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Measuring whole brain networks is a promising approach to extract features of autism

spectrum disorder (ASD), a brain disorder of widespread regions. Objectives of this

study were to evaluate properties of resting-state functional brain networks in children

with and without ASD and to evaluate their relation with social impairment severity.

Magnetoencephalographic (MEG) data were recorded for 21 children with ASD (7 girls,

60–89 months old) and for 25 typically developing (TD) control children (10 girls, 60–91

months old) in a resting state while gazing at a fixation cross. After signal sources were

localized onto the Desikan–Killiany brain atlas, statistical relations between localized

activities were found and evaluated in terms of the phase lag index. After brain networks

were constructed and after matching with intelligence using a coarsened exact matching

algorithm, ASD and TD graph theoretical measures were compared. We measured

autism symptoms severity using the Social Responsiveness Scale and investigated its

relation with altered small-worldness using linear regression models. Children with ASD

were found to have significantly lower small-worldness in the beta band (p = 0.007)

than TD children had. Lower small-worldness in the beta band of children with ASD

was associated with higher Social Responsiveness Scale total t-scores (p = 0.047).

Significant relations were also inferred for the Social Awareness (p = 0.008) and Social

Cognition (p = 0.015) sub-scales. Results obtained using graph theory demonstrate

a difference between children with and without ASD in MEG-derived resting-state

functional brain networks, and the relation of that difference with social impairment.

Combining graph theory and MEG might be a promising approach to establish a

biological marker for ASD.
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INTRODUCTION

The etiology of autism spectrum disorder (ASD), a
neurodevelopmental disorder characterized by stereotypic
or repetitive behaviors with impaired social cognition and
communication disorders (1), remains largely unknown.
However, impaired social cognition and communication can
be improved by early and appropriate interventions (2, 3). Its
early diagnosis is nevertheless difficult in many cases because
no biological marker has been established (4, 5). Consequently,
clinicians must rely on symptoms.

In the field of brain imaging, researchers have characterized
the functions of individual brain regions affected by ASD.

However, results of more recent studies have suggested that
ASD is a dysfunction of coordination over widely distributed

brain regions (5–7). Assessing relations between brain regions
(i.e., brain connectivity) and functions in each region can be an
effective approach to extracting differences between individuals
with ASD and typically developing (TD) individuals. Brain

connectivity is a multi-faceted concept. In the human brain,
neurons and neural populations do not function individually.
They interact with other elements in a coordinated manner

through their afferent and efferent connections (8). In this
context, anatomical relations through bundles of axons are
designated as structural connectivity, which can be measured
using structural brain imaging such as MRI and diffusion tensor
imaging (DTI). Structural connectivity describes the architecture
of interregional connections, but it provides less information
related to how neurophysiological functions are supported by
this architecture. In contrast, functional connectivity is based on
statistical dependencies between time series of cerebral activity in
different brain regions. The connectivity can be measured using
fMRI, SPECT, EEG or magnetoencephalography (MEG) (9). As
such, functional connectivity is thought to form a physiological
basis of information processing (10). It can therefore be of
more interest. These two types of connectivity are fundamentally
different. Results from earlier studies are somewhat inconsistent,
but many reports of the literature describing connectivity in
ASD yield a promising hypothesis: ASD is a disorder of long-
range under-connectivity combined with local over-connectivity
(11). However, in light of the brain’s inherent complexity, any
hypothesis based on such a simple measure (i.e., mean of the
strength of connectivity) might be an oversimplification. Tomeet
this challenge and to describe the properties of complex networks
on a large scale, the field of neuroscience has provided graph
theory (12).

Within the graph theory framework, a complex system is
described as a set of relations among discrete objects. A key
concept of graph theory is reduction of a complex system
to a “graph”: a set of nodes (i.e., objects) and edges (i.e.,
relations). Using graph theory, one can describe properties of
such graphs using the same parameters, irrespective of their
constituent elements (10, 13). In this context, a brain network
is definable as a graph in which the nodes represent brain
regions and the edges linking pairs of nodes represent functional
connectivity between pairs of corresponding brain regions. Based
on such a graph, graph metrics represent the characteristics

of the entire brain network as single numerical values. It is
noteworthy that graph metrics differ from traditional measures
of connectivity (e.g., means of connectivity) in two meaningful
ways. First, graph theoretical analysis is applied to “graphs,”
for which spatial arrangements of nodes were not considered.
Particularly, edges are not weighted by the length of connections.
Angles between edges are not specified. For that reason, graph
metrics theoretically preserve very little or no spatial information.
The results therefore might not be reconciled with earlier
findings obtained for the connection-length-dependent over-
connectivity and under-connectivity. Second, using graph theory,
one can describe a certain property of the entire brain network
in a single measure. In this sense, one need not address
the difficulty posed by multiple comparisons. In contrast, for
example, comparing the means of functional connectivities for
each pair of brain regions can be expected to result in multiple
comparisons. Erroneous inferences become more likely. With
the help of graph theory, properties of a given graph can be
described using various measures. Well-established and widely
used measures include the mean clustering coefficient (CC),
average shortest path length (cPL), and small-worldness (SW).
Because CC represents the degree to which connected nodes are
clustered, it is thought to represent the tendencies of the brain
to process information locally (i.e., local functional segregation)
(14). Characteristic path length (cPL) represents the average
number of edges in shortest paths (i.e., sequence of edges
connecting one node to another), where the average is taken over
all possible pairs of nodes. For that reason, cPL is thought to
indicate integration of information from remote brain regions
(i.e., global functional integration) (14). Networks with high CC
and low cPL are well-connected both locally and globally, and
are therefore designated as small-world networks. Such networks
are thought to represent an optimal balance between functional
local segregation and global integration (15, 16). To describe
how much a given network possesses small-world properties,
small-worldness (SW) is defined as the ratio of normalized CC
and cPL. SW is a particularly interesting property in that the
healthy human brain is a small-world network (10, 17), but
brain networks reportedly deviate from small-world networks in
some neurological conditions such as Alzheimer’s disease (17),
depression (18), and schizophrenia (19).

