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A B S T R A C T   

This paper investigates the effect of chemical reactions on the flow of magnetized Maxwell fluid 
generated by an unsteady stretching surface. The thermal transport phenomenon is analyzed by 
using the Cattaneo-Christov theory. By applying the appropriate similarity transformations, the 
governing equations of motion turn into a set of nonlinear differential equations. For the velocity, 
temperature, and concentration fields, the resultant equations are then solved as series solutions 
using the homotopy analysis approach. Using graphical representations, the physical behavior of 
significant factors is examined in depth. The analysis reveals that higher Maxwell parameter 
values reduce the flow field while increasing energy transportation in the fluid flow. Further, it is 
noted that thermal distribution declines for the higher values of the thermal relaxation parameter. 
Additionally, the solutal distribution bootup for the increasing values of Schmidt number while it 
shows a decreasing trend for homogeneous and heterogeneous reactions strength. In order to 
verify our findings, a comparison to earlier research is also included.   

1. Introduction 

The numerous fluid models with distinct dynamical features induced by stretching geometries attract investigators to analyze their 
attributes in the field of engineering because of their wide range of applications such as glass fiber, wire drawing, hot rolling, and paper 
production. In extrusion forms, the study of flow and heat transport phenomena caused by the stretching cylinder is extremely 
important. Majeed et al. [1] explored the analysis of the heat transport caused by a stretching cylinder with partial slip and specified 
surface heat flux. Mahdy [2] discussed the flow and heat transportation of a Casson fluid due to a stretching cylinder with Dufour and 
Soret effects. Alamri et al. [3] studied the effects of mass transfer on magneto second-grade fluid flow over a stretching cylinder using 
the innovative perspective of the Cattaneo-Christov heat transport. Singh et al. [4] scrutinized the melting transport assessment on 
magnetic nanofluid flow across a stretching cylinder. Song et al. [5] discussed the effects of the gyrotactic microorganisms on Sutterby 
nanofluid with melting heat transport. Mathematical modeling for the time-dependent flow of Oldroyd-B material with energy 
transport induced by stretching cylinder was interpreted by Yasir et al. [6]. Farooq et al. [7] discussed the physical properties and heat 
transport of the bioconvective flow of Casson nanofluid. The latest studies on stretching cylinder can be found in Refs. [8–20]). 
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The analysis of heat and mass transport acquired too much attention from researchers due to its numerous applications in engi-
neering. The basic mathematical principles of Fourier’s and Fick’s laws are applied to explain the mechanisms of the transportation of 
heat and mass in any medium as a result of thermal and solutal differences, respectively. According to Fourier’s law [21], the tem-
perature field can be expressed as a parabolic-type equation, which means that heat transfer occurs at an infinitely fast speed and 
propagates throughout the medium with initial disruption. To fix this problem, Fourier’s law required some modifications. There have 
been numerous attempts to settle this conundrum, while none have been at all successful. In order to produce the hyperbolic-type 
equation for the heat transport phenomenon, Cattaneo [22] adjusted Fourier’s law by counting the thermal relaxation time. It is 
known as the Maxwell-Cattaneo model. Christov [23] modified the MC model by covering the time derivative. After that, to study the 
flow of both Newtonian and non-Newtonian fluids in various geometries, scientists used the Cattaneo-Christov double diffusion theory, 
see Refs. [24–33]. 

