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Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s
genome without implicating any DNA sequence alterations. Both the external environment
surrounding the organism, as well as the internal microenvironment of cells and tissues,
contribute to these epigenetic processes that play critical roles in cell fate specification and
organismal development. On the other hand, dysregulation of epigenetic activities can
initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic
inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines
that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At
the same time, inflammatory signaling can establish positive and negative feedback circuits
with chromatin to modulate changes in the global epigenetic landscape. In this review, we
provide an in-depth discussion of the interconnected crosstalk between epigenetics and
inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the
genome control inflammatory gene transcription, which in turn enact changes within the
cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
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INTRODUCTION

Chromatin structure serves as the foundation for regulating transcriptional processes, and
chromatin-based alterations constitute one of the fundamental molecular mechanisms that
govern cellular physiology, ranging from growth and differentiation to DNA damage repair and
apoptosis. The regulation of chromatin structure via epigenetic changes, including histone
modifications, chromatin remodeling and higher-order chromosomal interactions, controls the
accessibility of chromatin for binding by transcription factors (TFs) and other transcriptional
machinery in response to internal and external stimuli. Additionally, chromatin regulating factors
interact dynamically with the epigenome to coordinate precise spatiotemporal gene expression
programs that undergird cell identity and function. Misregulation of chromatin homeostasis can
activate inflammatory signaling pathways that lead to the onset and development of cancer (Marazzi
et al., 2018).

Inflammation is a beneficial immune defense response to curtail pathogenic infection and tissue
damage. However, prolonged activation of inflammatory signaling results in chronic inflammation
that can induce malignant cellular transformation. Indeed, inflammation and carcinogenesis are
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closely interconnected, and patients debilitated with chronic
inflammatory diseases bear an increased risk of developing
cancer (Garcea et al., 2005; Vagefi and Longo, 2005; Peek and
Crabtree, 2006). Significant progress has emerged in recent years
investigating the complex crosstalk between inflammation and
tumorigenesis, switching from a cancer-centric concept to a more
comprehensive view of tumor ecology that consists of
epigenetically plastic cancer cells and stromal cells, which
include diverse immune cells, fibroblasts and vascular cells
(Greten and Grivennikov, 2019). Moreover, chronic
inflammation favors a tumor-permissive microenvironment
that blocks anti-tumorigenic immunity and promotes tumor
development. Tumor-educated immune cells and stromal cells
enable tumor immune escape and cancer progression by
upregulating immune checkpoint genes and producing
pathogenic immunoglobulins and cytokines (Ren et al., 2012;
Simon and Labarriere, 2017; Gu et al., 2019). Therefore, immune
checkpoint blockade has recently become a popular and effective
form of cancer therapy.

Besides immune cells, host microbiota can contribute to a
chronic inflammatory environment, which supports tumor
incidence, growth and metastasis, as previously documented in
gastric and colorectal cancers (Xavier et al., 2020). Interestingly,
microbial organisms also act as integral components of tumor
tissues in various other cancer types, such as melanoma and
glioma, as well as pancreatic, breast, lung and ovarian tumors
(Nejman et al., 2020). Accordingly, perturbation of tumor-
resident microbiota by antibiotics elicits a predominantly
inhibitory effect on breast cancer distal metastases (Fu et al.,
2022). Collectively, inflammation is integral in sculpting the gene
expression trajectories of stromal and cancer cells within the
tumor microenvironment to favor oncogenesis, which in turn re-
shapes the epigenetic landscape of immune cells and induces
tumor-promoting inflammatory states to establish a positive
feedback cycle for further perpetuating cancer progression.

Oncogenic and inflammatory responses are regulated by
common factors and signaling pathways. A classic example is
the nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB), a central transcription factor that is commonly activated
in both tumor and immune cells to produce inflammatory
cytokines, chemokines and growth factors, such as IL-1β, IL-6
and CCL2. Upon stimulation with the proinflammatory cues
tumor necrosis factor alpha (TNFα) and lipopolysaccharide
(LPS), p65, the core component of NF-kB, translocates into
the nucleus, binds directly onto chromatin and induces its
structural remodeling to orchestrate downstream
transcriptional outputs (Brown et al., 2014). During this
transactivation process, p65 also recruits and interacts with
several chromatin regulators, such as epigenetic reader
proteins (e.g., BRD4) and histone modifying enzymes (e.g.,
acetyltransferases CBP/p300) (Mukherjee et al., 2013; Hajmirza
et al., 2018). Furthermore, NF-kB, in cooperation with BRD4,
facilitates super-enhancer formation to trigger the production of
proinflammatory transcripts (Brown et al., 2014). These
observations illustrate the importance of transcription
factors in directing inflammatory activation via epigenetic
alterations.

In this review, we focus on the epigenetic regulation of
inflammatory signaling in the context of cancer. We first
describe how various chromatin modifications and histone
variants function in mediating inflammatory responses. Next,
we delineate the roles of chromatin structure modulation, super-
enhancers and higher-order genome organization in contributing
to key inflammatory transcription programs and inflammation-
related oncogenic processes such as epithelial-mesenchymal
transition (EMT) and senescence. Finally, we illustrate the
bidirectional effects between epigenetic alterations and
inflammation, as well as highlight the therapeutic application
of anti-inflammatory and epigenetic drugs to combat cancer.

CHROMATIN MODIFICATIONS

Chromatin, a principal component of the nucleus, is organized
around a fundamental repeating structure known as the
nucleosome, each comprising eight core histone proteins (two
each of histone H2A, H2B, H3 and H4) that scaffold the tight
packaging of DNA. Protruding out of the nucleosomal structure
includes the N-terminal tail of every histone and the C-terminal
tail of histone H2A that permit post-translational modifications.
These epigenetic changes affect chromatin structure and
accessibility, thereby playing instrumental roles in regulating
gene transcription in disease onset and progression, including
inflammation in cancer (Bannister and Kouzarides, 2011).

Histone acetylation/deacetylation and methylation/
demethylation are among the most predominant histone
modifications that occur on all core histones, and they
modulate inflammatory responses in both cancer and immune
cells. Aside from these two histone modifications, histone
phosphorylation and ubiquitination have also gradually gained
attention for their crucial roles in regulating transcription and
chromatin structure. As the roles of histone and DNA
methylation/demethylation in cancer and inflammation have
been recently and extensively reviewed (Das et al., 2021), here
we focus on the mechanistic basis of histone acetylation/
deacetylation, phosphorylation and ubiquitination, and how
they mediate inflammatory signaling in cancer.

Histone Acetylation and Deacetylation
Histone acetylation, one of the most prevalent histone post-
translational modifications, is dynamically regulated by two
protein families of opposing functions: histone
acetyltransferases (HATs) and deacetylases (HDACs). HATs
acetylate lysine residues of histones by transferring acetyl
groups from acetyl-coenzyme A, thereby reducing the positive
charge of lysine and weakening the interplay between DNA and
histones (Racey and Byvoet, 1971; Bannister and Kouzarides,
2011). In contrast, HDACs remove acetyl groups from ε-N-acetyl
lysine on histones (Li G. et al., 2020). The enzymatic activities of
HATs and HDACs alter chromatin configuration and contribute
primarily to gene activation and repression, respectively (Peserico
and Simone, 2011).

HATs have been traditionally classified into two classes, type A
and type B, based on their cellular localization. HAT1 (also
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known as KAT1), HAT2 and HAT4 constitute the solely B-type
HATs, which are originally isolated from cytoplasmic extracts as
they are enzymes found in the cytoplasm (Kleff et al., 1995;
Parthun et al., 1996; Yang et al., 2011). They acetylate newly
synthesized and free histones, particularly free histone H4, which
contributes to chromatin assembly (Parthun et al., 1996; Yang
et al., 2011). However, some reports have demonstrated that
B-type HATs can localize to the nuclear compartment, albeit with
poorly understood functions (Ruiz-Garcia et al., 1998; Ai and
Parthun, 2004; Parthun, 2012). The role of B-type HATs in cancer
and inflammation is also not well investigated. On the other hand,
A-type HATs are a more diverse group of enzymes that
predominately reside within the nucleus. According to their
sequence and structure homology, A-type HATs can be
further classified into three distinct families: General control
non-repressible 5 (GCN5)-related N-acetyltransferases
(GNATs), MYST (named after the first-identified four
members MOZ, Ybf2, Sas2, and Tip60), and cAMP response
element binding protein (CREB)-binding protein (CBP)/p300
proteins (Hodawadekar and Marmorstein, 2007).