Several studies have applied graph theory to compare the
brain networks of typically developing individuals to those of
patients with ASD in terms of CC, cPL, or SW. Two studies
particularly examined graphs of structural connectivity (i.e.,
DTI). Others have emphasized functional connectivity. Among
those latter studies, two used resting-state fMRI. All others
have been EEG/MEG studies. Unsurprisingly considering
methodological differences such as imaging modalities,
participant characteristics, and graph theoretical measures,
the results obtained from DTI-derived or resting-state fMRI-
derived networks are inconsistent. The first report of structural
networks was a study by Rudie et al. (20). They investigated
structural networks generated based on DTI-derived fiber
tracts in adolescents with and without ASD. Using six graph
theoretical measures (i.e., CC, cPL, normalized CC, normalized
cPL, SW, and modularity), the authors reported that the ASD
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group showed significantly lower modularity, but no significant
differences were found in the other five measures. In a study
conducted later by Qin et al. (21), children with ASD (2.89 ±

0.97 years old) and TD children (3.15 ± 1.12 years old) were
recruited. Among seven measures (i.e., CC, cPL, normalized
CC, normalized cPL, SW, global and local efficiency), their
DTI-derived structural network showed significantly lower
cPL and higher global/local efficiency in children with ASD.
Combining those results, the structural brain network of ASD
would show lower cPL and higher global/local efficiency in
early childhood, after which those characteristics become less
evident in later developmental stages. Adolescents with ASD
would then show lower modularity than typically developing
individuals. Among studies assessing functional connectivity,
two used resting-state fMRI (20, 22). For one of those studies
(20), Rudie et al. also investigated functional networks generated
from resting-state fMRI. Results showed significantly lower
CC, cPL, and modularity in the adolescent ASD group. It is
noteworthy that Kaku et al. reported contradictory results:
children with severe ASD were found to have significantly higher
normalized CC and small-worldness than children with mild
or moderate ASD (22). It remains unclear whether the relation
between autistic symptoms and CC derived from resting-state
fMRI is somewhat non-linear (i.e., individuals with ASD show
lower CC than TD individuals, but those who have severe ASD
shows paradoxically higher CC) or the relation is age-dependent
(i.e., higher CC in childhood, but lower CC in adolescents
corresponds to lower social communication).

All other reported graph theoretical studies of functional
connectivity have used MEG or EEG. One must be cautious
when comparing results of these studies because of the different
imaging modalities (EEG vs. MEG), participant characteristics,
and graph theoretical measures. Moreover, in MEG/EEG studies,
synchronization measures differ among studies. Within the
framework of those limitations, however, a consensus seems
to hold that brain networks of adults with ASD constructed
based on resting-state MEG/EEG derived functional connectivity
show lower CC and higher cPL than those of healthy controls.
However, the results are inconsistent for the younger population.
The first report was of a study conducted by Pollonini et al.
(23). They recruited young adults with and without ASD and
investigated the functional networks generated from resting-
state MEG recordings. Based on their findings, they reported
significantly lower CC and higher cPL (in the broadband signal)
in the ASD group than in healthy controls. From a later study,
adults with ASD were also reported as having significantly lower
CC (in the theta combined with the alpha band, and beta band)
and higher cPL (in the beta band) than healthy controls had
(24). Furthermore, Han et al. reported that children (6–11 years
old) with ASD showed lower CC and lower SW in widely
various frequencies, but the difference was less evident in younger
children (3–6 years old) (25). It is noteworthy that the graph
theoretical measures were correlated with ASD symptom severity
in the alpha band. Regrettably, however, the results obtained
from this study should be compared with caution because they
did not exclude effects of medication. All the reports described
above indicate lower CC in ASD patients than in healthy control

participants. One notable exception is a study conducted by Ye
et al. (26). They reported higher CC and lower cPL in the theta
band for adolescents (12–15 years old) with ASD compared to
healthy controls. It remains unclear whether the properties of
resting state MEG/EEG-derived functional brain networks are
specifically different in adolescents with ASD from those in
adults or children with ASD, in that lower CC and lower SW in
childhood ASD reported by Han et al. might arise as an effect
of medication.

Results from studies that used non-resting state EEG/MEG are
inconsistent. On the one hand, Boersma et al. investigated non-
resting state EEG data (i.e., children passively viewed pictures
of cars and faces) obtained from children with and without
ASD (2–5 years old). Based on their findings, they reported that
children with ASD had lower CC, lower SW (in theta and alpha
bands), and higher cPL (in broad band) than those found for
healthy control participants (27). On the other hand, Takahashi
et al. investigated MEG data obtained when children actively
watched animated video programs. They reported that children
with ASD (4–7 years old) showed significantly higher SW in the
gamma band and lower SW in the delta band, but differences
in CC or cPL were not significant (28). It is noteworthy that
among the three graph theoretical studies of children with ASD
(25, 27, 28), lower SW has been almost consistently reported. For
the other graph metrics, however, the findings are inconsistent.
Considering the recording conditions [resting-state (25) vs.
during visual stimulation (27, 28)], the difference might arise
from atypical functional connectivity during visual information
processing in ASD (29, 30), but the possible effect of medication
in the study by Han et al. makes it difficult to compare the results
directly. Furthermore, no earlier studies have investigated the
relation between the graph metrics and ASD symptom severity
after controlling for medication effects. In this context, resting-
state MEG/EEG studies of children with and without ASD,
excluding medication effects, might have a great merit, yet no
such studies have been conducted. For such a study, it would
be desirable to investigate relations between graph theoretical
measures and autistic symptoms.

Therefore, for this study, we examined the resting-state MEG-
derived functional network in children with and without ASD
using graph theory. Furthermore, we examined the relation
between graph theoretical measures and social communication.
Based on results of earlier studies, we hypothesized that children
with ASD show lower SW in resting-state MEG. Particularly,
our hypotheses were the following: (1) Children with ASD show
lower SW than TD children do. (2) Lower SW corresponds to
severe ASD symptoms.