The study of chemical reactions in fluid mechanics has received a lot of interest. The importance of these flows may be seen in 
numerous processes like polymer synthesis, hydrometallurgical industries, food processing, fog creation and dispersion, ceramics, and 
freezing effects in crop damage. In chemical processes, both homogeneous and heterogeneous types of reactions occur. In the case of 
homogeneous reactions, consistent involvement of reactions happens across the entire required stage, and in the case of heterogeneous 
reactions, it appears in a confined border or within the specified region. Various chemical processes incorporate both homogeneous 
and heterogeneous reactions. Chaudhary and Merkin have proposed homogenous-heterogeneous reactions with the same diffusivities 
[34]. The viscous fluid flow with homogeneous-heterogeneous reactions through a flat plate was studied by Merkin [35]. Hamid [36] 
conducted a numerical analysis of the outcomes of thermal conductivity and catalytic effects on Williamson fluid flow. In the 
three-dimensional flow of Cross fluid, Ali et al. [37] examined the characteristics of homogeneous-heterogeneous reactions and 
generalized Fourier’s heat flux. Khan et al. [38] investigated the temperature-dependent heat source/sink effects in unsteady 
stagnation-point flow of MHD Oldroyd-B fluid with cubic autocatalysis chemical reaction. The valuable contribution on flow and heat 
transport with homogeneous-heterogeneous chemical reactions can be found in Refs. [39–45]. 

The goal of this study is to scrutinize the viscoelastic fluid flow caused by stretching cylinder under the influence of homogeneous- 
heterogeneous processes. The modified Fourier law is employed for the thermal transport of the Maxwell fluid flow. As a result, we 
produced a mathematical model in the form of partial differential equations for the time-dependent flow of magnetized Maxwell fluid. 
With appropriate transformations, the controlling PDEs are turned into non-linear ordinary differential systems. The resultant 
equations are then solved as series solutions using the homotopy analysis approach. The results for the velocity, thermal, and con-
centration fields are graphically presented and scrutinized in detail using physical justification. 

Nomenclature 

u,w velocity component [ms− 1] 
c stretching rate [s− 1] 
T fluid temperature [K] 
λ1 relaxation time [s] 
cp specific heat [JK− 1m− 3] 
ν kinematic viscosity [m2s− 1] 
μ dynamic viscosity [pa. s] 
k thermal conductivity [Wm− 1K− 1] 
α  
thermal diffusivity [m2s− 1] 
ρf fluid density [kgm− 3] 
T∞ ambient temperature [K] 
kc homogeneous species 
ks heterogeneous species 
Pr Prandtl number 
γ curvature parameter 
S unsteadiness parameter 
Sc Schmidt number 
λ∗ diffusion coefficient 
σ electrical conductivity 
M magnetic field parameter 
Ks heterogeneous reaction 
K homogeneous reaction 
f dimensionless stream function 
θ dimensionless temperature 
g dimensionless concentration 
ao positive constant  
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2. Problem formulation 

Here we consider the unsteady axisymmetric flow of Maxwell fluid due to the stretching cylinder, having a radius of R. The surface 
of the cylinder is physically stretched with a velocity uw

(
= cz

1− δt
)

where c, δ(> 0). As shown in Fig. 1, we formulated the physical 
phenomenon in cylindrical polar coordinates, by assuming u and w are, respectively, z− axis and r− axis velocity components. The 
mechanism of thermal transport in the flow of Maxwell fluid is modeled by using thermal relaxation effects. Further, the solutal 
transport phenomenon of the flow is studied by considering the homogeneous-heterogeneous reactions. 

The following homogeneous-heterogeneous reaction model is used [34]: 

α∗ + 2β∗ → 3β∗, rate= kcab2 (1)  

on the catalyst surface, the isothermal reaction is illustrated as 

α∗ → β∗, rate= ksa (2)  

where α∗ and β∗ signify autocatalysts of the chemical reactions, a and b describe the concentration of chemical reaction, and kc and ks 
denoted the reaction constants. According to Cattaneo-Christov theory, heat flux is given [33]: 

q+ λt

[
∂q
∂t

− q.∇V+V.∇q+(∇.V) q
]

= − k∇T (3)  

in which q the heat flux, λt the thermal relaxation, V the velocity field, k thermal conductivity. For λt = 0 the above equations reduce to 
classical Fourier law 

q+ λt

[
∂q
∂t

+V.∇q − q.∇V
]

