat-anti-Rabbit or Mouse-HRP (Roche)). Immunofluorescent

microscopic observation of nucleo-flagellar apparatuses was performed as described previously

[36, 37, 62], and the acquired images were adjusted for presentation using Photoshop (Adobe).

The urea PAGE used to resolve ciliary dynein bands was performed as previously described

[63]. The swimming velocity of Chlamydomonas was assessed on free-swimming cells in liquid

culture using our in-lab video system and ImageJ software (https://www.google.com/search?

client=firefox-b-d&q=imagej+software) [64]. Velocities were measured on the 3-day liquid

cultured cells, and reported in the text as average ± standard deviation. The ciliated cell ratio

in the pf13 and pf13; twi1-1 strains was counted and averaged on three days. Student’s t-test

was performed on Excel (Microsoft).

Supporting information

S1 Fig. Swimming velocity measurement of mot48-2/twi1-1-related strains. Swimming

velocities of wild-type (CC-125),mot48-2,mot48-2; MOT48::HA,mot48-2; MOT48::mCherry-
HA, twi1-1, twi1-1; TWI1::HA,mot48-2; twi1-1, andmot48-2; twi1-1; TWI1::HA. For wild-

type (CC-125), twi1-1, twi1-1; TWI1::HA,mot48-2; MOT48::HA, andmot48-2; MOT48::

mCherry-HA, more than 40 cells were measured. Formot48-2,mot48-2; twi1-1, andmot48-2;
twi1-1; TWI1::HA, it was difficult to find ideal cells for the velocity measurement, but more

than 15 cells were measured. As discussed in the main text, the swimming phenotypes of the

preassembly mutants slightly varied from day to day and culture to culture because of the

apparent compensatory and overlapping nature of the dynein preassembly. In this figure,

swimming velocities are shown for cells cultured for 3 days in the liquid TAP media in mini

petri-dishes under constant light. Asterisks indicate p< 0.01 in the Student’s t-test.

(TIF)

S2 Fig. Immunofluorescent microscopic observation of ciliary dyneins in axonemes from

PIH mutants. Immunofluorescence localization of DHC9 (IDA c HC), DHC11 (minor

dynein HC) and α-tubulin in wild-type (CC-124), pf13 andmot48-2 nucleo-flagellar appara-

tuses. DHC11 was shown to be localized at the proximal part of the wild-type axonemes [37].

Both DHC9 and DHC11 signals were reduced in the pf13 andmot48-2 axonemes compared to

wild-type axonemes. The bright puncta are non-specific staining/autofluorescence. Bar: ~

5 μm.

(TIF)

S3 Fig. Dynein defects are more severe in the pf23 mutant also containing the twi1-2 muta-

tion. A) Spectral counting comparison of dyneins from axonemes of pf23 (5–4), pf23 (CC-

1383; with the twi1-2 background), pf22A (CC-2493), and pf22 (CC-1382; with the twi1-2
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background). The spectral data of pf23 (5–4) are from the second set of experiments. The spec-

tral data of pf22A (CC-2493) and pf22 (CC-1382) are from the third set of experiments. The

spectral data of pf23 (CC-1383) are refined/reanalyzed from our previous study [28]. The spec-

tral numbers observed in the mutants were normalized using the spectral numbers of Hydin

and wild-type peptides (CC-125 for pf23 (5–4), pf22A (CC-2493), and pf22 (CC-1382), and

137c for pf23 (CC-1383)[28]). Asterisks indicate the ciliary dynein species for which the spec-

tral numbers in the pf23 strain (CC-1383; with the twi1-2 background) showed more than a

50% reduction compared to the pf23 (5–4) strain. B) Ciliary dynein species for which the spec-

tral numbers in the pf23 (5–4) or pf22A (CC-2493) strain (without the twi1-2 background)

showed a more than 50% reduction compared to wild-type (CC-125) are summarized.

(TIF)

S4 Fig. Phylogenetic analysis of PIH proteins from Chlamydomonas reinhardtii and other

organisms. The protein alignment was performed using the ClustalW software (v2.1)(http://

clustalw.ddbj.nig.ac.jp/) by the default settings, and the phylogenetic tree was drawn by the

Neighbor-Joining method [72] and modified in MEGA7 program (https://www.

megasoftware.net/). The bootstrap consensus tree inferred from 1000 replicates is shown, and

the bootstrap numbers are shown in percentile [73]. The evolutionary distances were com-

puted using the p-distance method [74], and all positions containing gaps and missing data

were eliminated. The DNAAF4/DYX1C1/PF23 proteins, which have the CS (CHORD-con-

taining proteins and SGT1) domain relating to the PIH1 domain [18] were used as an out-

group. In this tree, ChlamydomonasMOT48 falls into the PIH1D1 group. The accession

numbers of proteins used to draw this tree were as follows: Human DNAAF2/KTU (NCBI:

ACN30493.1); Mouse DNAAF2/KTU (NCBI: NP_081545.3); Zebrafish KTU (NCBI:

NP_001028272.1); Chlamydomonas PF13 (NCBI: BAG69288.1); Human PIH1D1 (NCBI:

NP_060386.1); Mouse PIH1D1 (NCBI: AAH68254.1); Zebrafish PIH1D1 (NCBI:

NP_001153400.1); Human PIH1D2 (NCBI: AAH19238.1); Mouse PIH1D2 (NCBI:

AAH39645.1); Zebrafish PIH1D2 (NCBI: NP_001008629.1); ChlamydomonasMOT48 (NCBI:

BAI83444.1); Human DNAAF6/PIH1D3 (NCBI: NP_001162625.1); Mouse DNAAF6a/

PIH1D3a (NCBI: NP_083338.1); Mouse DNAAF6b/PIH1D3b/Twister2 (NCBI: AAI19079.1)

[21]; Zebrafish Twister (NCBI: NP_001002309.1); Chlamydomonas TWI1 (NCBI: LC461993,

This study); Human DNAAF4/DYX1C1 (NCBI: NP_570722.2); Mouse DNAAF4/DYX1C1

(NCBI: NP_080590.3); Zebrafish DNAAF4/DYX1C1 (NCBI: NP_991251.1); Chlamydomonas
PF23 (NCBI: BBA27223.1); Yeast Nop17 (NCBI: GAX71541.1).

(TIF)

S1 Table. Chlamydomonas dynein subunits, IFT proteins, and non-PIH preassembly pro-

teins mentioned in this study and their potential human orthologues.

(PDF)

S2 Table. Chlamydomonas strains used in this study.

(PDF)
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