MATERIALS AND METHODS

Experimental Design
For child participants with or without ASD, we assessed autism
symptom severity using the Social Responsiveness Scale (SRS)
(31). Intelligence was assessed using the Kaufman Assessment
Battery for Children (K-ABC, Japanese version) (32). We
recorded resting state MEG data. Signal sources are mapped
onto the Desikan–Killiany atlas of 68 brain regions. Then
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MEG-derived functional brain networks were constructed in
terms of the phase lag index (PLI). Applying graph theory,
we calculated SW from the graphs of functional networks.
Furthermore, as an exploratory analysis, we calculated CC and
cPL for completeness. We then compared the graph metrics
between ASD and TD. If a significant group effect was found
in any graph metric, we investigated the relation between autism
symptom severity and the graph metric.

Ideally, to calculate the necessary sample size to test our
hypothesis, we had to know the effect size of having ASD on
SW in exactly the same setting (e.g., using resting-state MEG
and graphs of PLI-derived functional networks for children
with and without ASD). However, no such earlier study has
been described, as explained in the Introduction. We therefore
expanded the search scope to include studies in which children
with and without ASD were compared in terms of SW obtained
from functional connectivity graphs (25, 27, 28). Unfortunately,
we were unable to extract or calculate the standard effect
size from those studies because of a lack of information.
Consequently, we chose to assume the effect size as large because
the three studies found significant effects of ASD on SW in small
sample sizes: Boersma et al. compared 12 children with ASD
and 19 TD children (27); Han et al. compared 20 children with
ASD and 40 TD children (25); and Takahashi et al. compared 24
children with ASD and 24 TD children (28). To assess differences
between two independent means in two groups, we set the effect
size as 0.8, set the alpha value as 0.05, and set the (1—beta)
value as 0.8. The statistical power was calculated for the one-
tailed not two-tailed t-test because we hypothesized that children
with ASD show lower SW than TD children do. The required
sample size was therefore calculated as 21 for each group. For the
sample size calculation, we used software (G∗Power ver. 3.121.6;
Heinrich-Heine-Universität Düsseldorf).

Participants
The clinical group included 21 children with ASD recruited
from Kanazawa University and affiliated hospitals. The control
group included 25 TD children with no reported behavioral or
language difficulty. The ASD diagnosis was made according to
the Diagnostic and Statistical Manual of Mental Disorders (4th
edition, DSM-IV) (33), using the Diagnostic Interview for Social
and Communication Disorders (DISCO) (34), and the Autism
Diagnostic Observation Schedule-2 (ADOS-2) (35, 36). We
excluded children with (1) blindness, (2) deafness, (3) any other
neuropsychiatric disorder, or (4) ongoing medication regimen.
Written informed consent was obtained from parents before
the children participated. The Ethics Committee of Kanazawa
University Hospital approved the methods and procedures,
which were conducted in accordance with the Declaration
of Helsinki.

In case some were unable to complete the MEG recording,
we recruited a few more participants than indicated as necessary
by the sample size calculation. Unfortunately, however, one
girl with ASD was excluded from analyses during MEG data
preprocessing (see Preprocessing below). In consequence, we
analyzed 20 children with ASD (14 boys, 6 girls, 60–89 months
old) and 25 TD children (15 boys, 10 girls, 60–91 months old),

which were fewer than the number indicated by the sample
size calculation.

Assessment of Social Autism Symptom
Severity
Participant’s autism symptom severity was assessed in the SRS:
a 65-item rating scale that measures social communication and
autistic mannerisms. A parent of each participant filled out the
SRS. We used gender-normed T scores (SRS-T) and its five sub-
scales: social awareness (SRS-AWA, ability to recognize social
cues), social cognition (SRS-COG, interpreting social behavior),
social communication (SRS-COM, reciprocal communication in
social situation), social motivation (SRS-MOT, motivation to
participate in social interactions), and autistic mannerism (SRS-
MAN, circumscribed interests and stereotypy). Higher scores
represent greater autism symptom severity.

The SRS can be completed by a parent or another adult
informant. By virtue of this feature, it involves ratings of children
in their natural social contexts and reflects what has been
observed consistently over weeks or months of time, rather
than merely reflecting results of a single clinical or laboratory
observation (31). Nevertheless, one must be cautious when
interpreting the SRS results because all such parent rating scales
have important shortcomings, such as parent bias and limited
reliability, compared to direct observation by expert clinicians.

Assessment of Intelligence
Intelligence of the participants was assessed using the K-ABC.
In K-ABC, skills for problem-solving abilities are interpreted as
intelligence and are measured on the Mental Processing Scale
(MPS) (37). Knowledge of facts, defined as achievement, is
measured on the Achievement Scale (ACH). In this sense, K-
ABC was developed to distinguish intelligence from knowledge
(32, 37). Those scores are provided as age-adjusted standardized
scores, normalized to have a mean of 100 and standard deviation
of 15.

MEG Recordings
MEG data were recorded using a 151-channel Superconducting
Quantum Interference Device (SQUID) whole-head
coaxial gradiometer MEG system for children (PQ 1151R;
Yokogawa/KIT, Kanazawa, Japan) in a magnetically shielded
room (Daido Steel Co., Ltd., Nagoya, Japan) installed at the
MEG Center (Ricoh Co., Ltd., Kanazawa, Japan). We used
a custom-made child-sized MEG system to measure brain
responses in children because some difficulties arise when using
conventional adult-sizedMEG systems for young children. Using
the child-sized MEG system ensures that sensors are positioned
easily and effectively for the child’s brain. Moreover, it ensures
that head movements are constrained (38).

We undertook great effort to keep each child motionless
during the recording. We instructed each child not to move
the head or body to avoid motion artifacts. Then, one staff
member escorted the child into the shielded room. The roomwas
decorated with colorful pictures of cartoon characters, generally
of a signature vehicle in a popular animation series. To encourage
the child further to maintain a steady head position, the staff
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member stayed in the room. In this way, we were able to entertain
most of the children. Additionally, they were monitored carefully
using a video monitoring system. If the head position of the
subject had obviously moved from its starting position, those
related MEG data were excluded from further analyses.