= − k∇T (4) 

Under the above consideration, the model equations are [38,46]: 

∂(ru)
∂z

+
∂(rw)

∂r
= 0 (5)  

∂u
∂t

+ u
∂u
∂z

+w
∂u
∂r

+ λ1

{
∂2u
∂t2 + u2∂2u

∂z2 +w2∂2u
∂r2 + 2u

∂2u
∂t∂z

+ 2w
∂2u
∂t∂r

+ 2uw
∂2u
∂r∂z

}

= v
(

∂2u
∂r2 +

1
r

∂u
∂r

)

−
σB2

o

ρf

{

u+ λ1

(
∂u
∂t

+w
∂u
∂r

)}} (6)  

∂T
∂t

+ u
∂T
∂z

+w
∂T
∂r

+ λt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2T
∂t2 +

∂u
∂t

∂T
∂z

+ 2u
∂2T
∂t∂z

+
∂w
∂t

∂T
∂r

+ 2w
∂2T
∂t∂r

+2uw
∂2T
∂r∂z

+ w2∂2T
∂r2 + u2∂2T

∂z2 + u
∂u
∂z

∂T
∂z

+w
∂u
∂r

∂T
∂z

+ u
∂w
∂z

∂T
∂r

+ w
∂w
∂r

∂T
∂r

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
α
r

∂
∂r

(

r
∂T
∂r

)

, (7) 

Fig. 1. Geometry of the problem.  
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∂a
∂t

+ u
∂a
∂z

+w
∂a
∂r

=Dα∗

(
1
r

∂a
∂r

+
∂2a
∂r2

)

− kcab2, (8)  

∂b
∂t

+ u
∂b
∂z

+w
∂b
∂r

=Dβ∗

(
1
r

∂b
∂r

+
∂2b
∂r2

)

+ kcab2, (9) 

with BCs 

u = uw w = 0, T = Tw,

Dα∗

∂a
∂r

= ksa,Dβ∗
∂b
∂r

= − ksa

⎫
⎪⎬

⎪⎭
at  r = R

u→0,T→T∞, a→ao, b→0 as  r→∞

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(10) 

By letting: 

u =
cz

1 − δt
f ′(η),w = −

R
r

̅̅̅̅̅̅̅̅̅̅̅̅
cν

1 − δt

√

f (η), θ =
T − T∞

Tw − T∞
,

a = aog(η), b = aoh(η), η =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c

ν(1 − δt)

√ (
r2 − R2

2R

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(11) 

we have 

(1+ 2ηγ) f‴ + 2γf ″+ ff ″ − f ′2 − Sf ′ −
1
2

ηSf″ −
De1γ

(1 + 2ηγ)
f 2f ″

+De1

⎧
⎪⎨

⎪⎩

2f f ′f ″ − 2Sf ′2 − 2S2f ′ − ηSf ′f ″ + 3Sf f ″ − f 2f‴

+ηSf f‴ −
7
4

ηS2f ″ −
1
4
η2S2f‴

⎫
⎪⎬

⎪⎭

− M
(

f ′ +
De1

2
ηSf″+De1Sf ′ − De1ff″

)

= 0,

⎫
⎪⎬

⎪⎭
,

(12)  

(1+ 2ηγ)θ″+ 2γθ′ +Pr f θ′ −
1
2

Pr ηSθ′

− Pr βt

(
3
4

ηS2θ′ −
3
2

Sf θ′ −
1
2

ηSf ′θ′ +
1
4
η2S2θ″ − ηSf θ″ + f 2θ″+ ff ′θ′

)

= 0
}

,

(13)  

(1+ 2ηγ) g″+ 2γg′ + Scfg′ −
1
2

ηSScg′ − ScKgh2 = 0 (14)  

