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Phenanthrenes and their aza-analogues have important applications in materials science and in medicine. Aim of this review is to

collect recent reports describing their synthesis, which make use of radical cyclizations promoted by a visible light-triggered photo-

catalytic process.

Introduction

Phenanthrenes are widely investigated compounds, due to the
impressive number of diverse applications involving this scaf-
fold, ranging from medicinal chemistry [1] to materials
sciences, including their use in optoelectronics [2,3] and in the
design of dye-sensitized solar cells (DSSC) [4]. Typical
methods for the construction of a phenanthrene core involve
transition-metal-catalyzed cycloisomerizations starting from
arynes [5,6], o-alkynyl-biaryls [7,8], or substituted N-tosylhy-
drazones [9].

However, since the introduction in 1964 of the Mallory photo-

cyclization of stilbenes [10] leading to phenanthrenes, the

interest in protocols for the construction of poly(hetero)aromat-
ic cores under photochemical conditions has increased steadily,
especially when solar light may be used [11].

Moreover, aza-analogues of phenanthrenes, in particular
phenanthridines, are substructures present in a wide range of
both natural and synthetic products, including trisphaeridine
[12] (that exhibits an anti-HIV-I protease activity) and the anti-
fungal sanguinarine [13]. Some phenantridinium derivatives are
known as well, notably fagaronine (a DNA topoisomerase 1 in-
hibitor [14] and DNA intercalator), bicolorine (5-methyl-
[1,3]dioxolo[4,5-j]phenanthridin-5-ium ion, a trypanocidal)
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[15], and the antimalarian nitidine, as well as ethidium bromide
(EB), that has been employed as a DNA- and RNA-fluorescent
marker for a long time (some examples are collected in
Figure 1). For these reasons, apart from the well-known dehy-
drative ring-closure of acyl-o-xenylamines in the presence of
phosphorus oxychloride proposed by Morgan and Walls [16],
several synthetic protocols for constructing the phenanthridine
structure have been reported [17,18]. These include, among the
others, the anionic ring-closure of 2-cyanobiaryls by using
organometallic reagents [19,20], and an impressive number of
transition-metal-catalyzed C(sp?)—C(sp?) cross-coupling pro-
cesses [21-23].

g 9o
OCH,

0 O H3;CO O
<o N H3CO 2N
trisphaeridine fagaronine
904
0 O <0 O OCH;
bicolorine nitidine

Figure 1: Bioactive phenanthridine and phenanthridinium derivatives.

In the last decade, however, photochemical reactions, espe-
cially those promoted by a photocatalyst, have revolutionized
the way chemists can arrive to important chemical scaffolds
[24-26]. Indeed, the photocatalytic approach combines unparal-
leled mild conditions, due to the use of photons as traceless
reagents that leave no residue behind [27,28], with the exploita-
tion of rather inexpensive visible light (or sunlight, when
possible) irradiation [29]. In general terms, photocatalysis
smoothly gives access to reactive radical intermediates [30],
mainly carbon-centered [31-33], or nitrogen-centered radicals
[34,35]. In turn, these species have been extensively employed
in radical cyclizations for the synthesis of polycondensed
aromatics, with a focus on those containing heteroatoms [36-
39]. The aim of the present review is to summarize the recent
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efforts in the design and optimization of photocatalyzed proce-
dures for the synthesis of phenanthrenes and their nitrogen-con-
taining heteroarene analogues via the intermediacy of a radical.
However, some interesting approaches carried out under photo-
mediated or photocatalyst-free conditions have been likewise
included for the sake of completeness.

Review

1 Synthesis of phenanthrenes

The photocatalyzed synthesis of the phenanthrene skeleton is a
quite unexplored field, a notable exception being the seminal
work published in 1984 by Cano-Yelo and Deronzier, where the
authors reported one of the first applications of the Ru(bpy)32*
complex in photoredox catalysis (Scheme 1). This contribution
described a photo-Pschorr cyclization occurring on a stilbene
diazonium salt (e.g., 1.1%) with the intermediacy of an aryl
radical [40].