Low pass filtered MEG data (500Hz) were collected at a
2,000Hz sampling rate. The MEG recordings were made in a
resting state: the participant lay supine on a bed and gazed at
a fixation cross mark projected onto a screen during the MEG
recording. Then MEG data were recorded for 130 s for each
participant. The time of MEG recording was between 11A.M.
and 3 P.M. No child showed a clear sign of drowsiness in
terms of MEGwaveforms. Ideally, longer recording durations are
desirable. For children, especially children with ASD, however,
it was difficult to keep them sitting still for long durations. The
recording period had to be determined with compromise. Given
that limitation, we adopted 50 s as the minimum, as we did for
an earlier study (28) in which we analyzed artifact-free segments
of length minimum of 50 s and found significantly different SW
between children with and without ASD. We set the recording
time as 130 s, slightly longer than 50 s, to secure a minimum of
50 s and to spare some time.

MRI Recordings
A 1.5 T MRI scanner (SIGNA Explorer; GE Healthcare, USA)
was used to obtain structural brain images from all participants
and to compute individual head models for source analysis. The
T1-weighted gradient echo and Silenz pulse sequence (TR =

435.68ms, TE = 0.024ms, flip angle = 7◦, FOV = 220mm,
matrix size = 256 × 256 pixels, slice thickness = 1.7mm, a
total of 130 transaxial images) images were used for anatomical
reference. All participant’s MRI images were recorded.

Co-registration of MEG on MRI Image
We co-registered the MEG and MRI images according to the
marker locations. Four markers were recorded by the MEG and
the MRI: midline frontal, vertex, and each bilateral mastoid
process. For MEG, we used four coils generating a magnetic field.
For MRI, we used four pieces of lipid capsule as markers because
those are observed as high-intensity regions. Additionally, we
showed points on mastoid processes, nasion, and the skull
surface visually in MRI. About 15–25 points were shown for
each participant.

MEG Data Analysis
TheMEG analyses were performed using Brainstorm (39), which
is documented and freely available under the GNU general public
license for download online.

Preprocessing
The MEG data were preprocessed according to
recommendations from the Organization for Human Brain
Mapping (40). First, we downsampled the MEG data to 500Hz.
Second, we excluded three sensors from analyses because their
signal quality was poor. Third, after applying notch filters (60,
120, and 180Hz) to remove power-supply noise, we applied a
band-pass filter (0.5–200Hz). Fourth, we used the independent

component analysis (ICA) to remove blink and cardiac artifacts.
Finally, segments containing apparent motion noise or radio
frequency interference were excluded from analyses after they
were visually identified by an MEG expert who was blinded
to the identities of participants. One girl’s motion noise was
excessive. For that reason, we excluded data obtained from
this child from subsequent analyses. Data were segmented for
continuous segments of 5 s. A minimum of 10 segments (50 s
recording period) was accepted for each subject. Each epoch was
band-pass filtered for commonly used frequency bands: delta
(2–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz), and
gamma (30–60Hz). This preprocessing procedure is identical to
that used for our earlier study (28).

Atlas-Guided Source Reconstruction and
Segmenting
We performed signal source estimation using the participant’s
original anatomy. An anatomically constrained MEG approach
that places an anatomical constraint on the estimated sources
was used to estimate the brain signal sources (41). When the
sources are estimated, each participant’s recorded brain activity
is assumed to lie in the cortical mantle. We coregistered MEG
on participant’s MRI images. A head model was computed using
the overlapping spheres algorithm (42) with the default source
space (a lower-resolution cortical surface representation, with
15,000 vertices). We used weighted minimum-norm estimation
to estimate source orientation constraints (43). An identity
matrix was used as noise covariance because no noise recording
is available. Signal sources were grouped together into 68 regions
represented in the Desikan–Killiany atlases (44). When we
grouped sources, we used principal component analysis.

We chose Desikan–Killiany atlases considering the limit
of spatial resolution of MEG as well as a balance between
interpretability of the results and fineness of estimation.
Graph theoretical analysis of the functional brain network
fundamentally depends on the definition of nodes (i.e., brain
regions). A parcellation scheme must be chosen that reasonably
samples the brain regions. Results from fewer regions of
interest (ROI) are expected to offer increased interpretability, but
functionally and anatomically distinct regions can be regarded as
a single ROI. Conversely, results frommany ROIs finely represent
functional connectivity patterns, but their interpretability might
be difficult (45). Between these two extremes, Hallquist et al.
reported in their recent literature review that researchers should
divide the brain into at least 200 functional regions for fMRI
studies (46). In MEG studies, however, more compromises must
be made because of its low spatial resolution. In this context,
Farahibozorg et al. investigated the optimal number of parcels
while simultaneously minimizing the leakage between them.
They concluded that the number was approximately 70 parcels,
which is expected to reflect the limit of spatial resolution of MEG
(47). Based on these considerations, we adopted the Desikan–
Killiany brain atlas as suitable for this study.

Phase Lag Index
To estimate functional connectivity between signal sources, we
used the phase lag index (PLI). Although functional interactions
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can be measured by quantifying the phase relation between
their time series (48), one must consider that reconstructed
sources might contain spurious and artificial interactions because
of field spread. In such cases, artificial synchrony might be
observed between nearby signal sources (49). This kind of
artificial synchrony can be removed by suppressing zero-lag
synchrony and by detecting exclusively lagged interactions. One
mixing-insensitive interaction metric, PLI, attenuates artificial
interactions (50). Briefly, the instantaneous phase at each time
point of the filtered waveform was calculated for each epoch
using the Hilbert transform. Then, phase difference 1ϕ(tk)(k =
1,2,3, . . . , N, where N is the number of time points in an epoch)
was calculated for each time point. The value of PLI between
two signal sources in an epoch was obtained using the following
definition (50).

PLI =

∣

∣

∣

∣

1

N

∑N

k=1
sign [1ϕ (tk)]

∣

∣

∣

∣

(1)

We used PLI to estimate phase synchrony between source pairs
for each frequency band. The value of PLI is in the range of zero
to one, inclusive. Two more synchronized sources have PLI that
is closer to one. It is noteworthy that PLI does not indicate which
of the two signals is leading in phase.