λ∗(1+ 2ηγ) h″+ 2γλ∗h′+ Scfh′ −
1
2

ηSSch′ + ScKgh2 = 0 (15) 

with relevant boundary conditions 

f (0) = 0, f ′(0) = 1, θ(0) = 1, g′(0) = Ksg(0), λ∗h′(0) = − Ksg(0),
f ′(∞) = 0, θ(∞) = 0, g(∞) = 1, h(∞) = 0

}

(16)  

In the above equations, γ
(

= 1
R

̅̅̅̅̅̅̅̅̅̅̅̅
ν(1− δt)

c

√ )

is the curvature parameter, De1
(
= λ1c

1− δt
)

the Deborah number, S
(
= δ

c
)

the unsteadiness 

parameter, M
(

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σB2

o (1− δt)
cρf

√ )

the magnetic parameter Pr
(
= ν

α
)

the Prandtl and Sc
(
= ν

Dα∗

)
the Schmidt number, Ks

(

= ks
Dα∗

̅̅̅̅̅̅̅̅̅̅̅̅
ν(1− δt)

c

√ )

is 

the strength of heterogeneous reaction, βt
(
= λt c

1− δt
)

the thermal relaxation parameter, K
(
=

kc(1− δt) a2
o

c

)
is the strength of homogeneous 

reaction, λ∗
(
=

Dβ∗

Dα∗

)
the ratio of the diffusion coefficient. 

Assume Dα∗ and Dβ∗ are equivalent, i.e., λ∗(= 1), so 

g(η)+ h(η) = 1. (17)  

from equation (14) and (15), we have 

(1+ 2ηγ) g″+ 2γg′ + Scfg′ −
1
2

ηSScg′ − KgSc(1 − g)2
= 0 (18)  
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g(η)→ 1, g′(0)=Ksg(0), as η→∞. (19)  

3. Homotopic solution 

The auxiliary linear operators are as follows [47,48]: 

fo(η) = 1 − e− η, θo(η) = e− η and go(η) = 1 −
1
2

e− ηks (20)  

Lf (η) =
∂3f
∂η3 −

∂f
∂η, Lθ(η) =

∂2θ
∂η2 − θ and Lg(η) =

∂2g
∂η2 − g (21) 

satisfying 

Lf
[
α∗

0 + α∗
1eη + α∗

2e− η] = 0
Lθ

[
α∗

3eη + α∗
4e− η] = 0

Lg
[
α∗

5eη + α∗
6e− η] = 0

⎫
⎪⎪⎬

⎪⎪⎭

(22)  

where α∗
i (i= 0, 1, .., 6) are the constants. 

4. Convergence analysis 

The convergence of the analytic solutions depends heavily on ℏf , ℏθ, and ℏg. The ℏ− curves are thus displayed at the 13th order of 
approximations, see Fig. 2. The acceptable ranges for auxiliary parameters are − 1.23 ≤ ℏf ≤ − 0.09, − 1.47 ≤ ℏθ ≤ − 0.31 and −
1.47 ≤ ℏφ ≤ − 0.13. The analytic series solutions converges in the entire range of η(0≤ ℏ≤ ∞) when ℏf = − 1, ℏθ = − 1.1, and ℏg =

− 1.4. 