Alternative strategies for the synthesis of phenanthrenes have
been later reported, including the adoption of [4 + 2] benzannu-
lations between biaryl derivatives and alkynes [41,42].
Scheme 2 illustrates one of such cases where an aryl radical,
formed via the photocatalyzed reduction of diazonium salt 2.1%,
added to methyl propiolate. Ensuing cyclization of the resulting
vinyl radical 2.2" finally yielded the desired phenanthrene 2.3
[41].

A different approach involves the intramolecular cyclization of
a-bromochalcones (Scheme 3). Thus, compounds 3.1a—d under-
went a one-electron reduction by the excited photocatalyst fac-
Ir(ppy)3. Upon bromide anion loss, the a-keto vinyl radicals
3.2'a-d were then formed, which smoothly added onto the
vicinal aromatic ring in an intramolecular fashion, affording
phenanthrene derivatives 3.3a—-d upon rearomatization.
Notably, the process offers a wide substrate scope and the prod-
ucts are obtained with complete regioselectivity [43].

2 Synthesis of phenanthridines or related

azaarenes
Under photocatalyzed conditions, phenanthridines are mostly
obtained via an intramolecular radical cyclization occurring in a

biphenyl moiety or a related system containing two aromatic

COOH

hv,X>410 nm
Ru(bpy)s2* (5 mol %)

Scheme 1: Synthesis of phenanthrenes by a photo-Pschorr reaction.

1.2, quantitative

MeCN MeO
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Scheme 2: Synthesis of phenanthrenes by a benzannulation reaction.

blue LED (450 nm)
fac-Ir(ppy)3 (1 mol %)
K3POy4 (2 equiv)

DMF (anhydrous)
rt,3h
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COOMe
visible light =
eosin Y (1 mol %)
e | (OO

2.3, 73%

3.2°a-d 3.3a,81%,R=H
b, 51%, R = Me
c, 76%, R = OMe
d,77%,R=F

Scheme 3: Photocatalytic cyclization of a-bromochalcones for the synthesis of phenanthrenes.

rings. Either carbon-centered radicals (e.g., imidoyl, a-amino-
alkyl, or phenyl) or nitrogen-centered radicals (e.g., iminyl or
amidyl) can be used for this purpose as shown in Figure 2. Ac-
cordingly, the azaarene may be formed by an intramolecular
C-C or C-N bond-formation event, as detailed in the following.

2.1 Synthesis of phenanthridines via
photocatalyzed intramolecular C—C bond formation
A typical approach makes use of imidoyl radicals [30,44] as the

key intermediates. Among the different methods proposed to

construct the phenanthridine core, somophilic (radical)
isocyanide addition [45-47] is probably the most adopted one,
in view of the versatility and low cost of the starting substrates.
Accordingly, several protocols for the synthesis under photocat-
alytic conditions of phenanthridines starting from 2-isocyano-
1,1'-biaryls 4.1 have been reported, as summarized in Scheme 4.
Along with substrate 4.1, a radical source R—X and a photocata-
lyst (PC), which is activated upon visible-light irradiation, are
usually required. Oxidative quenching of the photoexcited PC*
by R—X (path a) affords, upon loss of the nucleofugal group X~,

I N X X S
R - R RU R R_'\/ R R RU . R
- ¢ HE” Y N N
N N. N C. Cs
N . R N N TR . Yo
R— R— R R— R—r
Z = = L
imidoyl radical a-aminoalkyl phenyl radical iminyl radical amidyl radical
radical

carbon-centered radicals

nitrogen-centered radicals

Figure 2: Carbon-centered and nitrogen-centered radicals used for the synthesis of phenanthridines.
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Scheme 4: General scheme describing the synthesis of phenanthridines from isocyanides via imidoyl radicals.

the intermediate R’, that is in turn trapped by 4.1 (path b). The
resulting imidoyl radical 4.2" undergoes cyclization to 4.3" (path
¢) that is oxidized by PC™, thus restoring the starting photocata-
lyst PC and forming the Wheland intermediate 4.3" (path d).
Deprotonation of 4.3* (path e) finally yields the desired phenan-
thridine 4.4.