Graph Construction and Graph Metrics
To describe brain characteristics, we used graph theory. A graph
is a basic topographical representation of a network consisting of
“nodes” and “edges.” The network used for this study comprised
68 nodes (brain regions defined by Desikan–Killiany) connected
by weighted edges (calculated as PLI values). Therefore, an
undirected weighted functional connectivity matrix (68 × 68)
was constructed for each frequency band (i.e., delta, theta, alpha,
beta, gamma) and for each epoch. We averaged the matrices of
all epochs for each participant. Binary graph approaches were
applied to simplify characteristics of a graph and to remove
spurious connections. Because no formal consensus exists for
a robust method for threshold selection, we set proportional
threshold κ, the proportion of total connections retained, as 0.2
according to results reported for earlier studies (28, 50, 51) (A
κ of 0.2 indicates that the strongest 20% of the connections
were selected.). Furthermore, considering κ-dependency of graph
metrics, we also investigated a set of κ for 0.1–0.3 with 0.02
increments. For these binary matrices, we calculated the most
commonly used graph metrics: The clustering coefficient (CC),
the characteristic path length (cPL), and small-worldness (SW)
(15). Consequently, the graph metrics were obtained from each
frequency band (i.e., delta, theta, alpha, beta, and gamma) for
each set of proportional thresholds κ. To calculate them, we used
the Brain Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net/, ver. 2019-03-03). Mathematical definitions of those
metrics have been reported elsewhere in the literature (10, 52).

The number of connections between the nearest neighbors
of a node as a proportion of the maximum number of possible
connections, expressed as CC, represents how clustered a graph’s
nodes are. The presence of clusters in functional networks
suggests organization of segregated neural processing (10). In

addition, cPL represents the average length of the shortest path
that must be traversed to go from one node to another. That
value represents how rapidly a graph conveys information from
one region to another and suggests the degree of integration
of a graph (10). In rare cases, two nodes are disconnected;
thereby, PL becomes infinite. To avoid this difficulty, we calculate
only from connected nodes according to a method used for
our earlier study (28). Additionally, SW was determined by the
ratio of normalized CC and normalized cPL. When a graph
has high CC and low cPL, the graph is more clustered but it
conveys information more rapidly. Such a property is designated
as SW. The property is thought to reflect an optimal balance
of functional integration and segregation (52). To evaluate the
SW of a graph, CC and cPL are adjusted because these metrics
clearly depend on the numbers of nodes and edges of the graph.
SW is therefore defined as the ratio of normalized CC and cPL.
In this way, a graph of high SW is a network that is markedly
more clustered than random networks (i.e., randomly generated
networks for which the numbers of nodes and edges are the
same), yet they have approximately the same characteristic path
length (16). The SW measure captures this property in a single
statistic (52). Normalized CC and cPL were obtained from a
random network that is randomized by rewiring all edges five
times. We produced 1000 random networks and their CC and
cPL (hereinafter, CCrand and cPLrand) for each graph. Then,
SW was found using the ratio of normalized CC and cPL (i.e.,
CC/CCrand and cPL/cPLrand). For each subject, CC, cPL, and
SW were calculated on each frequency band.

Statistical Analysis
Statistical analyses were conducted using software (Stata ver.
14.2; Stata Corp., College Station, TX, USA). We tested
differences in age and scores in K-ABC and SRS between ASD
and TD using Student t-tests (two-tailed). Sex difference was
tested using chi-square tests.

The differences between ASD and TD on SW were tested
using Student’s t-test (one-tailed) for each frequency band (delta,
theta, alpha, beta, and gamma). Then, to elucidate differences
between ASD and TD on graph metrics further, we matched the
two groups in terms of MPS in K-ABC while considering the
possible effects of intelligence on functional connectivity (53). To
improve the balance, we used coarsened exact matching (CEM)
(54). Subsequently, we applied adjusted regression analysis.
Particularly, we predict graph metrics based on the condition
(ASD or TD) with CEM-weight for weighting. For the CEM
algorithm, we temporarily coarsen (or categorize) each variable
based on its distribution or on natural or intuitive divisions.
Each participant is then assigned to one of a specified set of
strata in which the participant characteristics are matched exactly
on a set of coarsened variables. A weighting variable (CEM-
weight) is generated to equalize the number of treated and
control cases in one stratum. It is used for subsequent regression
analyses (54). We used Sturge’s rule as a binning algorithm (54).
This report describes the degree of imbalance before and after
matching by measurement of the multivariate L1 distance. The
L1 distance represents how two groups are balanced in terms
of matched variables (in our case, K-ABC). The L1 distance is
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a value between zero and one: a smaller value represents better
balance. Our primary emphasis was examination of differences
of SW for five frequency bands: delta, theta, alpha, beta, and
gamma. Significance was inferred for P < 0.01 after Bonferroni
correction for five comparisons was applied. We also analyzed
cPL and CC for completeness, but we formulated no particular
hypothesis related to those measures. Effect sizes were provided
as R2. Although we primarily emphasized the graphs of the
proportional threshold 0.2 for consistency with earlier studies
(28, 38, 51), this procedure was applied for a set of κ over the
range of 0.1–0.3 with 0.02 increments.

To investigate the relation between SW and autism symptom
severity, we specifically examined the metric obtained from the
graphs of threshold 0.2 as a representative for consistency with
earlier studies (28, 38, 51). If a significant group effect was found
for SW in any frequency band, then we applied a linear regression
models to predict the SW based on the SRS-T score. In doing so,
we assessed the relation between autism symptom severity and
SW in such frequency bands. We analyzed effects of SRS on the
SW only in children with ASD because we observed that SRS-
T scores were much lower and homogeneous in TD children,
thereby indicating the presence of the floor effect. Significance
was inferred for P < 0.05, but we used appropriate correction for
multiple comparisons if a significant group effect was found for
more than one frequency band.

Furthermore, we investigated the relation between SW and
SRS sub-scales to discern which sub-scale drives the effect. For
sub-scale analysis, significance was inferred for P < 0.01 after
Bonferroni correction was applied for five multiple comparisons:
social communication, social awareness, social cognition, social
motivation, and autistic mannerisms sub-scales.