The functions of A-type HATs in inflammation and cancer
have been universally reported. For instance, GCN5 and its
homologous partner PCAF (also known as KAT2A and
KAT2B, respectively) are two well-studied GNAT family
proteins, which are characterized by the presence of an
acetyltransferase domain and a C-terminal bromodomain
(Marmorstein, 2001). They globally acetylate core histones to
upregulate gene transcription (Herrera et al., 1997; Nagy and
Tora, 2007). Histone H3 lysine 9 acetylation (H3K9ac) has been
highlighted as their signature target, as loss of GCN5 and PCAF in
cells specifically causes H3K9ac reduction (Jin et al., 2011).
Importantly, genetic deletion or pharmacological inhibition of
PCAF results in a significant reduction of H3K5ac and H3K9ac
levels at the promoter region of the cytokine gene IL-6, leading to
its transcriptional downregulation (Xia et al., 2021). Upon
treatment with the proinflammatory stimulus LPS, PCAF
displays a positive correlation with H3K18ac expression, which
activates the transcription levels of inflammatory genes (Huang
et al., 2015). PCAF deficiency in macrophages and leukocytes
leads to a remarkable decrease in the expression of inflammatory
cytokines such as TNFα, CCL2 and IL-6 (de Jong et al., 2017).
Additionally, degrading GCN5/PCAF by GCN5/PCAF
proteolysis targeting chimera (PROTAC) downregulates
inflammatory mediators in macrophages and dendritic cells
(Bassi et al., 2018). Aside from histone acetylation, GCN5/
PCAF can also exert non-histone acetylation functions, which
play an integral role in regulating inflammation as well. For
example, PCAF acetylates the KLF4 TF to facilitate its
transactivation effect on IL-6 (Xia et al., 2021).

CBP/p300 proteins are conserved paralogous factors that are
well known transcriptional coactivators for promoting gene
transcription. Their typical substrate, histone H3 lysine 27
acetylation (H3K27ac), is widely regarded as a marker of
accessible chromatin and active genes (Pasini et al., 2010; Jin
et al., 2011). Inhibition of CBP/p300 has been reported to
decrease H3K27ac intensity at the promoters of pivotal
inflammatory response genes in macrophages, thereby

regulating inflammation-related signaling networks (Peng
et al., 2019). In CD4+ T-cells of patients suffering from the
autoimmune disease systemic lupus erythematosus (SLE),
CBP/p300 is recruited by the STAT family of TF proteins to
confer accumulation of another active histone mark, H3K18ac,
on the promoter and enhancer domains of the
immunomodulatory cytokine gene IL-10, resulting in its
upregulation that positively correlates with disease severity
(Hedrich et al., 2014). Additionally, lower amount of H3K18ac
at the promoter of another cytokine gene IL-2 in SLE patients,
relative to healthy individuals, is partly attributed to the
interaction between HDAC1 and CREMα (cAMP-responsive
element modulator α), which contributes to histone
modification changes and is induced at elevated levels in the
patients’ T-cells. Similar to GCN5/PCAF, CBP/p300 can also
directly interact with and acetylate non-histone proteins such as
NF-κB, a key regulator of inflammatory responses (Bhatt and
Ghosh, 2014). Specifically, CBP/p300 acetylates p65, a core
subunit of NF-κB, at lysine 211, 218 and 310 (Chen et al.,
2002). The acetylation of p65 enhances its DNA-binding
ability, activates NF-κB transactivation activity and triggers
expression of downstream inflammatory genes (Chen et al.,
2002; Mukherjee et al., 2013).

With regard to MYST family members, Tip60 (also known as
KAT5) has been shown to catalyze the deposition of H3K27ac on
the promoter regions of IL-6 and IL-8 to activate pro-
inflammatory signaling cascades (Wang et al., 2020). In
addition, another MYST protein, MOF, which specifically
acetylates histone H4 at lysine 16 (H4K16ac), regulates
inflammation signaling pathways involving TNFα and IL-33
(denDekker et al., 2020; Liu et al., 2021). Taken together, type-
A HATs facilitate the production of inflammatory responsive
gene transcripts and modulate key mediators of inflammation by
both histone and non-histone acetylation functions.

In contrast to HATs, HDACs remove acetyl groups from
histones, and hence mediate histone acetylation states
dynamically with HATs to regulate gene expression.
Substantial evidence reveal the role of HDACs in regulating
the inflammatory gene program of immune cells. For example,
HDAC3 disruption causes genomic hyperacetylation, leading to
the upregulation of interferon-associated genes in LPS-stimulated
macrophages (Chen et al., 2012). Treatment with HDAC
inhibitors (HDACi) enhances the immunomodulatory effects
of T cells and natural killer (NK) cells to activate cancer
immunosurveillance. A case in point is the HDACi
depsipeptide (FK228) that was reported to bolster tumor
antigen expression through the enrichment of H3 acetylation,
which facilitates T cell cytotoxicity against melanoma (Murakami
et al., 2008). Pan-HDACi, panobinostat and vorionstate,
modulate the expression of the cancer-testis antigen NY-ESO-
1 and enhance tumor cell recognition by NY-ESO-1-specific
T-cells, thereby benefiting adoptive T cell therapy in soft tissue
sarcoma (Gong et al., 2022).

NK cell-mediated tumor recognition relies on the expression
of several ligands on the cell surface of tumor cells, such as UL16-
binding proteins (ULBPs). Prior studies showed that HDACi
treatment increases expression of ULBPs in cancer cells, which
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subsequently activates NK cell-mediated cytotoxicity (Lopez-Soto
et al., 2009). In addition to tumor antigens, HDACi also increases
the expression of NKG2D, a receptor of ULBPs and an activating
cell surface receptor expressed on NK cells, triggering NK cell
cytotoxic activities (Poggi et al., 2009; Yamanegi et al., 2010).
Collectively, HDAC inhibition contributes to antigen processing
and tumor cell recognition, which in turn activates immune cell
cytotoxicity and serves as a potential pre-treatment approach for
adoptive immune cell therapy to efficiently eliminate cancer cells.

Histone Phosphorylation
Post-translational phosphorylation of histones is a fundamental
epigenetic event implicated in multiple biological processes, such
as DNA damage repair and carcinogenesis. It predominantly
occurs in tyrosine, serine, and threonine residues on the
N-terminal histone tail, which is dynamically modulated by a
myriad of protein kinases and phosphatases (Nowak and Corces,
2004). In histone phosphorylation, a phosphate group from ATP
is transferred to the hydroxyl group of the target amino acid,
leading to a build-up of negative charge on histones, which in
turn weakens histone-DNA interaction and facilitates the
establishment of a transcriptionally permissive chromatin
landscape (Bannister and Kouzarides, 2011).

Phosphorylation has been reported for the following histone
H3 residues: serine 10, 28, threonine 3, 6, 11, 45, and tyrosine 41,
as well as serine 32 of histone H2B (Shanmugam et al., 2018).
Importantly, histone phosphorylation has been linked to
inflammation-dependent tumorigenesis. For instance, stress-
activated protein kinase 1 (MSK1) mediates phosphorylation
of histone H3 at serine 10 (H3S10ph) on the promoter of
NAFTC2 to activate the expression of the proinflammatory
cytokines IL-6 and IL-11 in gastric cancer (Qi et al., 2020).
Moreover, high levels of H3S10ph are positively associated
with Helicobacter pylori infection-induced gastric
carcinogenesis and neoplastic cellular transformation in
nasopharyngeal carcinoma (Li B. et al., 2013; Yang et al.,
2018). Expression of the immune regulatory cytokines IL-10
and its homolog IL-19 in macrophages is also influenced by
histone H3 phosphorylation (Zhang et al., 2006), with crucial
repercussions to the regulation of inflammation, as diminished
expression of IL-10 and IL-19 triggers inflammatory signaling via
the upregulation of inflammasome components, thereby
enhancing the assembly of the inflammasome complex that
promotes secretion of the proinflammatory cytokine IL-1β
(Hofmann et al., 2015; Brandt et al., 2018).

Nonetheless, histone phosphorylation often does not act in
isolation, but partners with other histone modifications to control
gene regulatory processes. An in vitro study illustrated that the
histone acetyltransferase GCN5 exhibits a preference for histones
decorated with H3S10ph, compared to non-phosphorylated
histones (Cheung et al., 2000). H3S10ph can also stabilize
histone H4 acetylation, while dephosphorylation of H3S10
collaborates with HDAC1, 2 and 3-induced deacetylation of
histone H4 under stress conditions (Hu et al., 2014). It has
also been reported that H3S10ph assists in expanding genomic
domains harboring H3K4 methylation, a marker of accessible
chromatin, and restricts the propagation of heterochromatin

enriched with H3K9me2 and DNA methylation (Komar and
Juszczynski, 2020). Therefore, extensive crosstalk takes place
between histone phosphorylation and other post-translational
histone modifications to dynamically regulate gene expression
patterns, especially in the context of inflammation and cancer.

Histone Ubiquitination
Histone ubiquitination is a less well-studied post-translational
modification that exerts roles in chromatin compaction and
transcription regulation. It is mediated by the sequential
interactions among E1, E2 and E3 enzymes: E2 is the
conjugating enzyme, which transfers ubiquitin from the
ubiquitin-activating enzyme E1, while E3 ligases act as protein
binding platforms to catalyze the ubiquitination of substrate
proteins’ lysine residues by directly transferring ubiquitin from
their E2 enzymes (Berndsen and Wolberger, 2014). The function
of ubiquitination primarily involves regulating the cellular
localization, stability and activity of its target proteins, which
include all core histone subunits. Among them, mono-
ubiquitination on lysine 118 or 119 of histone H2A
(H2AK118/119ub) and lysine 120 of histone H2B
(H2BK120ub) are the most abundant forms of histone
ubiquitination, accounting for 5–15% of H2A and 1% of H2B,
respectively (Mattiroli and Penengo, 2021). H2AK118/119ub is
correlated with transcriptional repression by Polycomb
Repressive Complex 1 (PRC1), whereas H2BK120ub plays an
important role in transcriptional elongation by the E3 enzymes
RNF20 and RNF40 (Mattiroli and Penengo, 2021), both of which
are associated with the DNA damage response.