Different radical sources R—X have been adopted to generate
carbon or heteroatom-based radicals according to the general
photocatalytic strategy gathered in Scheme 4, for their use in
the construction of phenanthridine scaffolds. As an example,
unsubstituted alkyl radicals were easily accessed by the photo-
catalyzed reduction of the corresponding bromides, in turn
promoting an efficient radical addition onto isonitriles. In one
instance, the dimeric gold complex [Auy(dppm);]Cl, (dppm =
bis(diphenylphosphino)methane) acted as the photocatalyst and
activated the bromoalkanes through an oxidative quenching
mechanism [48]. Phenanthridines may be also formed by the
initial addition of an electrophilic radical onto isonitriles. Thus,
a library of 6-alkylated phenanthridines (5.2a—d in Scheme 5)

Br  blue LED

COOEt (2 equiv)
fac-[Ir(ppy) 3] (1 mol %)

and other nitrogen-based heterocycles have been prepared from
biaryls 5.1a—d in up to excellent yields at room temperature by
using a-bromoesters as radical precursors and [fac-Ir(ppy)3] as

the photoredox catalyst [49].

A similar photocatalyzed tandem insertion/cyclization ap-
proach based on isocyanides and amino acid/peptide-derived
Katritzky salts as precursors of a-carbonyl radicals was like-
wise reported [50]. On the contrary, the Mn(acac); photocat-
alyzed ring opening of cyclopropanol 6.2 gave an easy access to
a B-carbonyl radical 6.5°, which in turn added onto 2-biphenyl
isocyanide 6.1 to give the corresponding 6-f-ketoalkyl phenan-
thridine 6.3 in a good yield (Scheme 6) [51].

The synthesis of perfluoroalkylated phenanthridines has been
the subject of several studies in recent years. Accordingly, the
use of perfluoroalkyl iodides and bromides for the synthesis of
6-trifluoroethyl [52], 6-difluoromethylphosphonated [53,54],
and 6-mono- and difluoroalkyl- [55,56] phenanthridines was in-

vestigated. On the other hand, Umemoto’s reagent 7.2 was

NayHPOy4 (2 equiv)
DMF, 26 °C, 10 h

CH3
5.2a, 80%, R=ClI
b, 72%, R = Ph

c, 80%, R = OCF;
d, 75%, R = OMe

Scheme 5: Synthesis of substituted phenanthridines involving the intermediacy of electrophilic radicals.
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blue LED

F. : iPh
N=C:

6.2

6.5° 6.4
F Ph
6.6 o}

Scheme 6: Photocatalyzed synthesis of 6-B-ketoalkyl phenanthridines.

widely employed to introduce a trifluoromethyl group. In one
instance, the visible-light irradiation of isocyanides 7.1 in the
presence of excess 7.2 (4 equiv) and the Ru(bpy)32* photoredox
catalyst afforded the desired trifluoromethylated products
7.3a—d in satisfactory yields (Scheme 7, path a) [57]. Tri-, di-,
and monofluoroalkylated derivatives were also obtained by
using fluoroalkyl heteroaryl sulfones [58] or sodium sulfinates
(in the presence of persulfate) [59] as the alkylating agents. In
an alternative approach, sodium triflinate was adopted as the tri-

blue LED
PhNHNH; (3 equiv) R
eosin B (5 mol %)
K2CO3 (3 equiv)
7.4a,84%, R = H DMSO. tt, 18 h
b, 82%, R = Me path b
c, 85%, R =Ph

MeCN, rt, 4 h

F \‘
O _
N

6.3, 84% O

—Ht

fluoromethyl radical source along with diacetyl, that played the
dual role of photomediator and reaction medium [60]. The same
trifluoromethylated derivatives were obtained from 7.1 in the
presence of CF3SO,Cl upon direct UV light irradiation by a Xe
arc lamp (280-780 nm), in a photocatalyst-free fashion [61].
Easily scalable and thermally stable arylthiodifluoromethyl
2-pyridyl sulfones were likewise exploited in the visible-light
photocatalyzed arylthiodifluoromethylation of differently
substituted isocyanides [62].

