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The design of test Qmatrix can directly influence the classification accuracy of a cognitive

diagnostic assessment. In this paper, we focus on Q matrix design when attribute

hierarchies are known prior to test development. A complete Qmatrix design is proposed

and theorems are presented to demonstrate that it is a necessary and sufficient condition

to guarantee the identifiability of ideal response patterns. A simulation study is also

conducted to detect the effects of the proposed design on a family of conjunctive

diagnostic models. The results revealed that the proposed Q matrix design is the key

condition for guaranteeing classification accuracy. When only one type of item pattern

in R matrix is missing from the associated test Q matrix, the related attribute-wise

agreement rate will decrease dramatically. When the entire R matrix is missing, both

the pattern-wise and attribute-wise agreement rates will decrease sharply. This indicates

that the proposed procedures for complete Qmatrix design with attribute hierarchies can

serve as guidelines for test blueprint development prior to item writing in a cognitive

diagnostic assessment.

Keywords: Q matrix, attribute hierarchies, cognitive diagnosis, cognitive diagnostic models, Q matrix design

INTRODUCTION

The purpose of a diagnostic assessment is to detect the presence or absence of multiple fine-grained
skills based on the observed response data to a set of test questions. Motivated by the No Child Left
Behind Act of 2001 (Law, 2002), most developments and applications of diagnostic assessments
have occurred in educational contexts, in which the assessments aim to provide students with
information regarding whether or not they have mastered each skill in a group of specific skills,
which are often generically referred to as attributes. Attributes may function independently
(Tatsuoka and Boodoo, 2000), or they can be hierarchically related, meaning the mastery of a
certain attribute is a prerequisite to the mastery of another one, therefore dependent (Vosniadou
and Brewer, 1992; Kuhn, 2001). The Q matrix, which specifies the attributes measured by each
test question, is an important element in a diagnostic assessment, because it is the foundation for
a group of statistical models with different assumptions regarding how attributes influence test
performance. These models are typically referred to as cognitive diagnostic models (CDMs) or
diagnostic classificationmodels (DCM). Suchmodels include the rule spacemodel (RSM; Tatsuoka,
1985), attribute hierarchy methods (AHM; Leighton et al., 2004) and Deterministic Input, Noisy
“And” gate (DINA; Junker and Sijtsma, 2001) etc.
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The test Qmatrix is a linkage between test items andmeasured
attributes, the element qij = 1 or 0 indicates that the jth attribute
is or not is measured by the ith item respectively. The design
of a Q matrix plays an important role in a cognitive diagnostic
assessment, because it can directly influence the classification
accuracy of a CDM. When attributes are independent, the
Q matrix design has been investigated from both theoretical
and empirical aspects in the literature. One common conclusion
from previous studies is that it is important for a Q matrix
to contain items that only measure a single attribute, implying
that it contains an identity matrix as a sub-matrix. Such a
Q matrix was first defined as a complete Q matrix by Chiu
et al. (2009), and was later shown to be an important condition
for guaranteeing model identifiability for a family of restricted
latent class models (Chen et al., 2015; Xu and Zhang, 2016; Xu,
2017) and a condition guaranteeing a consistent nonparametric
estimator (Wang and Douglas, 2015). The completeness of
Q matrix was also empirically shown to increase classification
accuracy according to several simulation studies (e.g., DeCarlo,
2011; Madison and Bradshaw, 2015).

When attributes are hierarchically related to each other, there
are two different opinions regarding the Q matrix design. On
one hand, several studies have assumed that the item-attribute
structure does not necessarily follow the specified attribute
hierarchy, and have utilized the unstructured/independent
Qmatrix design (De La Torre et al., 2010; Templin and Bradshaw,
2014; Liu et al., 2016). Such an assumption is convenient when
the test Q matrix is developed following test administration
or when the item can be assumed to measure the higher
level attribute without measuring the lower level attribute. In
such case, the complete test Q matrix can be obtained by
including items that measure each attribute individually, and the
importance of such a design is addressed above.

On the other hand, another group of researchers believe
the items represented by the test Q matrix should reflect the
specified attribute hierarchy, because they represent the attribute
blueprint or cognitive specifications for test construction (e.g.,
Leighton et al., 2004; Tatsuoka, 2009). The Q matrix design
under this assumption implies that if an item measures one
attribute then it should also measure all of its prerequisites.
In other words, there should be less than or equal to (2K

−1) types (K is the number of attributes) of item attribute
profiles, where all q-vectors not matching the attribute hierarchy
are deleted from the Q-matrix (Tatsuoka, 1990, 2009; Leighton
et al., 2004). For example, if attribute A1 is the prerequisite
of attribute A2, then the item q-vector (01) should be deleted
from the Q-matrix. Hereafter, such a Q matrix is referred to
as a restricted Q matrix which does not necessarily contain
R matrix. Many real examples of restricted Q matrices can in
diagnosis assessments from fraction subtraction (Tatsuoka, 1990;
De La Torre, 2011; de la Torre et al., 2016;), mathematicals
learning (Tatsuoka, 1990; Leighton and Gierl, 2007), critical
reading (Wang and Gierl, 2011), syllogistic reasoning (Leighton
et al., 2004) etc. If a diagnostic assessment is developed based
on a restricted Q matrix, then a natural question is how to
ensure its identity. This was the main motivation for our
study.