H2BK120ub has been highlighted for its role in inflammation-
related colorectal cancer. Specifically, the reduced levels of
H2BK120ub and its E3 ligase RNF20 activate colonic
inflammation and tumorigenesis by recruiting NF-kB, a master
TF regulating inflammation signaling, in both mice and humans
(Tarcic et al., 2016). Other studies also demonstrated that
dysregulated H2BK120ub causes genomic instability, as well as
promotes tumorigenesis and cancer progression in breast and
lung tumors (Jeusset and McManus, 2021). Like histone
phosphorylation, histone ubiquitination can also interact with
and influence other histone modifications. For instance,
H2BK120ub contributes to histone H3K79 and H3K4
methylation at promoter regions to induce gene transcription
(Worden and Wolberger, 2019; Worden et al., 2020). Taken
together, histone ubiquitination possesses roles in both
transcription regulation and inflammation-induced
tumorigenesis.

HISTONE VARIANTS

Further to the plethora of covalent histone modifications as
described above, an under-appreciated aspect of epigenetic
alteration pertinent to histones is the inclusion of non-
canonical forms of these DNA-scaffolding proteins, which are
commonly referred to as histone variants. Differences in these
variants from the core H2A, H2B, H3 and H4 histones can be in
the form of changes to the primary amino acid sequence or the
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incorporation of extra domains (Ghiraldini et al., 2021), thereby
permitting variant-specific histone modifications that collectively
influence the biochemical and physical characteristics of the
nucleosome (Bonisch and Hake, 2012). For instance, even
though only five amino acid residues distinguish the histone
variant H3.3 from its canonical counterpart H3, euchromatic
histone modifications like H3K9ac and H3K4me1 are found to
accumulate selectively on H3.3 relative to H3, resulting in the
elevated transcriptional activity of H3.3 enriched loci (Talbert
and Henikoff, 2010).

Perhaps the most prominent biological process that showcases
the increased abundance of histone variants at the expense of
canonical histones is senescence, which takes place in cells
undergoing irreversible proliferative arrest due to extensive
stress-induced genomic damage (Hernandez-Segura et al.,
2018). The accumulation of senescent cells over time triggers
the inflammatory response due to the secretion of numerous
signaling proteins, immune modulators, cytokines, extracellular
matrix factors and proteases that make up the senescence-
associated secretory phenotype (SASP) (Coppe et al., 2008;
Childs et al., 2017). This in turn establishes a proinflammatory
milieu that leads to chronic inflammation and induces
neighboring cells to enter senescence as well, ultimately
culminating in tissue dysfunction and tumorigenesis (Coppe
et al., 2010; Lopez-Otin et al., 2013; Franceschi and Campisi,
2014; Lecot et al., 2016).

Examples of the loss of canonical histone proteins include the
decreased expression of the core histones H3 and H4 during
replicative senescence (RS) (O’Sullivan et al., 2010), which occurs
in cells that experience stress induced by prolonged telomere
shortening following numerous cellular divisions (Campisi and

d’Adda di Fagagna, 2007). Lower levels of the linker histone H1,
along with the dearth of de novo histone H1 synthesis from its
post-translational silencing, have also been observed in cells
undergoing oncogene-induced senescence (OIS) (Funayama
et al., 2006), which is another type of senescence caused by
induction of oncogenes and/or repression of tumor suppressor
genes (Serrano et al., 1997; Sarkisian et al., 2007; Courtois-Cox
et al., 2008). The reduced amount of histones adversely disrupts
the global chromatin architecture, and hence exacerbates
genomic damage to a greater extent (O’Sullivan et al., 2010).

On the other hand, histone variants such as histone H3.3
accumulates during cellular senescence, and its ablation resulted
in cell cycle arrest via the repression of key cell cycle regulators
(Duarte et al., 2014). Histone H2A.J, a relatively uncommon
variant of H2A that exists only in mammals, is found to be
enriched in DNA damage-induced senescence, and it plays a
critical role in increasing the expression of inflammatory and
immune-related genes during chronic inflammation, especially
those implicating the SASP (Contrepois et al., 2017). Moreover,
the gene encoding histone H2A.J has been documented to be
aberrantly expressed in breast cancer (Colotta et al., 2009; Cornen
et al., 2014; Rube et al., 2021), though its role in oncogenesis
remains to be defined.

One of the major hallmarks of senescence is the establishment
of senescence-associated heterochromatin domains (SAHDs)
that are abundantly marked with H3K9me3 (Figure 1). These
domains subsequently develop into senescence-associated
heterochromatic foci (SAHF), which depict hotspots of
compact heterochromatin decorated by a myriad of repressive
epigenetic modifications like H3K27me3 andH4K20me3, and are
found mainly in OIS (Narita et al., 2003; Chandra et al., 2012;

FIGURE 1 | Epigenetic changes in senescence. Secretion of proinflammatory cytokines and immunomodulatory proteins that constitute the senescence-
associated secretory phenotype (SASP), accompanied by the formation of senescence-associated heterochromatin domains (SAHDs) and compact senescence-
associated heterochromatic foci (SAHF), occur in cells undergoing oncogene-induced senescence (OIS). In addition to the enrichment of repressive histone
modifications (e.g., trimethylation of H3K9, H3K27 and H4K20) and the histone variant macroH2A within SAHFs, OIS-induced cells also tend to exhibit a reduction
in lamin B1 levels and decondensation of satellite DNA, in a process called senescence-associated distension of satellites (SADS).
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Nelson et al., 2016). MacroH2A variants, the biggest known
histone variants with gene repressive roles, are shown to
accumulate within SAHF (Zhang et al., 2005). In particular,
one of the macroH2A family isoforms, macroH2A1, is
repositioned away from SASP genes to promote their
expression (Chen et al., 2015), a process aided by the ATM
protein kinase that is vital for regulating the cellular response to
double strand breaks (DSBs), including those induced by OIS
(Mallette et al., 2007). ATM also catalyzes the phosphorylation of
another histone variant H2AX (commonly referred to as γH2AX)
(Burma et al., 2001), which is thought to stabilize the ends of
DSBs within spatial proximity for supporting DNA repair
(Bassing and Alt, 2004). Notably, elevated levels of γH2AX
have been documented in both cancer and inflammation-
associated pathways like NF-κB signaling (Mah et al., 2010;
Matsuya et al., 2022).

Nevertheless, histone variants are not always expressed at
elevated levels in senescent cells. A case in point is the histone
H3 variant CENP-A, which is the epigenetic marker of
chromosomal centromeres that are extensively
heterochromatinized and exhibit substantial changes in
structure during senescence (Swanson et al., 2015). Protein
levels of CENP-A are reduced in human senescent primary
fibroblasts, as well as in old, compared to young, human islet
cells. Accordingly, shRNA-mediated depletion of CENP-A led to
premature senescence in fibroblast cells (Lee et al., 2010; Maehara
et al., 2010).

CHROMATIN STRUCTURE MODULATION
AND ENHANCER-BASED REGULATION

In order to facilitate chromatin accessibility for establishing a
transcriptionally competent environment, chromatin structure
can be modulated by post-translational histone alterations, such
as the incorporation of methyl, acetyl or phosphate moieties, as
described above. Alternatively, nucleosomes can be physically
displaced by chromatin remodelers to expose the underlying
genetic material for binding by RNA Polymerase II (RNAPII)
and other components of the transcription machinery (Smith and
Peterson, 2005).

Chromatin Remodeling
Genes that respond to inflammatory signals can be grouped into
two classes based on their requirement for chromatin remodeling:
“remodeling-dependent” genes are typically characterized by the
lack of promoter CpG content, with low levels of RNAPII and
active histone modifications, as exemplified by the
tetratricopeptide repeats-containing gene family encoding
interferon-activated proteins (Ramirez-Carrozzi et al., 2009;
Bhatt et al., 2012). Another example is the chromatin
remodeling by oncogenic RAS of select enhancer domains that
enables deposition of the active histone mark H3K27ac and
recruitment of the transcriptional coactivator BRD4 via the
pioneer TF activity of GATA4 (Nabet et al., 2015). In contrast,
“remodeling-independent” genes e.g., TNF (encodes tumor
necrosis factor), FOS and JUN (encode the AP1 transcription

factor) often harbor RNAPII-enriched promoters with high CpG
content, such that P-TEFb and other transcription elongation
factors can easily bind with high accessibility for rapid gene
induction (Kininis et al., 2009; Ramirez-Carrozzi et al., 2009; Xu
et al., 2009).