blue LED
7.2 (4 equiv)
Ru(bpy)s2* (1 mol %)
DMF, 26 °C, 2 h
path a

R
L,

7.3a,82%,R=H

b, 77%, R = Me

¢, 87%, R=Cl

d, 85%, R = COOMe

CF;

blue LED

d, 69%, R = CF3;

CsF (2 equiv)
K5S,0g (3 equiv)
DMF, rt, 12 h
path ¢

R

7.5a,85%, R=H
b, 82%, R = Cl
¢, 0%, R = CF4

PhoP(=O)H (3 equiv)
Ir(ppy)(dtbbpy)* (1 mol %)

(r$o

7.2 -
CF, BF4

11
P—Ph
Ph

Scheme 7: Synthesis of 6-substituted phenanthridines through the addition of trifluoromethyl (path a), phenyl (path b), and phosphonyl (path c) radi-

cals to isonitriles.
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6-Arylphenanthridines were obtained under photoredox-cata-
lyzed conditions by using diaryldiodonium salts [57], arylsul-
fonyl chlorides [63], or aryl bromides [64] as the source of aryl
radicals. A peculiar case is described in Scheme 7, path b,
where arylhydrazines functioned as arylating agents to afford
derivatives 7.4a—d by having recourse to the photoorganocata-
lyst eosin B dye [65]. The generation of phenyl radicals from
arylhydrazines was assured even when using the covalent
organic framework 2D-COF-1 in place of eosin B [66].
Notably, the use of 2D-COF-1 allowed to extend the protocol to
the synthesis of 6-alkylphenanthridines starting from alkylhy-
drazines [66].

However, a heteroatom-based radical may be used for the addi-
tion onto isonitriles as well. One such example dealt with the
photoredox tandem phosphonylation/cyclization of diphenyl-
phosphine oxides with 2-arylphenylisonitriles. Here, the
sequential formation of C—P and C-C bonds gave P(=O)Ph;-
containing phenanthridines 7.5a—c (Scheme 7, path c¢), which
occurred in the presence of a base (CsF or CspCO3) and an
external oxidant (K,S,0g). Notably, the presence of electron-
withdrawing groups on the biphenyl unit inhibited the process
in some instances [67]. Starting from the same kind of sub-
strates, 6-thiocyanatophenanthridines were isolated in discrete
to excellent yields, in the presence of ammonium thiocyanate
(NH4SCN) as the thiolating agent [68].

A very peculiar case is that described in Scheme 8 for the syn-
thesis of 6-(trifluoromethyl)-7,8-dihydrobenzo[k]phenanthri-
dine 8.6 by the trifluoromethylation of methylenecyclopropane
8.2. The reaction started with the generation of the trifluoro-

methyl radical via the Ir'Il

photocatalyzed reduction of Togni’s
reagent 8.1. The fluorinated radical added onto the isonitrile

group present in 8.2 to give radical 8.3, which in turn gave

Beilstein J. Org. Chem. 2020, 16, 1476-1488.

intermediate 8.4 upon cyclization onto the methylenecyclo-
propane double bond. Ring opening of the strained cyclopropyl
ring liberated an alkyl radical (in intermediate 8.5°) that readily
cyclized onto the adjacent aromatic ring to give 8.6 in a good
yield. The oxidation of 8.6 under radical conditions finally
afforded the desired phenanthridine 8.7 in 90% yield [69].

Carbon-based radicals could be likewise generated via a C—H
hydrogen-atom transfer path. As an example, ethers were used
as hydrogen donors and underwent a C—H cleavage step
promoted by a photogenerated fert-butoxyl radical. The so-ob-
tained a-oxyalkyl radical intermediates were then trapped by
biphenyl (or vinyl) isocyanides to afford functionalized phenan-
thridines, such as 9.3a (or quinolines) (Scheme 9, path a) [70].
A photogenerated nitrogen-based radical was likewise used to
cleave the C—H bond a-to-nitrogen in amides to form the corre-
sponding a-amidoalkyl radicals for the synthesis of a set of
6-amidophenanthridines (e.g., 9.3b) with significant antitumor
and antimicrobial activities (Scheme 9, path b) [71].