This paper investigates the completeness of restricted
Q matrix when the attribute hierarchy is specified. In restricted
Q matrix design, including an identity matrix is not feasible
because the items measuring the higher level attributes will
also measure those in the lower level when the attributes are
dependent. This means that the condition of completeness in
unstructured Q matrix design cannot be satisfied, because the
Q matrix cannot contain an identity matrix. Therefore, it is
important to investigate the completeness condition for restricted
Q matrix design to guarantee accurate classification results.

In this paper, we define a complete restricted Q matrix
design based on R matrix and discuss its corresponding
statistical properties. We demonstrate that the completeness
of the restricted Q matrix is a key condition to guarantee
classification accuracy when the analysis is combined with a
family of conjunctive CDMs. Simulation studies also reveal the
importance of R matrix in classification accuracy. The proposed
design is easy to implement and can serve as the blueprint for
a cognitive diagnostic assessment prior to item writing. The
remainder of this paper is organized as follows. Section 2 outlines
useful elements in a cognitive diagnostic assessment. Section 3
introduces several important incidence matrices and discusses
their corresponding statistical properties. This is followed by
the definition of a complete restricted Q matrix and our
main theorems regarding its statistical properties in Section
The complete restricted Q matrix design. The procedures for
constructing a complete Q matrix are introduced in Section The
restricted Q matrix design. The importance of such a complete
Q matrix design for the classification accuracy of a family of
conjunctive models is illustrated through several simulation
studies in Section Numerical Examples. Experimental result are
limited to the simulation study.

ATTRIBUTE HIERARCHIES AND
CONJUNCTIVE CDMS

Attribute Hierarchies
The terminology of attributes was first proposed by Tatsuoka
(1990) as “production rules, procedural operations, item types, or
more generally any cognitive tasks.” In educational context, this
term generally refers to any knowledge or cognitive processing
skills required to solve test problems (e.g., Leighton et al.,
2004; Tatsuoka, 2009).Attributes can be identified and studied
using methods from cognitive psychology, such as item reviews
and protocol analysis (Leighton et al., 2004). In a diagnostic
assessment, the attribute profile for each subject is denoted
by a vector of binary latent variables representing mastery of
a finite set of attributes. Suppose there are N examinees and
K attributes, we define the ith examinee’s attribute profile as
α
i = (αi

1,α
i
2, · · · ,α

i
K)

′, where αi
k

∈ {0, 1} to indicate the
absence or presence of the kth attribute for the ith examinee. The
attribute hierarchies refer to situations in which the mastery of
a certain attribute is a prerequisite to the mastery of another
attribute. Figure 1 presents four types of attribute structures. The
linear attribute hierarchy (Figure 1A) requires all attributes to
be ordered sequentially, and implies that if attribute 1 is not
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FIGURE 1 | Four types of Attribute Structures. (A) Linear. (B) Convergent. (C) Divergent. (D) Independent.

present, then all following attributes will not be present. The
convergent structure (Figure 1B), represents a hierarchy with a
convergence branchwhere two different pathsmaybe traced from
attribute 1 to attribute 3 and 4. Note that in this structure, one
attribute can be a prerequisite of multiple different attributes and
an attribute can have many different prerequisites. The divergent
attribute hierarchy (Figure 1C), refers to different distinct tracks
originating from the same single attribute. The independent
structure (Figure 1D) can be viewed as a specific case of attribute
hierarchy. Note that independence in this sense is not the same as
statistical independence. Although no attribute is a prerequisite
for another, the indicators of attribute mastery may be correlated.

Conjunctive Cognitive Diagnostic Models
A rich development of CDMs has occurred over the past
decade. Traditional categories for CDMs are based on
different assumptions regarding how attributes influence
test performance. Most recently, several general models based on
different link functions (e.g., Davier, 2008; Henson et al., 2009;
De La Torre, 2011) have been developed to includemany reduced
CDMs. In this study, we focus on the restricted Q matrix design
and combine with a conjunctive CDM to perform classification.
Conjunctive CDMs assume that all attributes required by an
item must be mastered to have high chance to provide the
correct answer, which is a reasonable model for classification
under certain attribute hierarchies. The combination of Q matrix
and CDMs can be found in the application of a math test. For
example, researchers have suggested that mathematical concepts
are not independent segments, and there are learning sequences
within the curriculum that fit the schema-constructing process of
learners, which implies certain hierarchical attribute structures
(Clements and Sarama, 2004). Usually, in math test, such a set of
hierarchical skills are all required to perform well on given item
(e.g., Tatsuoka, 1990), and an incorrect answer is highly likely to

be provided even if a student is missing only one of the required
attributes.