A recent study by Alizada et al. (2021) offered key insights into
the expression dynamics of both these classes of genes that are
triggered by NF-kB, a master TF implicated in various
inflammatory signaling pathways (Natoli, 2009). Upon its
translocation into the nucleus, NF-kB binds to promoters and
enhancers of proinflammatory genes to stimulate their
transcription (Pierce et al., 1988). In particular, NF-kB can
engage enhancers by adopting a chromatin conformation that
features distal enhancer domains within three-dimensional (3D)
spatial proximity to target genes (Jin et al., 2013). The most well-
studied way by which NF-kB interacts with DNA is its
recruitment to “remodeling-independent” genomic loci that
are made transcriptionally open by the prior occupancy of
other TFs (Heinz et al., 2013; Hogan et al., 2017; Link et al.,
2018). These loci are often linked to the rapid expression of
inflammatory genes and suppression of cell fate determination
genes (Schmidt et al., 2015). Additionally, NF-kB can gain access
to “remodeling-dependent” regions with the aid of
transcriptional coactivators, lineage-specifying or signal-
mediated TFs (Natoli, 2009; Ghisletti et al., 2010; Natoli, 2012;
Freaney et al., 2013; Kaikkonen et al., 2013). Genes residing
within these regions are mostly associated with dampening the
inflammatory response, and they exhibit reduced activation
kinetics (Natoli, 2009).

Intriguingly, NF-kB has also been demonstrated to utilize a
third mode of chromatin interaction, by binding to nucleosome-
occluded domains in a manner that is reminiscent of pioneer TFs,
although its functional importance remains controversial (Steger
and Workman, 1997; Angelov et al., 2003; Angelov et al., 2004;
Lone et al., 2013; Cieslik and Bekiranov, 2015). Through
comparative epigenomic investigation of the genome-wide
localization dynamics of NF-kB in human, murine and bovine
cells stimulated with the proinflammatory cytokine TNFα,
Alizada et al. (2021) showed a substantial proportion of
conserved orthologous NF-kB binding not only to accessible,
but also nucleosome-bound chromatin regions. In fact, NF-kB
occupancy within the latter context is likely an integral aspect of
the NF-kB-induced acute inflammatory response, as reproducible
results were obtained with ChIP-seq using different NF-kB
subunits in diverse cell types, and these regions were
significantly enriched within super-enhancer (SE) domains,
which constitute about a third of all NF-kB SE binding peaks
(Alizada et al., 2021).

Another notable discovery pertaining to NF-kB occupancy
dynamics is that a small minority of loci with considerable NF-kB
binding before TNFα treatment were the most highly expressed
less than an hour after TNFα stimulation. Importantly, these NF-
kB pre-bound domains were conserved across different species
and cell types, harbored numerous NF-kB motifs, overlapped
human non-coding inflammatory disease mutations, and
belonged to several inflammation-associated SEs located in
close proximity to NF-kB target genes (Alizada et al., 2021).
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Thus, the efficient recruitment of NF-kB to a low number of these
conserved pre-bound sites bears a disproportionately robust
effect on the transcriptional regulation of inflammatory genes.

The mechanistic basis of action of NF-kB involves key
chromatin regulatory players like the histone acetyltransferase
CBP/p300 and the epigenetic factor BRD4 (Ashburner et al.,
2001; Zhong et al., 2002; Huang et al., 2009). BRD4 is part of the
bromodomain and extraterminal (BET) family of transcriptional
coactivators (Dey et al., 2000; LeRoy et al., 2008) that interacts
with the positive transcription elongation factor P-TEFb and the
SWI/SNF chromatin remodelers at active genomic loci (Jang
et al., 2005; Yang et al., 2005; Shi et al., 2013). Specifically,
CBP/p300 mediates NF-kB acetylation upon treatment with
the proinflammatory stimuli TNFα or LPS, thereby enhancing
BRD4 binding via its acetyl lysine-recognizing bromodomains
(Greene and Chen, 2004). This interaction is essential for the
productive activation of NF-kB, and heralds a key function of
BRD4 in inflammatory gene transcription (Huang et al., 2009).

Super-Enhancers
Super-enhancers (SEs) are active transcriptional hubs that consist
of multiple enhancer elements densely bound by TFs and
coactivators, especially the Mediator complex, and they exert
crucial functions during cell fate specification and oncogenesis
(Hnisz et al., 2013; Loven et al., 2013; Whyte et al., 2013). The
molecular partnership between NF-kB and BRD4 is particularly
evident on SE loci, where both factors are found to accumulate at
significantly higher densities relative to typical enhancers and
active transcription start sites. Strikingly, NF-kB cooperates with
BRD4 to set up novel SE networks that govern the expression of
nearby proinflammatory genes, and this is accompanied by the
unexpected displacement of BRD4 from other pre-existing SE
sites, such as those that regulate non-inflammatory and cell
identity genes (Brown et al., 2014). These newly formed
proinflammatory SEs are enriched with the p65 (canonical
subunit of NF-kB) motif, indicating that direct binding of NF-
kB to the new SEs is likely causal in the distribution changes of
BRD4 SE occupancy in inflammation (Brown et al., 2014).

Importantly, BET bromodomain-mediated inhibition of
BRD4 ablated de novo NF-kB-induced SE formation, which
culminated in the reduction of proinflammatory gene
expression, thereby illuminating the critical role of BET
bromodomains in regulating global, dynamic changes in
inflammatory gene transcription. Brown et al. further
highlighted the physiological consequences of BRD4 inhibition
in vivo through the disrupted responses of NF-kB-activated
endothelial cells, which drive the initiation and maintenance
of inflammatory phenotypes (Gimbrone et al., 1990; Ley et al.,
2007), as well as the loss of inflammatory cells and atherogenesis
(an inflammatory disorder) in a well-established mouse model of
atherosclerosis (Brown et al., 2014).

In a separate study pertaining to SEs, Hah et al. (2015)
demonstrated that following LPS treatment, upregulated genes
harboring increased SE activity tend to be associated with
proinflammatory transcription and immune-related processes,
while downregulated genes containing decommissioned SEs are
linked to chromatin organization and cell metabolism. Moreover,

NF-kB and BRD4-induced SE formation is vital for
proinflammatory microRNA gene activation, which is yet
another epigenetic mechanism known to influence
inflammation and cancer pathogenesis (Duan et al., 2016).
Interestingly, inflammatory disease-specific SEs can be further
differentiated from the archetypal NF-kB-mediated SEs. For
instance, the RUNX1 and ETS1 TFs showed elevated binding
levels within SE loci of synovial-fluid derived CD4 T lymphocytes
in patients with the autoimmune disorder juvenile idiopathic
arthritis (JIA), leading to a greater expression of inflammatory
genes regulated by these JIA-associated SEs including
interleukins and chemokine receptors (Peeters et al., 2015).
Collectively, these findings reveal SEs as potential therapeutic
targets for controlling inflammation and immune-related gene
regulatory networks by perturbing inflammatory SE architecture
and function.

From an evolutionary standpoint, the origin of numerous
enhancers can be traced back to endogenous retroviruses
(ERVs), such that gene regulatory programs driving
inflammatory phenotypes have gradually gained enhancer
elements by co-opting genomic sequences from ERVs
(Chuong et al., 2013; Chuong et al., 2016). Additionally,
enhancer-encoded RNA and its chromatin milieu often
undergo post-translational alterations (Li et al., 2016).
Therefore, certain enhancers are able to establish a specific
epigenetic memory of the initial inflammatory signal in a
phenomenon called enhancer bookmarking, which contributes
to innate “trained” immunity and promotes a quicker response to
future stimulatory cues (Ostuni et al., 2013).

HIGHER-ORDER SPATIAL GENOME
ORGANIZATION

Beyond the epigenetic regulation of inflammatory gene
transcription by histone modifications, chromatin remodeling
and SE dynamics, as discussed in the previous sections, higher-
order genome topology of varying hierarchical levels, ranging
from long range chromatin looping within the same and across
different chromosomes to topologically associating domains
(TADs) that make up A (euchromatin) and B
(heterochromatin) compartments, also undergird the multi-
faceted nature of chromatin-dependent inflammatory
responses. A case in point is highlighted by the increased
appreciation of promoters from different genes aggregating in
close spatial proximity to facilitate their co-regulation (Li et al.,
2012), to the extent that some promoters appear to possess
enhancer capabilities, dubbed “ePromoters,” which were found
to come together in 3D space to regulate the interferon-α
response (Dao et al., 2017).

Transcription Factories and Chromatin
Loops
The advent of chromosome conformation capture (3C)
techniques led to the understanding that transcription
regulation is not confined to a linear segment of chromatin,
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but occurs within defined nuclear regions called transcription
factories, in which RNAPII and members of the transcriptional
apparatus that are far apart in 3D space can colocalize with one
another during gene activation (Dekker et al., 2002; Osborne
et al., 2004; Papantonis et al., 2010; Larkin et al., 2012; Papantonis
et al., 2012; Sharaf et al., 2014). Inflammatory genes are generally
not found in transcription factories prior to stimulation, but
swiftly localize to these specialized domains upon activation by
proinflammatory signals (Papantonis et al., 2010; Larkin et al.,
2012; Papantonis et al., 2012). For example, LPS treatment
resulted in the close spatial assembly of the regulatory
elements of IL-1A, IL-1B and IL-37 cytokine genes in human
monocytes, suggesting co-regulation within a specific
transcription factory (Sharaf et al., 2014). Papantonis et al.
(2012) uncovered the crucial role of active NF-kB-mediated
transcription factories in coordinating select nascent mRNA
and non-coding miRNA production, following TNFα-induced
stimulation.