In addition, considering the possibly different results derived
from informant-based (i.e., SRS) and laboratory-based (ADOS-
2) measures, we analyzed effects of ADOS-social interaction
and communication scores on SW. Particularly, we applied a
linear regression model to predict SW based on ADOS-social
interaction and communication scores. Effect sizes were provided
as R2.

Before applying any linear regression model, we verified that
our data meet the assumptions for regression analysis before
application of linear regression. Specifically, we used standard
methods to verify linearity, normality, homogeneity of variance,
model specifications, and influence. As a result, the assumption of
homogeneity was violated for some regressionmodels. Therefore,
we used heteroscedasticity-robust standard errors (55).

RESULTS

One girl with ASD was unable to complete K-ABC because
of severe psychomotor agitation. We found no significant
differences in sex, age, or epoch number. Significant differences
were found in the SRS total score, SRS sub-scale, Mental
Processing Scale, and Achievement Scale. Table 1 presents the
related results. Among the 20 children with ASD, module 1 was
applied to one child, module 2 was applied to 17 children, and

TABLE 1 | Characteristics of participants.

ASD TD χ
2 or t P-value

N 20 25

Sex (% Male)
†

70 60 0.49 0.486

Age in months‡ 73.5 69.2 −1.73 0.091

Epoch number‡ 19.7 21.2 1.25 0.217

SRS total score‡ 68.8 46.5 −7.57 < 0.001*

K-ABC scores

MPS‡ 99.2 114.5 3.15 0.003*

Achievement scale‡ 95.3 106.9 2.41 0.020*

†
Chi-square test.

‡Student’s t-test.

*Statistical significance.

ASD, autism spectrum disorder; TD, typically developing children; K-ABC, Kaufman

Assessment Battery for Children; SRS, Social Responsiveness scale; MPS, Mental

Processing scale.

module 3 was applied to two children. Supplementary Table 1

presents the subject’s sub-scores in ADOS-2.

Group Differences in SW: One-Tailed
T-tests
Our primary emphasis was to investigate differences in SW
between the brain network of children with and without ASD.
We first investigated the SW in each frequency band setting κ at
0.2 for consistency with earlier studies (15, 26, 35). Student’s t-
test showed that children with ASD had significantly lower SW
in the beta band than TD children did [t(43) = 2.67, p = 0.005
for a one-tailed t-test and p = 0.011 for a two-tailed t-test]. The
differences were not significant for any other frequency band.

Similar patterns were observed for the other κ. Children
with ASD showed lower SW in the beta band, the differences
of which were most marked when κ was set as 0.14–0.22.
Figure 1, Supplementary Figures 1–4, Supplementary Table 2

present the relevant results.

Group Differences in Graph Metrics in
Matched Participants – CEM
To investigate differences between ASD and TD on graphmetrics
further, we matched the two groups in terms of MPS in K-
ABC considering possible effects of intelligence on functional
connectivity. We first investigated the graph metrics setting κ at
0.2. After improving balance using the CEM algorithm, 15 ASD
children and 25 TD children comprised thematched participants.
The L1 distance improved from 0.300 to 0.115. After matching,
we used linear regression with CEM weights to predict the graph
metrics based on the condition (i.e., ASD or TD). Only for the
model predicting SW in the beta band was the main effect of the
condition (t(40) = −2.83, p = 0.007) found to be significant.
Table 2 presents results obtained from the graphs with κ of
0.2. Similar patterns are observed for the neighboring κ. The
differences were marked when the proportional threshold was set
as 0.16–0.22. Significant difference in SW was found in the theta
band when κ was set as 0.10, but the difference was not significant
when κ was set as 0.12 or higher. Therefore, we discarded
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FIGURE 1 | Group differences in graph metrics for different proportional thresholds in the beta band. Means of the respective graph metrics are presented with 95%

confidence intervals for the respective proportional thresholds. Children with ASD show lower SW in the beta band for widely various proportional thresholds. ASD,

children with autism spectrum disorder; TD, typically developing children; SW, small-worldness CC, clustering coefficient; cPL, characteristic path lengths. *Indicate

statistical significance.
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TABLE 2 | Difference between ASD and TD in graph metrics in matched participants with κ of 0.2.

Frequency band Graph metrics Coeff. S.E. t p 95% CI R2

Delta SW 0.001 0.017 0.05 0.957 −0.034 – 0.036 <0.001

CC −0.002 0.006 −0.31 0.758 −0.014 – 0.010 0.003

cPL 0.005 0.005 1.05 0.301 −0.005 – 0.016 0.028

Theta SW −0.016 0.021 −0.75 0.456 −0.060 – 0.027 0.015

CC 0.006 0.009 0.73 0.473 −0.011 – 0.024 0.014

cPL 0.014 0.009 1.62 0.113 −0.003 – 0.031 0.065

Alpha SW −0.023 0.025 −0.90 0.375 −0.073 – 0.028 0.021

CC −0.022 0.019 −1.19 0.243 −0.061 – 0.016 0.036

cPL −0.005 0.023 −0.21 0.833 −0.052 – 0.042 0.001

Beta SW −0.083 0.293 −2.83 0.007* −0.142 – −0.024 0.174

CC −0.005 0.010 −0.54 0.592 −0.025 – 0.015 0.008

cPL 0.008 0.018 0.44 0.661 −0.028 – 0.043 0.005

Gamma SW −0.009 0.032 −0.29 0.776 −0.075 – 0.056 0.002

CC −0.001 0.011 −0.06 0.952 −0.022 – 0.021 <0.001

cPL −0.006 0.012 −0.52 0.608 −0.031 – 0.018 0.007

*Statistical significance.

ASD, autism spectrum disorder; TD, typically developing children; SW, small-worldness; CC, clustering coefficient; cPL, characteristic path length.

TABLE 3 | Effect of SRS score on SW in the beta band in ASD participants with κ of 0.2.

vs. SW Coeff. Robust S.E. 95% CI t p F R2

SRS-T −0.003 0.001 −0.006 – 0.000 −2.14 0.047* 4.57 0.196

SRS-AWA −0.004 0.002 −0.008 – −0.001 −2.69 0.015 7.23 0.258

SRS-COG −0.004 0.001 −0.007 – −0.001 −3.00 0.008* 9.01 0.281

SRS-COM −0.003 0.002 −0.007 – 0.000 −1.81 0.088 3.27 0.154

SRS-MOT −0.001 0.002 −0.005 – 0.003 −0.69 0.500 0.47 0.037

SRS-MAN −0.002 0.002 −0.006 – 0.001 −1.27 0.219 1.62 0.112

*Statistical significance.