The rule space model (RSM; Tatsuoka, 1985) and attribute
hierarchy methods (AHM; Leighton et al., 2004), as well as a
family of restricted latent class models, including Deterministic
Input, Noisy “And” gate model (DINA; Junker and Sijtsma,
2001), Noisy Input, Deterministic “And” gate model (NIDA;
Maris, 1999), and Reparameterized Unified Model (Reduced
RUM; Hartz and Roussos, 2008) have conjunctive assumptions.
All these conjunctive models rely on the ideal response pattern,
which indicates whether or not a subject with a specific attribute
profile has mastered all the required attributes for each item, to
determine the specific model structure. If we define the column
as the item and the row as the attribute in the Q matrix, the
ideal response pattern resulting from an attribute pattern α =

(α1,α2, · · · ,αK)
′ to a K × J Q matrix with elements qkj can be

defined as

η (Q,α) = α ◦ Q =
(

η1 (Q,α) , η2 (Q,α) , . . . , ηJ (Q,α)
)′
,

where ηj (Q,α) =
∏K

k=1 α
qkj
k
.

The RSM and AHM perform classification based on the
distance between their observed response pattern and the ideal
response pattern. The RSM model first maps the observed
and ideal response patterns into a two-dimensional space, then
considers the points corresponding to the ideal response patterns
as the kernels for each class. The remaining points corresponding
to the observed response patterns are clustered into classes. The
AHM model first treats each observed response pattern as a
deviation from the ideal response patterns, then calculates the
probabilities of deviations between the observed response pattern
and each of the ideal response patterns. Finally, it classifies the
examinee with the attribute profile that resulted in the largest
deviation probability. Conjunctive restricted latent class models,
such as the DINA, NIDA and reduced RUM models, define
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the probability of a correct response under the conjunctive
assumption, but allow for slips and guesses in a manner that
distinguishes the models from one another. For example, the
DINA model is the simplest conjunctive model, where the item
response function is entirely determined by ηj (Q,α). Therefore,
there are only two types of correct response probabilities for each
item under the DINA model in the item response function:

P
(

Xij = 1 |α
)

=

{

1− sj, if ηj (Q,α) = 1,

gj, if ηj (Q,α) = 0.

In contrast to the DINA model, the slipping and guessing
parameters for the NIDA model are defined based on attribute
levels. DefineHj =

{

k|qkj = 1
}

. Then, for the NIDA model,

P
(

Xij = 1
∣

∣ α
)

=

{
∏

k∈Hj
(1− sk), if ηj (Q,α) = 1

∏

k∈Hj
(1− sk)

αkg
1−αk
k

, if ηj (Q,α) = 0.

The reduced RUM model can be generalized from the NIDA
model with an item response function defined as

P
(

Yij = 1 |α
)

=

{

πj, if ηj (Q,α) = 1

πj
∏

k∈Hj

(

r∗
jk

)1−αk
if ηj (Q,α) = 0.

PREPARATIONS FOR Q MATRIX DESIGN

In this section, five types of matrices are introduced to describe
three types of relationships: item vs. attribute, attribute vs.
attribute, and examinee vs. attribute. The statistical properties
associated with these matrices are discussed to provide a
foundation for the proposed Q matrix in the next section. For
ease of presentation, we assume that there are K attributes
associated with J items and define columns as items and rows as
attributes for the incidence matrix describing the relationships
between items and attributes.

The Incidence Q Matrix and Test Q Matrix
The incidence Q matrix is defined as a K ×

(

2K − 1
)

matrix that
contains items that probe all combinations of attributes when
they are independent (Leighton et al., 2004). For example, when
K = 4, the incidence Q matrix documents a total of 15(= 24− 1)
possible item types, excluding the type with all elements equal
to zero. The test Q matrix is a K × J matrix, indicating which
item measures which attribute in the designed test. Here, J is the
number of test questions and it can be less than, equal to, or
greater than 2K − 1.

The Reachability Matrix
The reachability matrix (R matrix; Tatsuoka, 1986) is a K × K
matrix that represents the direct and indirect relationships
between attributes. The jth element of the ith row in the matrix
represents whether attribute i is a direct or indirect prerequisite
for attribute j. Therefore, the ith row of the R matrix specifies
all the attributes, including the ith attribute, for which the
ith attribute is a direct or indirect prerequisite. Based on the
study by Tatsuoka (1986, 2009), the R matrix can be calculated

FIGURE 2 | A divergent attribute hierarchy.

from (A+ I)n, where n is the integer required for R to reach
invariance, A is the adjacency matrix, which is a K × K binary
matrix that specifies the direct relationships between attributes,
and I is an identity matrix. The R matrix for the divergent
attribute hierarchy is presented in Figure 2.