Notably, transcriptional dynamics within transcription
factories operate in a hierarchical fashion involving both cis
and trans chromosomal interactions (Fanucchi et al., 2013).
Such changes in chromatin spatial configurations have been
elegantly illustrated in the context of antigen stimulation of
naïve T lymphocytes, which differentiate into Th1, Th2 and
Th17 cells that express distinct cytokine genes located on
different chromosomes. The Th2 cytokine locus is
instrumental for establishing long-range chromatin contacts
with three promoters that regulate the genes specifying IL-4,
IL-5 and IL-13 interleukins across hundreds of kilobases on the
same chromosome (Spilianakis and Flavell, 2004; Lee et al., 2005).
Additionally, this highly accessible Th2 locus can associate with
the IL-17 and IFN-γ gene promoters located on different
chromosomes. Intriguingly, such inter-chromosomal crosstalk
is abrogated in favor of intra-chromosomal interactions upon
cytokine gene activation, which is a unique approach harnessed
by naïve T cells to alter its developmental trajectory for counter-
balancing chronic inflammation (Spilianakis et al., 2005; Kim
et al., 2014).

NF-kB, the master regulator of multiple inflammatory
signaling pathways, also leverages on higher-order genome
organization to discharge its gene regulatory roles (Kolovos
et al., 2016). For instance, activation of NF-kB upon a viral
infection provokes long range chromatin re-wiring between
the IFN-β gene locus and three distant NF-kB bound loci on
separate chromosomes, which is characterized by a diminution of
these inter-chromosomal contacts at the onset of transcriptional
initiation and elongation, relative to its inactive state (Apostolou
and Thanos, 2008). In another study, NF-kB occupancy on the
microRNA gene loci of miR-155 and miR-146a, located on
different chromosomes, led to their colocalization and
concomitant gene suppression during the induction of
endotoxin tolerance in activated naïve macrophages (Doxaki
et al., 2015).

Calandrelli et al. (2020) recently dissected the global changes
in 3D spatial chromatin dynamics in stress-induced
transcriptional dysregulation of endothelial cells, which feature
prominently in several diseases. Treatment with TNFα and high

glucose levels that mimic the inflammatory response in diabetic
patients not only resulted in the loss of the repressive histone
modifications H3K9me3 and H3K27me3, thereby activating
inflammatory NF-kB target genes, but also significantly
enhanced genome-wide inter-chromosomal RNA-chromatin
interactions, particularly at sites harboring super-enhancer loci
that drive proinflammatory gene expression and endothelial-
mesenchymal transition (Calandrelli et al., 2020).

CTCF, a well-known architectural insulator protein that plays
integral roles in both intra- and inter-chromosomal genome
organization (Ong and Corces, 2014), has also been implicated
in the inflammatory response modulation by TNFα and LPS
stimuli. For example, treatment with TNFα induced the
formation of enhancer-promoter loops at the human cytokine
genes lymphotoxin-α (LTα) and TNFα, as well as the promoter
region of another NF-kB-responsive gene LTβ, but loss of CTCF
diminished TNF expression while promoting LTβ activation
(Watanabe et al., 2012). Nikolic et al. (2014) also reported a
drastic decrease in the production of TNFα and the IL-10 family
of cytokines in activated macrophages lacking CTCF. LPS
treatment was found to trigger CTCF detachment,
accompanied by non-coding RNA expression at the chicken
lysozyme genomic locus in macrophages (Lefevre et al., 2008;
Witham et al., 2013).

Topologically Associating Domains (TADs)
and A/B Compartments
The classic role of CTCF in regulating 3D genome architecture is
attributed to its insulator function at the boundary between
TADs, which are sub-megabase chromatin regions that can
self-associate by forming loops with cis-regulatory elements
and their target genes within the domain, while restricting
interactions outside the domain (Dixon et al., 2012; Dixon
et al., 2016). At the next genomic layer, chromatin is broadly
partitioned to two large-scale compartments: transcriptionally
open euchromatic (A) versus compact heterochromatic (B)
compartments (Kempfer and Pombo, 2020). Inflammatory
challenges can impinge on 3D chromatin topology at both the
TAD and A/B compartment levels, thereby altering gene
expression profiles and cell fates, as discussed in this section.

One of the essential processes to quell inflammation is the
production of IL-4 cytokines, which induce macrophage
polarization to the anti-inflammatory M2 population (Mills
et al., 2000). Phanstiel et al. (2017) uncovered distinct
differences in the chromatin landscape of naïve macrophages
before IL-4 stimulation, compared to those treated with IL-4 and
then rested for a day. In addition, differentiation of human
monocytes to macrophages initiates spatial chromatin
modifications at the TAD level, with enrichment of the stress-
associated and cell type-specific TF AP-1 on active enhancer-
bound loops at key macrophage genes, as opposed to
undifferentiated monocytes (Phanstiel et al., 2017).

Viruses have been demonstrated to hijack and re-wire the 3D
chromatin organization of the host cell for subverting its immune
defense system and exerting long-term inflammatory and other
gene regulatory effects (Heinz et al., 2018; Liu et al., 2020). In light

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 9314938

Tan et al. Epigenetics in Inflammation

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


of the ongoing COVID-19 pandemic, Wang et al. (2021) recently
reported that SARS-CoV-2 infected cells showed a significant
ablation of cohesin, another architectural protein complex that
collaborates with CTCF to mediate DNA looping (Dekker and
Mirny, 2016), within TADs, causing a widespread weakening of
intra-TAD chromatin interactions. Furthermore, A/B
compartmentalization manifested a drastic perturbation in the
form of A-to-B switching, resulting in erosion of the euchromatic
A compartment that is coupled with a global decrease in the
active histone H3K27ac mark. The physiological ramifications of
these epigenetic disruptions and higher-order chromatin
reconfigurations included downregulation of antiviral
interferon response genes and upregulation of
proinflammatory genes, shedding important insights into the
inflammatory phenotypes observed in COVID-19 patients
(Carvalho et al., 2021).

Importantly, 3D genome organization is a key driver of
cellular senescence, which enacts chromatin restructuring at
multiple levels, ranging from an increase in local chromatin
interactions to a global shortening of chromosomal arms
(Criscione et al., 2016). Zirkel et al. (2018) revealed one
example of such chromatin reconfiguration stemming from
the loss of HMGB2 at several TAD borders in senescent cells.
HMGB2 belongs to the family of high-mobility group (HMG)
proteins, which are ubiquitous non-histone regulatory factors
that bind to and influence chromatin architecture (Reeves, 2001;
Bianchi and Agresti, 2005). Senescence-mediated abolishment of
HMGB2 led to the anomalous assembly of CTCF clusters, and in
line with the insulating function of HMGB2, novel long range
CTCF-based loops were established at genomic sites where
HMGB2 previously occupied (Zirkel et al., 2018).

Another recent report addressed chromatin looping
aberrations during OIS. Specifically, enhancer-promoter
contacts at the IL-1 cytokine gene cluster, where key cell cycle
and SASP-related genes reside, were disrupted, resulting in the
increased expression of proinflammatory genes and silencing of
cell cycle genes (Olan et al., 2020). These alterations are partially
due to the transcription-mediated redistribution of cohesin,
forming “cohesin islands” that arise from the accumulation of
the cohesin complex at the 3’ ends of active genes caused by the
inefficient removal of cohesin, which in turn generates new
cohesin-induced DNA loops (Busslinger et al., 2017).
Nonetheless, TAD boundaries and A/B compartmentalization
remain largely unaffected in OIS (Chandra et al., 2015; Olan et al.,
2020).

Both OIS and RS forms of senescence exhibit a dampening of
short-range chromatin contacts, but an increase in long range
genomic interactions (Sati et al., 2020). Moreover, A/B
compartment transitions are highly conserved in both types of
senescence, which correspond to downstream transcriptional
outcomes in the form of gene activation for B-to-A
compartment switches and gene repression for A-to-B
compartment changes. However, A/B compartmentalization
differences are also evident, as OIS features elevated B-B and
diminished A-B interactions, while RS displays diminished A-A
and elevated A-B interactions (Sati et al., 2020). Importantly, the
architectural protein condensin plays a critical role in sustaining

the senescent phenotype, as it functions in B-to-A compartment
switching and stabilizes the A compartment, thereby enabling
senescence-associated gene induction (Iwasaki et al., 2019).
Additionally, genes within the vicinity of SAHF are expectedly
downregulated (Iwasaki et al., 2019), yet Sati et al. (2020) reported
that SAHF can serve as hubs for the aggregation of select gene loci
to facilitate their expression, especially genes pertaining to
inflammation and oncogenesis.

OIS is widely believed to hinder oncogenesis, owing to its role
in restraining cellular proliferation, but it can also promote cancer
development through the effect of certain SASP molecules on the
cells’ immune system, such as the recruitment of anti-
inflammatory M2 macrophages by CCL2 cytokines that sets
up an immunosuppressive environment for supporting cancer
progression (Allavena et al., 2008), as well as the secretion of
proinflammatory SASP factors IL-6 and IL-8 by senescent
fibroblasts that stimulates prostate cancer development in mice
(Laberge et al., 2015). Interestingly, in colorectal cancer,
Johnstone et al. (2020) recently highlighted a weakening of
A/B compartmentalization, along with the establishment of a
novel intermediate compartment that features long range
chromatin interactions with both A and B compartments.
However, the silencing histone H3K27me3 modification is
found to accumulate in this intermediate compartment
specifically in tumor cells, accompanied by the repression of
genes residing within it, yet some genes encoding cancer-testis
antigens (CTAs) and ERVs become unexpectedly upregulated
(Johnstone et al., 2020), a phenomenon that has previously been
observed in colon tumors and associated with pro-immunity and
viral mimicry roles (Rooney et al., 2015; Roulois et al., 2015; Gibbs
and Whitehurst, 2018).