5. Discussion of results 

The flow behavior, thermal and solutal transport of unsteady Maxwell fluid induced by stretching cylinder is described by the 
governing equations (12) to (16), and are analyzed and discussed in this section. To understand the physical conduct of these out-
comes, the physical parameters are detected in the range: S(0.1≤ S≤ 0.4), γ(0.0≤ γ ≤ 0.3), De1(0.1≤ De1 ≤ 0.7), Pr(6.5≤ Pr≤ 7.1), 
βt(0.1≤ βt ≤ 0.4), M(0.1≤ M≤ 0.4), and Sc(1.0≤ Sc≤ 2.5), Ks(0.3≤ Ks ≤ 0.9), and K(0.5≤ K≤ 2.0) and for which the graphical 
results satisfy the far field boundary conditions. The consequence of the unsteadiness parameter S on fluid velocity, thermal and solutal 
distributions are depicted in Fig. 3(a) to 3(c). These figures clearly illustrate that increasing the unsteadiness parameter S increases the 
fluid velocity and heat distribution, while opposite results are observed for concentration fields. The outcomes of curvature parameter 
γ on the velocity, thermal, and solutal distributions are examined in Fig. 4(a) to 4(c), respectively. In these plots, we observed an 
increasing trend for the increasing values of γ. Because, increasing the value of γ diminishes the radius of the cylinder, reducing the role 
of the boundary in fluid motion. As a result, the velocity of the fluid enhances which improves the thermal and solutal distributions. 
The influence of Maxwell parameter De1 declines the fluid velocity and boosts the thermal distribution, as depicted in Fig. 5(a) and (b), 
respectively. Physically, the rheology of a material of the viscoelastic type is described by the Maxwell parameter De1. The dimen-
sionless relaxation time is defined by the Maxwell parameter De1. The relaxation time is used to represent the phenomenon of stress 
relaxation caused by the material’s elasticity. The material therefore behaves like a solid for larger values of De1. It signifies that the 
material needs a longer time to hold its deformation, and as a result, a higher value of De1 causes a decrease in fluid velocity. On the 

Fig. 2. The ℏ curves.  
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other hand, an upgrade in heat conduction causes the energy transport phenomena to increase for the same trend of De1. Fig. 6(a) and 
(b) is presented to illustrate how the thermal relaxation time parameter βt and the Prandtl number Pr affect temperature distribution. 
According to the assessment, increased values of βt and Pr lead to a decrease in the temperature distribution of Maxwell fluid. The 
reason for this is that increasing the values of the thermal relaxation time parameter needs more time for heat conduction, resulting in a 
fall in fluid temperature. Further, the thermal diffusivity of a liquid, which decreases as Prandtl number values increase, is inversely 
related to Prandtl number. As a result of the reduced thermal diffusivity of the liquid, the temperature of the Maxwell fluid falls. The 
effects of magnetic fields on velocity and temperature fields are shown in Fig. 7(a) and (b), respectively. In terms of physics, the 
magnetic field’s influence on the Lorentz force increases as M increases. The fluid’s velocity decreases as a result of the force’s 
resistance to the flow of the fluid. As the Lorentz force increases, on the other side, the energy conduction between fluid particles 

Fig. 3. (a–c): Plot of f′(η), θ(η) and g(η) for S.  

Fig. 4. (a–c): Plot of f′(η), θ(η) and g(η) for γ.  
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increases. Fig. 8 characterizes the impact of Schmidt number Sc on the solutal field. The behavior of concentration improves as the 
Schmidt number increases. Schmidt number is the relationship between momentum and mass diffusivity. Here, larger Schmidt number 
values are associated with small diffusivity, resulting in an increase in solutal field. Fig. 9(a) depicts the effect of the strength of the 
heterogeneous reaction parameter Ks on the concentration distribution. As the values of the heterogeneous parameter Ks strength 
increase, the concentration profile declines. In Fig. 9(b), it is depicted how the parameter K affects the concentration distribution. For 
the increasing strength of K, the concentration profile diminishes. To ensure the validity of our findings, a comparison for reduced −
f″(0) with various De1 values is provided in Table 1. 

6. Concluding remarks 

The key points are as follows in light of the findings of the analysis and discussion:  

• The unsteadiness and curvature parameters enhanced the velocity profile and thermal distributions of the Maxwell fluid.  
• As the Maxwell parameter increases, the flow field was decreased while the heat distribution was increased.  
• Temperature fields dropped as the Prandtl number increased.  
• The concentration profile declined as the homogenous and heterogeneous reactions parameter strength increased.  
• The thermal curves diminished as a result of increasing thermal relaxation parameter. 
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