For this R matrix, row one indicates that attribute 1 is a
prerequisite to all attributes and row two indicates that attribute 2
is a prerequisite for attribute 2 and 4. The rest of thematrix can be
interpreted in the same manner. Let rij denote the (i, j) elements
in the R matrix, where the jth column of the R matrix is denoted

rj =
(

r1j, · · · , rKj
)′
. It is clear that

rkk = 1

for k = 1, 2, · · · ,K. To simplify our notation, we always label the
attributes from the lowest level to the highest level utilizing an
ascending sequence ranging from 1 to K. Therefore, the R matrix
is an upper-triangular matrix in our scheme.

Reduced Q Matrix
The Reduced Q matrix (Leighton et al., 2004), denoted Qr , is
obtained by removing the items (columns) that do not satisfy the
specified hierarchical structure from the incidence Q matrix. In
other words, the Qr matrix contains all possible item types under
the specified hierarchical structure. The Qr matrix for Figure 2
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can be written as follows:

Qr =









111111
010111
001011
000101









Note that there were 24 − 1 = 15 columns in the incidence
Q matrix when the attributes were independent. By removing
the seven columns that represented the seven item types not
satisfying the attribute hierarchy in Figure 2, we can derive the
above Qr matrix.

The Permissible Attribute Profile Matrix
The previously presented matrices defined two types of
relationships: relationships between attributes and the
relationships between items and attributes. The next type
of matrix defines the relationships between examinees and
attributes. We first define a permissible attribute pattern as an
attribute pattern that satisfies the specified attribute hierarchy.
The permissible attribute profile matrix M is a matrix that is
formed with all permissible attribute patterns as columns. The M
matrix can be obtained by adding a column vector of zeros to the
Qrmatrix. Specifically,M = (0K ,Q

r), where 0K = (0, 0, · · · , 0)′.
The M matrix defined based on Figure 2 is

M =









0111111
0010111
0001011
0000101









.

Note that although the M matrix can be constructed from the
Qr matrix, these two matrices represent different explanations.
Each column of the M matrix represents a permissible attribute
pattern, whereas each column of theQr matrix represents an item
that satisfies the specified attribute hierarchy (correspondingly, a
permissible item type). M defines a permissible attribute profile
space. We utilize the notation α ∈ M to indicate that α belongs
to one of the column vectors of M.

Propositions
In this subsection, several propositions that serve as foundations
for the main theorems in the next section are introduced.

Proposition 1

Each column of the R matrix represents an item that satisfies the
specified hierarchical structure.

Proposition 1 is a restatement of Lemma 2 from the paper
by Yang et al. (2008). Its proof is presented in the Appendix
(Supplementary Material). This proposition implies that the
R matrix can still be reviewed as an incidence matrix that
denotes the relationships between items and attributes, although
it was originally defined as the relationships between attributes.
Leighton et al. (2004) stated that “the R matrix is used to create
a subset of items that is conditioned on the structure of the
attribute hierarchy.”

The next proposition reveals the relationships between the R
matrix and Qr matrix.

Proposition 2

The R matrix is a sub-matrix of the Qr matrix. That is to say, the
R matrix corresponding to a specified attribute hierarchy can be
obtained by removing certain columns from the Qr matrix.

Proof. Proposition 2 can be easily proved by Proposition 1
and the definition of the Qr matrix from Section The incidence
Q matrix and test Q matrix.

The next proposition depends on the definition of Boolean
operations (Davey and Priestley, 1990; Tatsuoka, 1991), where the
multiplications and additions are defined as follows:

1× 1 = 1, 1× 0 = 0× 1 = 0, 0× 0 = 0,
1+ 1 = 1, 1+ 0 = 0+ 1 = 1, 0+ 0 = 0.

We further define the addition and multiplication of two vectors
by performing element-wise addition and multiplication of the
corresponding elements in the vectors. For example,

(1, 0, 0)′ × (0, 0, 1)′ = (1× 0, 0× 0, 0× 1)′ = (0, 0, 0)′

(1, 0, 0)′ + (0, 0, 1)′ = (1+ 0, 0+ 0, 0+ 1)′ = (1, 0, 1)′.

Hereafter, the additions and multiplications for any vectors
in different incidence matrices (R, Qr , and M) follow the above
definitions and rules.

Proposition 3

Let S represent a hierarchical structure for K attributes, where
R = (r1, · · · , rK) is the corresponding reachability matrix and ri,
i = 1, 2, · · · ,K represents the ith column of the Rmatrix. Suppose
that qr =

(

b1, b2, · · · , bK
)′
with bi ∈ {0, 1} is a column of the Qr

matrix. Then, qr = b1 × r1 + b2 × r2 + · · · + bkrk =
K
∑

k=1

bkrk.