Nuclear Substructures and Chromosome
Territories
On top of genomic macro-domains like TADs and A/B
compartments, heterochromatinization engenders the 3D
nuclear structure (Falk et al., 2019), which consists of regions
associated with the nucleolus and nuclear lamina, including
pericentric heterochromatin (Guenatri et al., 2004; Nemeth
et al., 2010; van Steensel and Belmont, 2017). Chromatin
localization to various substructures within the nucleus is
important for regulating its transcriptional status, as active
genes tend to be found within the nuclear interior and/or in
proximity to nuclear speckles that abound with splicing factors
(Lamond and Spector, 2003; Kim et al., 2020), while inactive
genes typically border the lamina in regions termed as lamina-
associated domains (LADs) and/or nucleolar peripheries
(Nemeth et al., 2010; Kind et al., 2015; van Steensel and
Belmont, 2017). Finally, individual chromosomes are
preferentially arranged within defined areas of the nuclear
space to form chromosome territories that represent the apex
global level of chromatin organization (Meaburn and Misteli,
2007; Fritz et al., 2019).

At the level of LADs, cells undergoing OIS exhibited a
heterochromatic lamina-specific reduction of chromatin
contacts, whereby these GC-poor domains were

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 9314939

Tan et al. Epigenetics in Inflammation

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


transcriptionally closed and adorned with H3K9me3 (Chandra
et al., 2015). Despite the loss of LAD-mediated interactions, these
regions could still coalesce in spatial proximity with one another
that is reminiscent of SAHF establishment (Chandra et al., 2015).
Analysis by polymer modeling lent further support to the roles of
LAD detachment and SAHD decompaction in the development
of OIS-induced SAHF (Sati et al., 2020). A different study using
senescent human lung fibroblasts illustrated the physical
condensation of individual chromosomes that accounts for the
generation of SAHF (Funayama et al., 2006). Nonetheless, even
though SAHF domains are replete with repressive proteins and
histone modifications, they are not found within constitutive
heterochromatic domains like centromeres and telomeres (Narita
et al., 2003; Funayama et al., 2006; Zhang et al., 2007). There is
hitherto no report involving alterations to chromosome
territories as a result of inflammatory signaling or
inflammation-induced senescence.

REPETITIVE ELEMENTS

A central epigenetic theme in cellular senescence is the genome-
wide chromatin remodeling of repetitive sequences, which
encompass up to two-thirds of the entire human genome (de
Koning et al., 2011). This is usually manifested in the
transcriptional relaxation of transposable elements such as
Alu, SINE-VNTR-Alus and LINE-1, thereby facilitating non-
coding RNA (ncRNA) expression from these loci and their
mobilization, which activates several inflammatory/
immunological gene networks including the cGAS-STING
signaling pathway, type-1 interferon (IFN-1) response and the
SASP (De Cecco et al., 2013; Criscione et al., 2016; De Cecco et al.,
2019). Specifically, silencing of retrotransposons is performed by
multiple heterochromatic players like HP1, DNMT1 and SIRT6.
Hence, cells lacking the SIRT6 histone deacetylase showed an
increase in LINE-1 transcripts that induced a robust IFN-1 output
by activating cGAS (Simon et al., 2019).

De Cecco et al. (2019) recently delineated the mechanistic
basis underpinning the aberrant activation of LINE-1
retrotransposons during senescence, which entailed depletion
of the RB1 tumor suppressor protein by relieving the silencing
histone H3K9me3 and H3K27me3marks [RB1 has been reported
to occupy LINE-1 and other repetitive loci to aid in their
repression (Ishak et al., 2016)], increased binding of the
pioneer TF FOXA1 to the LINE-1 promoter region for its
activation [senescent cells show upregulation of FOXA1 (Li Q.
et al., 2013)], and loss of the 3’ exonuclease TREX1 that removes
foreign invading DNA species (Thomas et al., 2017), causing the
accumulation of LINE-1 cDNA (De Cecco et al., 2019). Despite
the delayed onset of LINE-1 reactivation and its accompanying
IFN-1 response, they are crucial contributors to the
proinflammatory outcome and maturation to the full-fledged
SASP, including the expression of key cytokines IL-6, CCL2 and
MMP3. Notably, the establishment of innate immune signatures
following senescence-mediated LINE-1 induction takes place via
the interferon-stimulatory DNA route, and treatment with
nucleoside reverse transcriptase inhibitors (NRTIs) that target

the reverse transcriptase function of LINE-1 (Dai et al., 2011) can
significantly ameliorate both the IFN-1 response and chronic
inflammation in diverse tissue types (De Cecco et al., 2019).

In another study, mouse embryonic fibroblasts transfected
with LINE-1 expression plasmids demonstrated a heightened
IFN-β immune response that requires the ORF2 endonuclease
function of LINE-1, implying the necessity of LINE-1’s
transposase activity in IFN-β activation (Yu et al., 2015).
Interestingly, the interplay between LINE-1 and IFN-β sets up
a negative feedback loop, as exogenous or induced IFN-β can in
turn hinder LINE-1 transposition (Yu et al., 2015).

Besides transposable elements, the deleterious reconfiguration
and reactivation of repetitive elements in senescent cells can also
affect non-mobile centromeric and satellite DNA, leading to
substantial structural changes in a process called senescence-
associated distension of satellites (SADS), during which these
typically constitutively silenced genomic sequences become
decondensed and gain transcriptional accessibility (Swanson
et al., 2013; Criscione et al., 2016) (Figure 1). These elements
are also hypomethylated, in line with their distension and
derepression (Cruickshanks et al., 2013). The occurrence of
SADS precedes SAHF formation, and marks one of the initial
alterations to the epigenetic landscape in cellular senescence
(Swanson et al., 2013; Criscione et al., 2016), but the
requirement of SADS in triggering and/or sustaining the
senescent state remains unknown. Importantly, the loss of
linker histone H1, which is a common chromatin modification
observed during senescence (Funayama et al., 2006), is not causal
of SADS, as most SADS-containing cells still possess high
amounts of H1 protein (Swanson et al., 2013). Swanson et al.
(2013) postulated that SADS may instead be attributed to the
depletion of lamin B1, as almost all cells harboring normal
endogenous levels of lamin B1 maintained compact
heterochromatinized satellite sequences, compared to about a
quarter of cells with decreased lamin B1 showcasing satellite
distension.

In a similar vein, human lung fibroblasts exposed to X-ray-
induced senescence elicited a dramatic increase in ncRNA
expression from pericentromeric repetitive loci known as
human satellite II (hSATII), which are usually repressed in
healthy cells (Miyata et al., 2021). Mechanistically, these
chromatin-associated hSATII RNA bind and sequester CTCF,
which in turn impedes CTCF function by changing its genomic
occupancy and rewiring 3D chromatin conformation particularly
at SASP gene loci, leading to an increase in chromatin
accessibility of these genes’ regulatory elements that induces
SASP proinflammatory gene transcription (Miyata et al.,
2021). In fact, lower levels of CTCF in aged cells can promote
pericentromeric satellite RNA transcription and further abrogate
CTCF function through a positive feedback cycle, which
consequently enhances SASP-mediated inflammation and
oncogenesis during the aging process (Miyata et al., 2021).
This may partly explain the appearance of transformed foci in
embryonic fibroblast-derived cells of CTCF-haploinsufficient
(Ctcf+/-) mice, which become exceptionally prone to
developing cancer (Kemp et al., 2014), and Ctcf-null mice are
inviable beyond early embryogenesis (Moore et al., 2012).
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INFLAMMATION-INDUCED EPIGENETIC
ALTERATIONS

Thus far, we have described how epigenetic changes at different
hierarchical levels of the eukaryotic genome regulate the
expression of inflammatory and immunological genes,
translating to downstream physiological consequences that
control cell function and disease state. Nevertheless, the
reverse relationship, i.e., how inflammatory signals impinge on
the chromatin landscape, also bears significant relevance to fully
appreciate the crosstalk that exists between these two molecular
entities, especially in the context of cancer (Figure 2).

One of the most well-studied diseases associated with chronic
inflammation that subsequently re-wires the host epigenome is
gastric cancer caused by the bacterium Helicobacter pylori, which
activates proinflammatory gene transcription via multiple
signaling pathways such as PI3K/Akt, Wnt/β-catenin and NF-
kB (Yamaoka et al., 2004; Lu et al., 2005; Tabassam et al., 2009).
Inflammation-induced epigenetic perturbations that ensued from
gastric mucosa cells infected byH. pylori included upregulation of
proinflammatory genes, e.g., TNFα and IL-1β caused by aberrant
modifications in DNA methylation of their promoter regions
(Maeda et al., 2017). These alterations are believed to be linked to
infection-induced inflammation and not the infection per se,
since methylome changes directly influenced the expression
profiles of various inflammation-associated genes in a gerbil
model, and treatment with an immunosuppressant drug
mitigated these methylation changes with negligible effects on
bacterial colonization (Kurkjian et al., 2008; Katayama et al.,
2009; Niwa et al., 2010). Furthermore, inflammation-induced
DNAmethylation dysregulation precipitated by infection withH.
pylori or Epstein-Barr virus in the gastric mucosa drives gene
expression changes that bolster oncogenesis, including tumor
suppressor genes like LOX and p16Ink4a, and proinflammatory
genes like IL-8 and TNFα (Matsusaka et al., 2014).