Despite their extensive use, 2-isocyanobiphenyls or related
isonitriles were not the only available substrates for the prepara-
tion of phenanthridines with the intermediacy of imidoyl radi-
cals. As an example, the process depicted in Scheme 10
involved a visible-light homolytic radical aromatic substitution
(HAS) starting from trifluoroacetimidoyl chlorides 10.1a—e.
Thus, the photocatalyzed cleavage of the C(sp?)—Cl bond in
10.1a—e generated the corresponding imidoyl radicals 10.2'a—e
that, upon intramolecular radical cyclization, afforded 6-(tri-
fluoromethyl)phenanthridines 10.3a—e in very good yields [72].

A complementary approach in the synthesis of 6-arylphenan-
thridines started from N-(2-aminoaryl)benzoimine 11.1 and

involved the formation of a C(spZ)—C(spZ) bond via an aryl

.s CF
9 ¢ blue LED 3
N Ir dtbpy)PFg] (2 mol % X
o . [Ir(ppy)2(dtbpy)PFe] ( o) | N NBS
! DBU (200 mol %) dibenzoyl peroxide
8.1 CF3 8.2 DMF, rt, 12 h CCly reflux
e 8.6, 63% CF,
|rIII
SN
Irv Ir'Y
SO e a e
.. 82 i\ /\
CF N= . N7 .
3 N N 3 8.7, 90%
oo
=
3 8.4° 8.5

Scheme 8: Synthesis of 6-(trifluoromethyl)-7,8-dihydrobenzo[k]phenanthridine.
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blue LED
Ru(bpy)s 2* (5 mol %)
TBHP (4 equiv)

path a KHCO; (2 equiv) N
ol oh THF/MeCN 3:1, 1t
\C[ _C: white LED
N fac-[Ir(ppy)3] (2 mol %)
9.1 path b 9.2 (2 equiv) o~
o 9.3a, R = tetrahydrofuranyl, 68%
/”\NM 24h (path a)
©2 b, R = CH,NMeCOMe, 89%
(solvent) (path b)

9.2 = O-(4-CF 3-benzoyl)hydroxylamine

Scheme 9: Phenanthridine syntheses by using photogenerated radicals formed through a C—H bond homolytic cleavage in THF (path a) and N,N-

dimethylacetamide (path b).

blue LED
Ru(bpy)sCl, (3 mol %)

(n-Bu)3N (2 equiv)
MeCN, 6 h

g8
Cl

L
—<CF3

10.1a—e

10.3a, 88%, R = Me
b, 83%, R = OMe

c, 76%,R=F
d, 70%, R=CF3
e, 62%, R=Ph

Scheme 10: Trifluoroacetimidoyl chlorides as starting substrates for the synthesis of 6-(trifluoromethyl)phenanthridines 10.3a—e.

radical intermediate (Scheme 11). Thus, compound 11.1 was in
situ converted to the corresponding diazonium salt 11.2%,
which, upon reduction and nitrogen extrusion, formed the reac-
tive aryl radical 11.3". In turn, the latter radical smoothly
cyclized to form the desired phenanthridine 11.4 in excellent
yield. Notably, the reaction could be readily applied to
benzoimines having different substituents on the aromatic ring

bearing the amino group [73].