Proposition 3 is a restatement of Theorem 1 from the paper
by Yang et al. (2008). Its proof is presented in the Appendix
(Supplementary Material). Let qr = (1, 0, 1, 0)′ be the third
column of Qr for the attribute hierarchy specified in Figure 2.
Then,

qr = (1, 0, 1, 0)′ = 1× (1, 0, 0, 0)′ + 0× (1, 1, 0, 0)′

+1× (1, 0, 1, 0)′ + 0× (1, 1, 0, 1)′

= b1 × r1 + b2 × r2 + b3 × r3 + b4 × r4

The above proposition and example indicate that any column of
Qr , denoted qr, can be written as a positive linear combination
of one or more (≥1) columns from the corresponding R matrix,
{ri}

l
i=1 (note that we reorder these columns from 1 to l, not

necessarily corresponding to their positions in the R matrix.
Specifically, qr+ri=qr, i = 1, 2, · · · , l, meaning any attributes
measured by ri are a subset of the attributes measured by qr,
which can be written as

{m|rmi = 1} ⊂
{

m|qrm = 1
}

.

THE COMPLETE RESTRICTED Q MATRIX
DESIGN

From our review in Section Attribute Hierarchies and
Conjunctive CDMs, we determined that ideal response patterns
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play an important role in conjunctive CDM frameworks. It
is important for the designed Q matrix to identify different
ideal response patterns. Any two different attribute patterns
α
1 6= α

2 will result in different ideal response patterns
η

(

Q,α1
)

6= η
(

Q,α2
)

. To achieve this goal, we define a complete
Q matrix and theoretically demonstrate that this is a necessary
and sufficient condition to guarantee the identifiability of an
ideal response pattern. Completeness is discussed for the case
of a restricted Q matrix design and we formally introduce the
definition of a restricted Q matrix design below.

Definition 1. A restricted Q matrix is defined such that any
item in it satisfies the specified attribute hierarchy. In other
words, each column of the Q matrix is one of the columns of the
Qr matrix.

For the divergent attribute hierarchy specified in Figure 2,
according Definition 1, Q1 is a restricted Q matrix and Q2 is an
unrestricted Q matrix because items two through four violate the
specified attribute structure.

Q1 =









1 1 1 1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 1 0









Q2 =









1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0









Completeness
Definition 2. A restricted Q matrix, denoted Qc, is said to be
complete if it satisfies the following condition:

Condition (I). The R matrix is a sub-matrix of the Q matrix,
where the restricted Q matrix takes the following form:

Qc = (R Qrest) ,

where Qrest is formed from the columns Qr .
Remark 1. Definition 2 is equivalent to Definition 1 in the

paper by Xu and Zhang (2016) when attributes are independent.
Continuing the example from Figure 2, under the restricted

Q matrix design, the Q1 matrix defined above is complete,
where the Q3 matrix defined below is incomplete because the
fourth column of the corresponding R matrix (1, 1, 0, 1)′ is not
contained in Q3. If Q3 is utilized as the test Q matrix, then the
examinee with the attribute profile α

1 = (1, 1, 0, 1)′ cannot be
distinguished from the examinee with the attribute profile α

2 =

(1, 1, 0, 0)′ because the two have the same ideal response pattern

(1, 1, 0, 1, 0).

Q3 =









1 1 1 1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 0 0









Properties of R Matrix
In this section, we provide various properties to prove the
completeness of Q matrix defined above.

Lemma 1. Suppose that rj
(

j = 1, · · · ,K
)

is the jth column
vector of the R matrix. Then, it holds thatrj ◦ R = rj.

Lemma 1 implies that the ideal response pattern of an
individual with a knowledge state rj in R matrix is still rj. This

result can be easily obtained from the definition of α ◦ Q.
According to the definition of an Rmatrix, the following Lemmas
2 and 3 can also be easily obtained.

Lemma 2. Suppose that rj is the jth column vector of the R
matrix and that it contains at least two non-zero entries. Then, it
satisfies

(1) rjj = 1, and there exists some i satisfying rij = 1, where
attribute i is a prerequisite of attribute j.

(2) All the prerequisites of the attribute i are the prerequisites of
attribute j.

(3) All the entries in the rj − ri vector are nonnegative. In this
paper, ri ≤ rj is utilized to represent this type of relationship.

Lemma 3. Suppose that attribute i is the only direct prerequisite

of attribute j. Then, ri ≤ rj and
(

rj − ri
)′ (

rj − ri
)

= 1, which
indicates that ri and rj only differ in their jth entry and rij =

0, rjj = 1.
Denote Qr =

(

R,Qr
rest

)

and let R∗qj denote an altered matrix

where the jth column of the R matrix is replaced by some q
column vector from the Qr

rest
matrix.

Lemma 3. Suppose that attribute i is the only direct
prerequisite of attribute j. Then, ri and rj satisfy ri ◦R

∗
qj = rj ◦R

∗
qj.

According to Lemma 1, it holds thatrj ◦ R = rj,ri ◦ R = ri.
Because R and R∗qj only differ in the jth column and ri and rj
only differ in the jth entry according to Lemma 2, ri ◦ R∗qj and

rj ◦ R∗qj could at most differ in the jth entry, which is determined

by ri ◦ q and rj ◦ q, respectively. According to the definition of
α ◦ Q, ri ◦ q = rj ◦ q = 0 is satisfied, which proves Lemma 3.