Katayama et al. (2009) reported that the DNA methylation
alterations were largely attributed to macrophage production of
nitric oxide in response to H. pylori infection. In cervical cancer,
nitric oxide-induced inflammation is also culpable for affecting
the promoter methylation levels of multiple genes, including
cancer-related genes, e.g., protein tyrosine phosphatase
receptor type R (PTPRR), and genes with immune functions,
e.g., T-lymphocyte maturation-associated protein (MAL) (Su
et al., 2017; Holubekova et al., 2020), thereby establishing the
causal connection between infection-driven inflammatory
signaling and its downstream epigenetic changes.

Inflammation has typically been associated with bacterial or
viral infections, but it can also be induced by exposure to allergens
and particulates like dust, chemicals and inhalable fibers that
mimic proinflammatory stimuli, and can link inflammation to
tumorigenesis. Smoking exemplifies such a non-infection,
lifestyle-based inflammation, in which global epigenetic
alterations, ranging from dysregulated histone and DNA
methylation to aberrant microRNA expression patterns, can
promote lung carcinogenesis (Sharma et al., 2010). Seiler et al.
(2020) recently revealed that inflammation-induced
modifications upset the balance of DNA methylation and
demethylation in the lungs of nicotine-addicted mice, resulting
in changes to histone acetylation levels and concomitant gene
expression profiles that facilitate the development of lung cancer.
Epigenetic modulations can also be actuated by hormonal
treatments like sex steroids, which were demonstrated to
change methylation levels and gene expression of various
inflammatory signaling factors in prostate cancer patients
(Wang et al., 2016).

IL-6
Numerous inflammatory molecules can incite epigenetic
disruptions, particularly in DNA methylation, which in turn
promote various facets of cancer development in diverse cell

FIGURE 2 | Inflammation-induced epigenetic alterations. Not only do epigenetic modifications regulate inflammatory gene expression, the activation of
inflammatory signaling pathways via proinflammatory cytokines can also enact changes to the epigenetic landscape that result in the silencing of tumor suppressor
genes and the increased activation of proinflammatory genes that promote carcinogenesis.
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types. IL-6 is one such example of a proinflammatory cytokine
that orchestrates chronic inflammation, and has been connected
to poor patient survival in different cancers (De Vita et al., 1998).
NF-kB-mediated secretion of IL-6 from immune cells in cancer
originating from colon inflammation appears to activate NF-kB
and STAT3-dependent signaling in epithelial cells of the gastric
mucosa, such as upregulation of DNA methyltransferase activity
and associated methylome changes (Hartnett and Egan, 2012).
Specifically, IL-6-directed increase in DNMT1 expression led to
the hypermethylation and consequent repression of adhesion,
apoptosis and tumor suppressor genes, thereby contributing to
inflammation-linked colon tumorigenesis (Foran et al., 2010). In
another study, inflammation caused by IL-6 in oral squamous cell
carcinoma was responsible for reducing global methylation levels
of LINE-1 retrotransposons, while increasing promoter
methylation and concomitant silencing of select tumor
suppressor genes (Gasche et al., 2011). Prior reports have also
provided critical insights into the epigenetic mechanisms that
govern the IL-6-induced generation of cancer stem cells (Drost
and Agami, 2009; Iliopoulos et al., 2009; Iliopoulos et al., 2010),
which are a subset of chemo-resistant tumor cells that drive
cancer metastasis (Yu et al., 2012).

A well-established gene regulatory network that links IL-6-
mediated chronic inflammation with cancer consists of two
distinct but complementary feedback loops, one involving IL-
6, NF-kB, Lin28 and let-7 miRNA, and the other comprising IL-6,
NF-kB, STAT3, miR-181b-1, miR-21, CYLD and PTEN
(Iliopoulos et al., 2009; Iliopoulos et al., 2010). In the former
loop, activation of the Src oncogene via IL-6 secretion induces a
proinflammatory output that is mediated by NF-kB, which leads
to the increased expression of Lin28, an RNA binding factor that
interacts with and impedes the expression of let-7 miRNA
(Kumar et al., 2008). Loss of let-7, which usually targets IL-6,
causes IL-6 accumulation, which then induces NF-kB, thereby
creating a positive feedback circuit that sustains human breast
cancer cells in a transformed state (Drost and Agami, 2009;
Iliopoulos et al., 2009). As for the latter loop involving the
STAT3 TF, which is induced by IL-6 that supports NF-kB in
its active form, STAT3 triggers miR-181b-1 and miR-21
expression, which target the CYLD and PTEN tumor
suppressor genes, respectively, resulting in the activation of
NF-kB (Iliopoulos et al., 2010). Therefore, IL-6 works
synergistically with the TFs NF-kB and STAT3, as well as
multiple miRNAs, to set up dynamic regulatory feedback
loops for perpetuating inflammatory cues that promote
chronic inflammation and cancer.

IL-1β
IL-1β is another potent proinflammatory cytokine that is not only
abundantly expressed within the tumor microenvironment of
several cancers, but is also a key contributor to various aspects of
cancer development, including tumor growth, angiogenesis and
metastasis (Elaraj et al., 2006; Voronov et al., 2007). In gastric
cancer, IL-1β promotes DNA methyltransferase function via the
synthesis of nitric oxide, resulting in promoter CpG island
methylation-induced gene repression (Hmadcha et al., 1999).
Similarly, IL-1β-mediated inflammatory signaling accounted for

the promoter hypermethylation and gene silencing of E-cadherin,
which is important for impeding cell migration and metastasis,
based on amouse model of gastric cancer (Huang et al., 2016). IL-
1β has also been demonstrated to re-wire the DNAmethylome of
colon cancer cells by increasing DNMT3a and ablating DNMT3b
expression, with minimal changes to DNMT1, leading to reduced
CpG island methylation at the promoter regions of the IL-6 and
IL-8 proinflammatory cytokine genes (Caradonna et al., 2018).

Further to the inflammation-mediated epigenetic changes at
the primary tumor location, the interplay between inflammatory
signaling and epigenetic mechanisms is also pertinent to cancer
metastasis, especially during epithelial-to-mesenchymal
transition (EMT), a trans-differentiation process by which
transformed epithelial cells are reprogrammed to acquire
mesenchymal features for invading and spreading to other
sites of the body (Lopez-Novoa and Nieto, 2009; Suarez-
Carmona et al., 2017). A case in point is the activation of the
EMT program in IL-1β-induced non-small cell lung cancer
(NSCLC) that facilitates epigenetic alterations at the
E-cadherin gene promoter (Li R. et al., 2020). Mechanistically,
acute exposure to IL-1β raises the expression level of a key EMT
TF, SLUG, causing a decrease in active histone marks like
H3K9ac and H3K4me3, while increasing inactive histone
marks like H3K27me3. Chronic IL-1β exposure engenders
greater accumulation of SLUG that induces de novo deposition
of H3K9me2/3 and further enriches H3K27me3, collectively
reinforcing E-cadherin gene repression during EMT memory
(Li R. et al., 2020). Another related study revealed that IL-1β
triggers oncogenic Lin28B expression by repressing miR-101,
thereby dysregulating cellular proliferation and migration in
inflammation-induced NSCLC (Wang et al., 2014).

TGF-β
TGF-β is an anti-inflammatory cytokine that can activate the
gene expression of DNA methyltransferases, which in turn alters
the methylome of ovarian cancer cells during EMT (Cardenas
et al., 2014). A similar function of TGF-β is recapitulated in breast
cancer, whereby TGF-β robustly induces a suite of oncogenic
EMT TFs like SNAIL, SLUG and TWIST1 to engage the EMT
transcriptional program by upregulating mesenchymal cell-
specific genes and antagonizing the expression of epithelial cell
markers (Dong et al., 2012; Dong et al., 2013). Mechanistically,
SNAIL-dependent repression consists of its interaction with the
histone methyltransferases SUV39H1 and EHMT2 that
collaborate to catalyze the deposition of the transcriptionally
repressive histone modification H3K9me3, which is essential
for recruiting DNA methyltransferases to carry out promoter
methylation and stable silencing of target genes such as
E-cadherin (Dong et al., 2012; Dong et al., 2013; Tam and
Weinberg, 2013). TGF-β-induced EMT in breast cancer via
the action of DNA and histone methyltransferases is also
instrumental for the generation of cancer stem cells (Dong
et al., 2012; Dong et al., 2013; David and Massague, 2018).

TGF-β signaling can trigger the expression of another
epigenetic player, KDM6B, a histone demethylase that erases
the silencing H3K27me3 mark to promote gene transcription,
and this is crucial for the activation of SNAIL-induced EMT in
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both human and mouse mammary epithelial cells (Ramadoss
et al., 2012). In support of this, Ramadoss et al. reported a
dramatic elevation of KDM6B expression in metastatic breast
cancer relative to healthy breast cells (Ramadoss et al., 2012).
Additionally, stimulation of the EMT program by TGF-β in
mammary epithelial cells leads to an increase in SIRT1
expression, which induces histone deacetylation and represses
miR-200a expression (Eades et al., 2011). Because miR-200a
targets SIRT1, both these epigenetic factors regulate each other
via a negative feedback loop (Eades et al., 2011), and similar
reciprocal feedback circuits have also been demonstrated in other
studies between the ZEB family of EMT TFs and members of the
miR-200 family that mutually regulate one another’s expression,
thereby dynamically controlling the EMT transcriptional
network (Shimono et al., 2009; Wellner et al., 2009).