Glycine derivatives having a biaryl group attached to the
N-terminus were successfully exploited for the construction of

+
HoN Ny
@ t-BuONO j@

phenanthridine 6-carboxylates (Scheme 12). Notably, the
process occurred in water under metal-free conditions in the
presence of rose bengal (5 mol %) and made use of molecular
oxygen as the terminal oxidant. Thus, N-biarylglycine esters
12.1a-d promoted the reductive quenching of the excited
photocatalyst, in turn triggering the formation of radicals
12.2°a-d. These smoothly underwent radical cyclization to give
the corresponding methyl 5,6-dihydrophenanthridine-6-carbox-
ylates and then the desired phenanthridine 6-carboxylates
12.3a—d in good yields. Noteworthy, the reaction could be
scaled up to a 10 mmol amount, allowing to obtain grams of the

blue LED
(1.3 equiv) N Ru(bpy)sCl, (1 mol %) ¢ | |
(in situ) I DMSO, rt | | X
O O OA® ) _
11.2* 11.3 11.4, 93%

Scheme 11: Synthesis of phenanthridines via aryl-aryl-bond formation.
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blue LED (425 nm, 34 W)
rose bengal (5 mol %)
o))

12.3a, 93%, R = H N
b, 92%, R = Me O
c,94%, R=0Me R
d, 78%, R =ClI

H,0, rt, 24 h

AN

COOMe

Scheme 12: Oxidative conversion of N-biarylglycine esters to phenanthridine-6-carboxylates.

desired phenanthridines, which could be isolated in a pure form

by a simple filtration [74].

Azaarenes different from phenanthridines (e.g., benzo[f]quino-
lines) could be likewise prepared by photocatalytic means.
Thus, a highly regioselective strategy for the synthesis of a
library of polyheteroaromatic compounds under photocatalytic
conditions was reported (Scheme 13). The process made use of
fac-Ir(ppy)s (0.3 mol %) as the photoredox catalyst and
occurred at room temperature under extremely mild conditions.
The approach was based on the one-electron reduction of di-
azonium salts (see the case of 13.3* in Scheme 13), formed in
situ by the reaction of the chosen 2-heteroaryl aniline (e.g.,
13.1) with ferz-butyl nitrite (1.5 equiv). Formation of the aryl
radical 13.4" and following addition onto an alkyne moiety (e.g.,
the 2-thienyl derivative 13.2) afforded vinyl radical 13.5". The
final intramolecular cyclization of 13.5" and re-aromatization
smoothly yielded the desired polyheteroaromatic derivative (see
the case of 13.6; 84% yield). Interestingly, all the obtained scat-

folds bear two heteroatoms in close proximity to each other,
prone to be engaged in a bidentate-type metal-coordination
complex [75].

2.2 Synthesis of phenanthridines via

photocatalyzed C—N bond formation

As mentioned in the introduction, the examples gathered here
involve the intermediacy of N-centered radicals. As a represen-
tative case, the photocatalyzed reduction of acyloximes 14.1a,b
offered a smooth entry to iminyl radicals (Scheme 14) [76]. The
process took place at room temperature and involved the
cleavage of a C—O bond, followed by a cyclization to give
access to the benzo[c]phenanthridine alkaloids noravicine
(14.2a) and nornitidine (14.2b) in almost quantitative yields
[77].

Acyloximes could be likewise formed in situ by the reaction of
aldehydes with O-(4-cyanobenzoyl)hydroxylamine (15.2). The

resulting adducts then underwent the same visible-light photo-

blue LED (7 W) | X

| | fac-[Ir(ppy) 3] (0.3 mol %) + PN
NH, : N
. t-BuONO (1.5 equiv) 2 —
N
“ S MeCN, rt, 10-15 h N z

N N

131 13.2 13.3* 13.4

13.2

|
N S/

13.6, 84%

Scheme 13: Photocatalytic synthesis of benzo[flquinolines from 2-heteroaryl-substituted anilines and heteroarylalkynes.
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o) o)
1 OO > visible light ; OO >
RO O (¢} fac-[Ir(ppy)3] (1 mol %) R'O O (o]
%0 Ney DMF, 26 °C R20 N

14.1a,b

X= p-CF 3CGH4COO

14.2a, 93%, R', R2= —CH,—
b, 96%, R' = R%2= Me

Scheme 14: Synthesis of noravicine (14.2a) and nornitidine (14.2b) alkaloids.

catalyzed cyclization with the intermediacy of iminyl radicals.
Notably, the method was applied to the two-step synthesis of
the alkaloid trisphaeridine (15.3) on a gram-scale quantity
(Scheme 15) [78].