Lemma 4. Suppose that there at least two direct prerequisites
of attribute j, denoted i1, i2, · · · , ik

(

k ≥ 2
)

. Then, a vector p can

be obtained by p =
K
∑

l=1

ril , which satisfies p ◦ R∗qj = rj ◦ R
∗
qj.

According Lemma 2, for any l, it holds that ril ≤ rj.
Therefore, p ≤ rj. The relationships between attribute j and all
its prerequisites are reflected in ril for all l, meaning they are

also reflected in p and
(

rj − p
)′ (

rj − p
)

= 1. This indicates that
p only differs fromrj in the jth entry. According to Lemma 3, it
can concluded that p ◦ R∗qj = rj ◦ R∗qj. Together, Lemmas 3 and

4 imply that for any rj, one could find another knowledge state
α such that their ideal response patterns to R∗qj are the same.

Additionally, α ≤ rj, and α and rj only differ in their jth entry
(i.e., aj = 0, rjj = 1).

Main Theorems
In this section, we provide theorems to prove that the complete
restricted Q matrix defined above can identify any pair of
different attribute profiles based on an ideal response pattern.

Theorem 1

For any two different attributes profiles α
1,α2 ∈ M, η

(

R,α1
)

6=

η
(

R,α2
)

, where η (R,α) = α ◦ R.
Theorem 1 implies that the R matrix can be viewed as a

complete Q matrix itself. As discussed in Proposition 1, we
indicate that any column of the R matrix can be treated as a
reasonable item type under the specified attribute hierarchy. This
theorem also reveals the importance of including the R matrix

Frontiers in Psychology | www.frontiersin.org 6 August 2018 | Volume 9 | Article 1413

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Cai et al. Complete Q Matrix With Attribute Hierarchies

in a restricted Q matrix because it is a sufficient condition to
identify two distinct ideal response patterns. The next theorem
demonstrates that including the R matrix in the restricted
Q matrix design is not only a sufficient condition, but also a
necessary condition for the identifiability of an ideal response
pattern.

Theorem 2

Denote the restricted Qmatrix design asQc. For any two different
permissible attribute profiles, α

1 6= α
2 → η

(

Qc,α
1
)

6=

η
(

Qc,α
2
)

if and only ifQc is complete. That is to say, the Rmatrix
is a sub-matrix of Qc.

When limiting to restricted Q matrix design, proposition
9 in the paper by Heller et al. (2015) is equivalent to the
sufficiency of theorem 2. However it does not proof the necessity
of identifiability, theorem 2 proved it. When attributes are
independent, the R matrix becomes a K × K identity matrix
and Theorem 2 follows from Lemma 1 in the paper by Chiu
et al. (2009), which indicates that a complete restricted Q matrix
must include an identity matrix. The completeness of the
Q matrix is a very important condition for model identifiability,
particularly for the family of conjunctive CDMs, where ideal
response patterns play an important role in the model structure.
The results regarding model identifiability for the DINA model
(Xu and Zhang, 2016) can be easily generalized for attribute
hierarchies by replacing the condition (C1) with the proposed
Condition (I). In fact, when item parameters are known for the
DINA model, the completeness of the Q matrix is equivalent to
model identifiability.

THE RESTRICTED Q MATRIX DESIGN

Previous sections illustrated the importance of the R matrix
in restricted Q matrix design. In general, a complete restricted
Q matrix can be constructed by first creating an R matrix based
on specified attribute hierarchy and then selecting a number of
columns from the Qr matrix as additional item types for the
Q matrix. However, it is difficult to derive the corresponding
Qr matrix by removing columns that do not satisfy the specified
attribute hierarchy from the incidence Q matrix when K is large.
In this section, we introduce the augment algorithm proposed
by Ding et al. (2008) and Yang et al. (2008), which can derive a
Qr matrix from the corresponding R matrix. The convergence

Algorithm 1 Augment Algorithm

Input: The Reachability Matrix R = (r1, · · · , rK)

Output: The reduced Q matrix Qr

1: m=K
2: for j= 1 to K do

3: for i= j+ 1 to m do

4: if (rj+ ri does not equal any pair)
5: then rm= rj+ ri; m=m+ 1
6: end for
7: end for
8: return Qr

of this algorithm was proved by Proposition 3 in this paper and
Theorem 3 in the paper by Yang et al. (2008).

The Augment Algorithm for Deriving a Qr

Matrix
The augment algorithm for deriving a Qr matrix from the
corresponding R matrix is presented below.

Here, we provide an example to demonstrate how to construct
a Qr matrix based on the attribute hierarchy in Figure 2. This
process is illustrated in Figure 3. We first obtain the R matrix
for this divergent structure, which forms the first four columns
of the Qr matrix. Then, Boolean addition is applied between the
first column and each of the remaining three columns. No new
item types are produced during this procedure. Then, Boolean
addition is applied between the second column and each of the
remaining two columns. A new item type (1, 1, 1, 0)′ results from

(1, 1, 0, 0)′+(1, 0, 1, 0)′, so we add this item type as a fifth column
in the Qr matrix. Next, we apply Boolean addition between the
third column and the fourth and fifth columns. This results in
another new item type (1, 1, 1, 1)′, which is added as a sixth
column in the Qr matrix. Finally, we determine that no new item
types can be created by applying Boolean addition between the
fourth column and the fifth and sixth columns. Therefore, we
terminate the searching algorithm.