ASD, autism spectrum disorder; TD, typically developing children; SW, small-worldness; SRS-T, Social Responsiveness Scale Total score; SRS-AWA, Social Awareness sub-scale;

SRS-COG, Social Cognition sub-scale; SRS-COM, Social Communication sub-scale; SRS-MOT, Social Motivation sub-scale; SRS-MAN, Social Mannerism sub-scale.

this result as noise. Supplementary Table 3 presents the results.
Although our primary emphasis is on SW, we investigated group
differences for other graph metrics (i.e., CC and cPL) for each
frequency band and each κ. Significant differences were found for
CC in the delta band when κ was set as 0.10 and were found for
cPL in the theta band when κ was set as 0.30, but the differences
were non-significant for the other κ. Hence we discarded these
results as noise. We found no significant effect of group in any of
the models. Supplementary Table 3 presents the results.

Relation Between SW and Autism
Symptom Severity
To elucidate the relation between SW and autism symptom
severity, we specifically examined the SW in the beta band
obtained from the graphs of κ = 0.2 as a representative for
consistency with earlier studies (28, 38, 51). We applied a
linear regression model to predict the SW in the beta band
based on SRS-T score. The regression model revealed the main
effect of SRS-T score as significant (t(18) = −2.14, p = 0.047).
For sub-scale analysis, a significant main effect was found
only for the model predicting SW in the beta band based
on the SRS-cognition sub-scale (t(18) = −3.00, p= 0.008).

The higher SRS-awareness sub-scale tended to correlate with
lower SW in the beta band, but the effect was non-significant
after Bonferroni correction (t(18) = −2.69, p = 0.015).
Those results indicate that a higher SRS-T score was associated
with lower SW in the beta band in ASD children, in which
SRS-cognition and SRS-awareness drove this effect. Table 3

presents the results. A graph showing the relation between
social sub-scale scores and small-worldness is presented in
Figure 2.

As an exploratory analysis, we applied linear regression to
predict SW in the beta band based on ADOS-social interaction
and communication scores. Among the 20 children with ASD,
one subject was applied module 1, 17 subjects were applied
module 2, and two subjects were applied module 3. Observations
were therefore insufficient for module 1 and module 3.
Consequently, we analyzed the effects of ADOS-social interaction
and communication scores on the SW only for 17 individuals
who were applied to module 2.We did not find a significant effect
of ADOS-social interaction and communication scores (t(15) =
0.22, p = 0.831). This non-significant result contrasts against the
significant relation found between the SRS scores and SW in the
beta band. Supplementary Table 4 presents the results.
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FIGURE 2 | Relation between social sub-scale scores and small-worldness in children with autism spectrum disorder. ASD, children with autism spectrum disorder;

SRS-Awareness, Awareness sub-scale of Social Responsiveness Scale; SRS-Cognition, Cognition sub-scale of Social Responsiveness Scale; SW, small-worldness.

DISCUSSION

For TD children and children with ASD (5–8 years old), we

recorded resting-state MEG data. No participant was taking

medication. We constructed functional brain networks in terms

of PLI and analyzed the properties of those networks to explore
differences between the two groups. Children with ASD were
found to have significantly lower SW in the beta band than TD
children did, but not in the other frequency bands. Furthermore,
in children with ASD, lower SW in the beta band corresponded
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TABLE 4 | Earlier EEG/MEG studies for ASD using graph theory.

Authors Year N (ASD vs.TD) Ages Device Band Autistic traits

Boersma et al. (27) 2013 12 vs. 19 2–5 EEG (with Pictures) Broad cPL↑

Alpha, Theta CC↓,SW↓

Takahashi et al. (28) 2017 24 vs. 24 4–7 MEG (with Animation) Gamma SW↑

Delta SW↓

Han et al. (25) 2017 60 vs. 76 3–6 EEG Broad None

20 vs. 40 6–11 CC↓, SW↓

Ye et al. (26) 2014 16 vs. 15 12–15 MEG Theta CC↑, cPL↓

Pollonini et al. (23) 2010 8 vs. 8 around 19* MEG Broad CC↓, cPL↑

Barttfeld et al. (24) 2011 10 vs. 10 16–38 EEG Beta CC↓, cPL↑

ASD, autism spectrum disorder; TD, typically developing children; EEG, electroencephalography; MEG, magnetoencephalography; SW, small-worldness; CC, clustering coefficient;

cPL, characteristic path length.

↑ or ↓ indicate significant increase or decrease.
*Authors did not describe the age range of participants. 18.7 ± 0.7 for ASD group, 19.0 ± 1.2 for TD group.

to severe autistic symptoms in terms of SRS-T scores. This
association was driven by the association between the SW in the
beta band and SRS-cognition sub-scale. However, the relation
between SW in the beta band and ADOS-social interaction and
communication sub-scale was found to be non-significant.

For the beta band, we found significantly lower SW in the
ASD group than in TD children. This result accords with results
reported by Han et al. (25). After using resting-state EEG to
investigate 6–11-year-old children, they reported that children
with ASD showed lower CC and lower SW for widely various
frequencies including the beta band. Nevertheless, they did
not exclude effects of medication. In this context, the results
obtained from the present study confirm the reduced SW in the
functional brain network of children with ASD such that the
difference cannot be explained by medication effects. Ye et al.
similarly compared ASD and healthy control subjects, but of
a slightly older age (12–15 years old) (26). In contrast to the
non-significant results obtained for CC and cPL in the current
study, they reported higher CC and lower cPL in the ASD
group. Although comparing these findings directly is difficult
because they neither explicitly exclude the effects of medication
nor calculate SW, the present results can extend their results,
indicating that the altered CC and cPL in the brain network of
ASD would be less evident in a younger population. Boersma
et al. and Takahashi et al. investigated children with and without
ASD, similarly to the current study, but they used non-resting
state EEG/MEG (27, 28). Particularly, Boersma et al. investigated
children (aged 2–5 years) with and without ASD using EEG
data obtained while children passively viewed images of cars
and faces. The ASD group was found to show lower CC and
higher cPL, as well as lower SW. Takahashi et al. investigated
a similar age range (aged 4–7 years) using MEG data obtained
while children watched animated video programs. They found
that the ASD group showed higher SW in the gamma band
and lower SW in the delta band, but the differences in CC
or cPL were not significant. Considering atypical functional
connectivity during visual information processing in ASD (29,
30), a difference between those results and the current analysis
might arise from different recording conditions (i.e., resting