0-2,4-Dinitrophenyloximes were competent substrates for the
photocatalyzed generation of iminyl radicals. In this case, the
reaction was photoorganocatalyzed by eosin Y and took place
in the presence of an excess (3 equiv) of a sacrificial donor,
such as iPrpNEt [79]. Later, it was discovered that phenan-
thridines could be formed starting again from O-2,4-dinitro-
phenyloximes under photocatalyst-free conditions, by
exploiting the capability of these oximes to form visible light
absorbing EDA (electron donor—acceptor) complexes with
Et3N. Thus, a good variety of highly functionalized phenan-

thridines was prepared in excellent yields [80].

Another approach for the visible-light-promoted generation of
iminyl radicals (e.g., 16.2a,b) involved the addition of electro-
philic radicals onto a vinyl azide (see the case of 16.1 in
Scheme 16). Different radicals were used for this purpose. As
an example, an a-carboxyethyl alkyl radical was formed from
the corresponding a-bromoester under white LED irradiation in

the presence of an Irll

-based photocatalyst. The addition of this
intermediate onto the C—C double bond of 16.1 gave radical
16.2'a upon nitrogen loss, which underwent an intramolecular
cyclization and finally afforded the substituted phenanthridine
16.3a in a satisfactory yield (Scheme 16, path a) [81]. The same
azide 16.1 underwent trifluoromethyl radical addition to give

the corresponding substituted phenanthridine. The F3C’ radical

fac-[Ir(ppy) 3] (2 mol %)

was formed by the Fukuzumi catalyst Mes-Acr* photocat-
alyzed oxidation of the Langlois reagent [82].

Sulfur-centered radicals may be generated via the reduction of
sulfonyl chlorides and in turn exploited to construct 6-(sulfonyl-
methyl)phenanthridines via C—S bond formation. A typical case
is shown in Scheme 16, path b. The process was initiated by the
reduction of tosyl chloride (Ts—Cl) by a Rull-based photocata-
lyst. The resulting sulfonyl radical afforded phenanthridine
16.3b in a very good yield [83]. A related sulfonylation process
was developed, starting from sulfonyl hydrazines in place of
sulfonyl chlorides. In this case, the Rull-based photocatalyst
was able to reduce tert-butyl peroxybenzoate, triggering the
release of a fert-butoxyl radical. This was in turn able to oxidize
the hydrazine, allowing the liberation of the desired sulfonyl
radical, prone to start a tandem sulfonylation/annulation of

vinyl azides [84].

Recently, the phenanthridine core was assembled through a
radical cascade triggered by the trifluoromethylthiolation of
N-(o-cyanobiaryl)acrylamides. The process occurred under
visible-light irradiation (6 W blue LED) in the presence of the
fac-Ir(ppy)s photocatalyst (2 mol %). Among the tested sources
of the CF3S" radical, N-(trifluoromethyl)thiosaccharin (17.2)
offered the best performance (Scheme 17). Thus, the oxidative
quenching of the excited Ir'-based photocatalyst allowed the
generation of the desired (trifluoromethyl)thiyl radical, which
added onto the double bond of 17.1a—d, and finally delivered
the desired products 17.5a—d in good yields, through the inter-
mediacy of radicals 17.3'a~d and iminyl radicals 17.4'a-d [85].

white LED

Ph CHO CN
+
0_0 o7 NHz
15.1 15.2
(1.5 equiv)

Scheme 15: Gram-scale synthesis of the alkaloid trisphaeridine (15.3).