Other noteworthy examples of epigenomic re-wiring driven by
TGF-β-induced EMT include a widespread diminution of the
silencing histone mark H3K9me2, and increase in the
transcriptionally competent marks H3K4 and H3K36
trimethylation. These chromatin alterations rely on the LSD1
demethylase, as LSD1 depletion exerts adverse impacts on EMT-
linked cancer cell metastasis and chemoresistance (McDonald
et al., 2011). In addition to its role in TGF-β signaling, LSD1 can
also participate in the NF-kB-mediated inflammatory pathway, as
nuclear PKCα phosphorylates LSD1 to enable the binding and
stabilization of NF-kB, suggesting that the PKCα-LSD1-NF-kB
regulatory axis is important in the epigenetic control of EMT and
its associated inflammatory phenotypes (Kim et al., 2018).

Finally, the dual crosstalk between inflammatory signaling and
epigenetic modulations can set up a self-regulatory feedback
circuit as a homeostatic mechanism to finetune the expression
of inflammatory genes. This is elegantly illustrated in a seminal
study by Foster et al. (2007), who showed that the robust
activation of proinflammatory genes at the onset of LPS
treatment was significantly muted upon subsequent
stimulations. This was attributed in part to the maintenance of
low histone H4 acetylation levels at the promoter regions of
proinflammatory genes after the second round of LPS challenge,
which reflects the dynamics of inflammatory gene activation and
explains why macrophages appeared to lack sensitivity toward
subsequent rounds of LPS induction (Foster et al., 2007).

In a different study, Cheng et al. (2013) discovered that
canonical inflammatory genes like chemokines and adhesion
factors were rapidly upregulated upon initial treatment with
the proinflammatory cytokine TNFα, but their expression
reduced over time despite continuous TNFα treatment. Yet,
miR-146α/β expression displayed the opposite trend—higher
induction at later compared to earlier timepoints of TNFα
stimulation, which accounts for miR-146α/β activation
coinciding with the downregulation of genes encoding
adhesion factors, and that miR-146α/β served as a negative
regulator of inflammatory signaling by targeting IRAK1,
IRAK2 and TRAF6, thereby intricately controlling the ideal
level of inflammatory output (Cheng et al., 2013). Taken
together, inflammation-induced changes to the epigenome can
efficiently feedback onto subsequent waves of inflammatory
challenge to refine the overall kinetics of the inflammatory

gene regulatory network, so as to avoid the deleterious
outcome of excessive and uncontrolled inflammation.

EPIGENETIC AND ANTI-INFLAMMATORY
THERAPIES IN CANCER

Given the closely intertwined nature between inflammatory
signaling and epigenetic alterations, and how their dynamic
bidirectional interaction augments oncogenesis, it is therefore
not surprising that the administration of drug therapeutics
targeting either or both pathways hold significant value in
combating cancer. For instance, the immunosuppressive drug
tocilizumab not only antagonizes IL-6-STAT3 inflammatory
signaling, but also restrains the IL-6-STAT3-NF-kB epigenetic
feedback axis, which heralds an exciting therapeutic prospect for
triple-negative breast cancer patients (Alraouji et al., 2020).

Importantly, certain anti-inflammatory drugs are capable of
functioning at the epigenetic level as well, such as non-steroidal
anti-inflammatory drugs (NSAIDs) that can alleviate cancer
progression by regulating the expression of HDACs. For
example, the application of a commonly utilized NSAID,
aspirin, in a mouse model of colitis-linked colon cancer, led to
a decrease in the active histone H3K27ac levels and
accompanying repression of the proinflammatory genes TNFα,
IL-6 and inducible nitric oxide synthase (iNOS) (Guo et al., 2016).
Aspirin also heightened the efficacy of another HDAC inhibitor
drug, romidepsin, by boosting p21 expression, thereby hindering
tumorigenesis in COX-1-positive ovarian cancer (Son et al.,
2010). Additional support for NSAIDs in epigenetically
mitigating cancer oncogenesis is documented in a recent
report that long term treatment with ibuprofen correlates with
a lower propensity to develop certain cancers (Shen et al., 2020).
Specifically, ibuprofen not only suppressed numerous
inflammation-associated stemness genes in breast, liver and
lung cancer cells, but also decreased cancer cell metastasis and
chemoresistance via the downregulation of HDAC and histone
demethylase KDM6A/B both in vitro and in vivo (Shen et al.,
2020).

Similarly, several epigenetic drugs possess the ability to
counter inflammation. For instance, treatment with
resveratrol and MS-275, a SIRT1 activator and a HDAC
inhibitor, respectively, elicited anti-inflammatory properties
by impeding microglia-macrophage activation in a mouse
model of permanent brain ischemia (Mota et al., 2020).
Another study revealed that administration of 5-azacytidine,
a DNA methyltransferase inhibitor, and trichostatin A, another
HDAC inhibitor, abrogated inflammation-dependent
pyroptosis and apoptosis in acute lung injury via the
repression of IL-1 and select caspase activities in bone-
marrow-derived macrophages (Samanta et al., 2018). DNA
methyltransferase inhibitors were similarly touted as a
promising class of therapeutic candidates for tackling
pancreatic cancer, as induction of NF-kB inflammatory
signaling in pancreatic cancer stem cells requires DNA
methylation of the promoter region of SOX9, a critical gene
for cancer metastasis (Sun et al., 2013).
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In the past decade, BET inhibitors, a prominent category of
epigenetic drugs targeting the BET domain, which are
bromodomain-containing proteins with well-established roles
in gene regulation via histone modification and chromatin
remodeling (Fujisawa and Filippakopoulos, 2017), have been
successfully developed for various cancer therapies, including
hematological tumors and the comparatively uncommon nuclear
protein in testis (NUT) midline carcinomas (Filippakopoulos
et al., 2010; Gallenkamp et al., 2014). Nicodeme et al. (2010)
manufactured a synthetic histone mimic named I-BET that
interferes with the binding of BET proteins to acetylated
histones, resulting in the inhibition of chromatin complex
formation necessary for inflammatory gene transcription in
activated macrophages. This highlights the anti-inflammatory
potential of synthetic compounds that specifically target proteins
recognizing epigenetically modified histones in modulating
physiological and pathological cell states.

Other documented examples of BET inhibitors include
ABBV-075 and I-BET151, which were shown to exude
apoptotic functions in multiple blood disorders like acute
myeloid leukemia and non-Hodgkin’s lymphoma (Dawson
et al., 2011; Bui et al., 2017). Notably, these epigenetic drugs
also harbor anti-inflammatory characteristics, e.g., I-BET151
hampers the expression of the proinflammatory genes IL-1β
and TNFα in rheumatoid arthritis synovial fibroblasts, leading
to a decreased ability in recruiting immune cells and their lowered
proliferative capacity (Klein et al., 2016). A recent report by
Ullmann et al. (2021) demonstrated that treatment with the BET
inhibitors I-BET151 and Ro 11–1,464 in cultured macrophages
not only increases endogenous levels of the tumor suppressor
protein CEBPD, but also downregulates key cytokine genes like
CCL2 and IL-6, buttressing their anti-inflammatory functions.
Furthermore, beyond the realm of drug therapeutics, natural
dietary supplements like Vitamins C, D and E can also enact
both anti-inflammatory and epigenetic effects (Saccone et al.,
2015; Gerecke et al., 2018; Zappe et al., 2018; Yang et al., 2019).

CONCLUSION

Epigenetic processes at various hierarchical levels of the genome
take place in response to environmental stimuli, especially during

infections and other inflammatory challenges, thereby
modulating gene expression networks that govern cell identity
and disease states. The aforementioned studies described here
clearly illustrate the intimate connection between epigenetics and
inflammation, and how they interact with each other through
various feedback loops and regulatory axes, especially in the
context of cancer. Owing to the reversible nature of epigenetic
alterations and their susceptibility to inflammatory signaling
from both internal and external environments, it is of
paramount importance to decipher how these molecular
mechanisms drive cancer initiation and progression. For
example, prior studies have pinpointed the fundamental role
of deleterious epigenetic modifications, particularly in DNA
methylation profiles, in promoting inflammation-induced
tumorigenesis (Chan et al., 2003; Maekita et al., 2006).

Importantly, the reversibility of epigenetics enables them to
be harnessed as ideal cancer therapeutics to target the
epigenetic changes within both the tumor core and
microenvironment. High-throughput epigenomic and
metabolomic approaches can be leveraged to elucidate a
more thorough understanding of the repertoire of epigenetic
and inflammation-related alterations in patient-derived cancer
tissues, so that the appropriate treatments can be tailored to
each patient. The combination of epigenetic drugs with anti-
inflammatory roles, and vice versa, promise to offer much
propitious prospects in long term palliative care and cancer
therapy.
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