state vs. visual stimulation). Overall, the present results provide
additional evidence of age-dependent change in the resting-
state functional brain networks of ASD by demonstrating that
children with ASD show lower SW than those of healthy controls.
Given the results from earlier studies, individuals with ASD
are expected to show higher CC and lower cPL in their later
developmental stage. They would then show lower CC and higher
cPL during adulthood. Summarized results from earlier studies
are presented in Table 4.

To date, only a report by Han et al. has described a
study investigating the association between graph theoretical
measures and autistic symptoms. However, they did not exclude
medication effects (25). For that study, ASD symptom severity as
measured by the autism behavior checklist (56) was negatively
correlated with CC and positively correlated with cPL in
the alpha band. This report is therefore the first describing
that ASD symptom severity measured by SRS is related to
a graph metric (i.e., SW in the beta band) of resting-state
MEG-derived functional brain networks in childhood ASD after
controlling for medication effects. This association was driven
by association between the SW and SRS-cognition sub-scale.
Against our expectations, however, the relation between ADOS-
social interaction and communication scores and the SW was
not found to be significant. This inconsistency might arise from
the different results derived from parent ratings (i.e., SRS) and
clinical observations (ADOS-2). Those different results might
be explained by contextual factors and different perspectives.
Parents might have more opportunities to observe their child’s
everyday behaviors. Such behaviors might not be apparent during
brief one-to-one test situations (i.e., the controlled test setting
for ADOS-2). However, parents are not necessarily trained to
differentiate and capture autistic behaviors, whereas clinicians
are trained extensively to be able to capture autistic behaviors
accurately. Clinicians also have vast amounts of knowledge about
typical and atypical development of children. For these reasons,
by combining results from two regression analyses (SW vs. SRS
scores and SW vs. ADOS-social interaction and communication
score), it might be found that lower SW in children with
ASD corresponds to fewer social behaviors appearing only in
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situations outside of an examination room. However, the results
should be interpreted with caution because of major limitations:
parent ratings entail parent bias and provide lower reliability than
direct observations made by expert clinicians.

Some limitationsmust be described. First, most of the children
with ASD examined for this study were high-functioning
children who were able to remain stationary during MEG
measurements. Therefore, the findings might not be applicable
to children with lower verbal or intellectual abilities, or who
have difficulty remaining stationary. Second, we computed PLI
for each of >10 epochs of 5 s. This shorter epoch length might
affect the PLI values and PLI-based graph metrics. For that
reason, one must be cautious when comparing the present results
with those from other studies using different epoch lengths.
For example, Fraschini et al. analyzed effects of epoch length
on PLI and PLI-derived graph metrics using six epochs for
each epoch length (i.e., 1, 2, 4, 6, 8, 10, 12, 14, and 16 s) (57).
They reported that, in the source space, PLI values and PLI-
based graph metrics (weighted CC and weighted cPL) show a
decrease with increasing epoch length, where the results stabilize
for epochs with lengths of longer than 10 s. Furthermore, at
the network level, shorter epochs showed less clear patterns of
PLI than those obtained from longer epochs, possibly reflecting
inter-epoch variation in neuronal activity. It is noteworthy,
however, that their study found no significant relation between
epoch length and the standard error of the mean PLI and PLI-
based graph metrics with better behavior (in terms of stability)
was observed for measures extracted from source level analyses
compared with results obtained from sensor level analyses.
Although it is difficult to compare those results directly because
of methodological differences (e.g., EEG vs. MEG, frequency
bands, source estimationmethods), the evidence suggests that the
results presented herein might be valuable in terms of test–retest
reliability, but one must be cautious when comparing results
from different studies using data obtained using different epoch
lengths. Third, we exerted great effort to keep the participants
motionless. Despite that effort, it is still possible that motion
artifacts resulted from subtle movement during the acquisition.
In addition, the head motion possibly differed between the two
groups. Unfortunately, we did not have access to head motion
data from MEG scans to ascertain whether this was true. Further
study using a quantification algorithm for head movement
can be expected to help clarify how motion artifacts affect
the graph metrics. Fourth, comparison of the results obtained
from this study with those from other graph theoretical studies
using different quantities of ROIs (i.e., number of nodes) and
different proportional thresholds should be done only with due
caution. An important difficulty arises from the fact that graph
metrics depend on the number of graph nodes and edges (58).
Especially, the dependence cannot be neglected when the nodes
are fewer than 200 (58). No satisfactory method for correcting
for such effects has been reported in the relevant literature.
Fifth, the sample was smaller than the sample size calculation
indicated. A study with low statistical power has a reduced

likelihood that a significant result reflects a true effect. In fact,
it might overestimate the effect size (59). For that reason, to
estimate the effect sizes of group difference (i.e., ASD vs. healthy
controls) accurately in graph metrics, studies examining a larger
sample must be conducted. Sixth, one must be cautious when
interpreting the results of parent-report measures such as SRS
because all such scales entail important shortcomings, such as
parent bias and limited reliability, compared to direct observation
by expert clinicians.

For this study, we specifically examined young TD children
and children with ASD because early diagnosis of ASD is
important for supporting developmental follow-up in children
with ASD. Our study provides important information that can
be expected to improve our understanding of neurophysiological
mechanisms underlying the earlier development of social
abilities and brain networks in children with ASD. As a highly
non-invasive method, MEG can provide a potential biomarker
for ASD in young children by application of the observed
behavioral and neurophysiological alterations in patients
with ASD.
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