Procedures to Construct a Complete Test
Q Matrix
If a conjunctive model is utilized to analyze data, we provide
some suggestions regarding how to perform complete restricted
Q matrix design prior to item creation. Suppose that there are

FIGURE 3 | Example of constructing the Qr matrix based on the Augment Algorithm.
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K attributes associated with the blueprint for a test with J (≥K)
items.

1. Create an R matrix from the corresponding attribute
hierarchy.

2. Generate a Qr matrix by utilizing the augment algorithm.
3. Include the R matrix as the first K columns of the test

Q matrix, then randomly select the remaining J–K (if > 0)
columns from the columns of the Qr matrix (this step can be
modified to select columns from the Qr matrix that satisfy the
blueprint requirement).

Note that another important feature for Q matrix design is the
number of items measuring the same attribute. This feature
can be important in terms of model identifiability (Chen et al.,
2015; Xu and Zhang, 2016; Xu, 2017). In future studies, we
will investigate how to incorporate this feature into restricted
Q matrix design.

NUMERICAL EXAMPLES

Several numerical examples utilizing five conjunctive CDMs,
namely the rule space model (RSM), attribute hierarchical
model (AHM), and three conjunctive models (the DINA, NIDA,
and reduced RUM model), are presented to demonstrate the
important role of the Rmatrix in complete Qmatrix construction
and its impact on classification accuracy. These CDMs all depend
on ideal response patterns for classification. In each of the
following examples, four types of attribute structures, namely
linear, convergent, divergent, and independent, involving the
K = 6 attributes presented in Figure 1 are considered. The R
matrices corresponding to the four structures are provided in the
Appendix (Supplementary Material).

Simulation Conditions
Three types of Q matrix design are considered for each of the
models. In the first type, the test Q matrix is generated by first
including all item types in the corresponding R matrix, except
one that is assumed to be missing, and then randomly selecting
item types from the remaining columns of the corresponding
Qr matrix. The second type of test Q matrix design is created
by randomly choosing columns fromQr

rest , which is an extreme
condition where we assume that the test Q matrix does not
contain the entire Rmatrix. Note that only two types of structure,
namely independent and divergent, are considered in this case
because there will be no available item types for convergent or
linear structures after removing the entire R matrix. The type
of design, which is the proposed Q matrix design, is created by
first including the entire R matrix and then randomly selecting
columns from the corresponding Qr matrix to fill in the rest of
items. The purpose of this test is to compare the classification
accuracies of the three types of Q matrix design.

In each of the experimental conditions, to obtain more
stable experimental results and decrease the impact of random
errors, a sample size of N = 1,000 examinees is simulated.
Because an attribute profile is a discrete variable, the examinee
profiles were simulated based on a uniform distribution formed
from all permissible attribute patterns in the different attribute

hierarchies. The test length was fixed to 30 items across all
conditions. For RSM and AHM, student response vectors were
generated based on their ideal response patterns in such amanner
that the probability for 1 → 0 and 0 → 1 in each of the ideal
response patterns was 0.05. The minimumMahalanobis distance
method and Bayes decision rule proposed by Tatsuoka (2009)
were utilized to estimate the attribute profiles for the RSM. For
the AHM, the A method proposed by Leighton et al. (2004),
was utilized to perform classification. For the three restricted
latent class models, we first simulated the item parameters and
then generated student responses based on the corresponding
item response functions. Specifically, for the DINA model, the
slipping parameters sj and guessing parameters gj were drawn
from a uniform distribution ranging from 0.1 to 0.4, whichmeans
both the slipping and guessing parameters fall within the interval
between 0.1 and 0.4, which represents average item quality. For
the NIDA model, the guessing and slipping parameters for each
attribute were simulated. The test Q matrices and examinee
attribute profiles were kept constant across the 50 simulations
under each experiment condition. The classification accuracies
were calculated in terms of pattern-wise agreement rate (PAR)
and attribute-wise agreement rate (AAR) to reflect the agreement
between estimated attribute profiles and known true attribute
profiles based on the average results of the 50 simulations. These
two indexes are defined as

PAR =
1

N

∑N

i=1
I
[

α̂i = α
i
]

AAR =
1

NK

∑N

i=1

∑K

k=1
I
[

α̂i
k
= αi

k

]

.