)
CIOSO3H (0.1 equiv) o

N

15.3, 80% (1.43 g)
DMF, 25 °C, 30 h
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path a NayHPO4 (1.5 equiv)
DMF, rt, 12 h O
R-X
R-X = TsCl O 3
Ns blue LED N*
path b Ru(bpy)3Cls (2 mol %)
R
16.1 KoHPO4 (1.2 equiv) 16.2'ab
DCM, rt ’
| A
AN
R
16.3a, 70% R = CHMeCOOEt
b,87% R=Ts
Scheme 16: Synthesis of phenanthridines starting from vinyl azides.
R R 7
0]
blue LED (6 W)
+ N—SCF; fac-[Ir(ppy)s] (2 mol %)
Sy -
CN 750 MeCN, 24 h c
o O SCF,
Me
N 17.2 NN
i |
o 2 equiv B Me 1
17.1a—d 17.3'a-d
R R
® .
17.5a, 74%, R = Me ! SCFs SCF,

b, 73%, R = OMe
¢, 68%, R = Cl
d, 57%, R = CF4 Me

17.4a—d

Scheme 17: Synthesis of pyrido[4,3,2-gh]phenanthridines 17.5a—d through the radical trifluoromethylthiolation of N-(o-cyanobiaryl)acrylamides

17.1a—d.

The double bond of acrylamides embedded into a 1,7-enyne
framework likewise allowed the construction of the phenanthri-
done core by reaction with diethyl bromomalonate in the pres-
ence of fac-Ir(ppy)s. Notably, this process was characterized by
mild conditions, operational simplicity, excellent functional

group tolerance and offered high yields [86]. By following anal-
ogous approaches, the addition of perfluoroalkyl [87], acyloxy
[88], or alkyl [89,90] radicals to the carbon—carbon double bond
of the N-(o-cyanobiaryl)acrylamide skeleton led to the construc-

tion of differently substituted pyrido[4,3,2-gh]phenanthridines.
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Photocatalytically generated amidyl radicals were adopted for a
direct oxidative C—H amidation, offering a straightforward
access to phenanthridones (Scheme 18). The process took place
upon blue LED irradiation (20-24 h at 60 °C were required) of
the chosen substrates (e.g., 18.1a—d) in the presence of the
Ir-based photoredox catalyst Ir[dF(CF3)ppyl2(bpy)PFgq
(2.5 mol %) and a phosphate base (50 mol %). Thus, the latter
played a key role in the PCET event which triggered the activa-
tion of the N—H bond in 18.1a—-d and led to the N-centered radi-
cals 18.2°'a-d. Ensuing cyclization onto the pendant aromatic
group, followed by rearomatization enabled by molecular
oxygen, gave the desired products 18.3a-d in good yields [91].
Notably, a metal-free version of this strategy, based on the use
of the 1-chloroanthraquinone photoorganocatalyst, was like-
wise reported [92]. A dual-catalytic system, comprising of
eosin Y sodium salt (1 mol %) as photoredox catalyst and the
thermal catalyst Pd(OAc); (5 mol %), was involved in the
design of an efficient annulation between benzamides and in
situ-generated arynes. The process occurred under oxygen satu-
rated atmosphere at room temperature, likewise offering a

straightforward access to the phenanthridone backbone [93].

Conclusion

Photocatalysis is an important tool for the generation and
exploitation of reactive intermediates in synthesis. The versa-
tility of this approach allows to form in a straightforward
manner several carbon and nitrogen-based radicals useful to
forge C—C or C-N bonds (frequently, in an intramolecular
fashion) for the construction of the tricyclic scaffold of phenan-
threnes and their nitrogen-containing analogues, mainly
phenanthridines. The adoption (in most cases) of visible light to
promote the processes makes the photocatalytic approach one of
the mildest methods available for the construction of these
(hetero)aromatic rings. Most of the protocols illustrated herein,
however, involved the use of rather expensive transition-metal-
based (e.g., on Ru or Ir) photocatalysts, that still represents an
issue in terms of sustainability. In this context, the use of

Beilstein J. Org. Chem. 2020, 16, 1476-1488.

photoorgano-catalysts [24] is a promising opportunity on the
route towards metal-free protocols for the synthesis of the
phenanthrene and phenanthridine cores, a topic of current

interest also in related thermal methods [94,95].
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