RESULTS

The classification results for the five models when one column
of the R matrix is missing from the test Q matrix are listed
in Tables 1–5. One can observe consistent results for the five
models. When only one column of the R matrix is missing
from the test Q matrix, there is a relatively large decrease in
the AAR of certain attributes, specifically those that are directly
associated with the missing item type. For example, in the linear
structure, if the item type (1, 1, 0, 0, 0, 0)′, which measures
both attribute one and attribute two, is missing, then the two
attribute patterns (1, 1, 0, 0, 0, 0)′ and (1, 0, 0, 0, 0, 0)′ will
result in the same ideal response pattern. This leads to a decrease
in the AAR for attribute two in this case because attribute two
cannot be separated from attribute one during the classification
procedure. Another observation is that the overall recovery of
attribute patterns, which is represented by PAR, decreases across
all conditions when one of the item types is missing from the test
Q matrix. To better observe the trends in classification accuracy,
we documented the average decreases in AAR and PAR across
the six attributes and six missing item types when compared
to the classification results from the test Q matrix containing
all the item types in the R matrix in Figures 4, 5. The results
reveal that the influence of a missing item on classification results
are varies under different hierarchical structures. The linear
structure has the largest average decrease in AAR across all five
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TABLE 1 | The classification result for RSM when one column of R matrix missing in the test Q matrix.

Structure The missing

item type

AAR PAR

A1 A2 A3 A4 A5 A6

Linear None 0.911 0.903 0.909 0.905 0.9 0.874 0.656

[100000]’ 0.853 0.81 0.838 0.858 0.855 0.84 0.588

[110000]’ 0.901 0.782 0.9 0.931 0.914 0.885 0.577

[111000]’ 0.912 0.917 0.786 0.898 0.922 0.885 0.591

[111100]’ 0.917 0.902 0.906 0.785 0.896 0.882 0.615

[111110]’ 0.906 0.907 0.9 0.91 0.74 0.876 0.575

[111111]’ 0.903 0.904 0.897 0.871 0.826 0.858 0.604

Convergent None 0.928 0.918 0.869 0.86 0.909 0.896 0.639

[100000]’ 0.871 0.833 0.839 0.814 0.877 0.87 0.556

[110000]’ 0.911 0.809 0.864 0.864 0.926 0.901 0.568

[111000]’ 0.919 0.926 0.799 0.904 0.922 0.898 0.577

[110100]’ 0.916 0.913 0.892 0.789 0.915 0.902 0.565

[111110]’ 0.922 0.927 0.871 0.875 0.836 0.892 0.569

[111111]’ 0.909 0.903 0.844 0.842 0.859 0.876 0.576

Divergent None 0.963 0.841 0.804 0.895 0.796 0.768 0.526

[100000]’ 0.929 0.862 0.804 0.895 0.812 0.781 0.521

[110000]’ 0.951 0.745 0.784 0.946 0.822 0.811 0.504

[111000]’ 0.956 0.816 0.763 0.918 0.805 0.819 0.504

[100100]’ 0.941 0.865 0.799 0.782 0.766 0.767 0.485

[100110]’ 0.961 0.858 0.795 0.89 0.74 0.822 0.491

[100101]’ 0.953 0.852 0.812 0.891 0.797 0.735 0.494

Independent None 0.748 0.722 0.738 0.722 0.713 0.738 0.351

[100000]’ 0.645 0.749 0.738 0.718 0.733 0.741 0.316

[010000]’ 0.746 0.655 0.733 0.744 0.722 0.736 0.324

[001000]’ 0.737 0.75 0.648 0.725 0.755 0.742 0.318

[000100]’ 0.738 0.733 0.738 0.655 0.759 0.738 0.328

[000010]’ 0.744 0.737 0.706 0.762 0.65 0.755 0.32

[000001]’ 0.737 0.742 0.73 0.767 0.725 0.659 0.325

models, followed by the independent, convergent, and divergent
structures. The trend is similar for PAR, with the exception of
the convergent structure producing a larger decrease in PAR
than the independent structure in most cases. Furthermore, the
influence of amissing item on classification accuracy varies across
the different models. The AHM showed the largest decrease in
AAR and PAR for each structure, followed by the DINA model.
The RSM and NIDA model provided similar performances. The
reduced RUM showed the smallest decrease in AAR and PAR
across all structures.

The classification results of the five models when the entire

R matrix is missing from the test Q matrix are listed in
Table 6. One can observe a more obvious decrease in AAR

and PAR in this extreme case. Specifically, when the entire
R matrix is missing from the test Q matrix, compared to

the results from the test Q matrix including the entire R
matrix, the average decreases in AAR were at least 14.12%

for DINA, 13.95% for AHM, 10% for RSM and NIDA, and
7.42% for reduced RUM. Regarding the attribute patterns, the

decrease in PAR varied from 16.2 to 44.8% across the five
models.

Additionally, to analyze the effects of the R matrix on
classification, we also performed statistical significance testing
based on PAR values to compute effect sizes. These results are
provided in the Supplementary Material to avoid extending this
article further.

DISCUSSION

The effectiveness of applying Q-matrix-based CDMs to
diagnostic assessments mainly depends on their statistical
properties. One of the properties is statistical identifiability,
which is the feasibility of recovering model parameters based
on observed data. Identifiability is a prerequisite for model
parameter estimation, which includes student class membership
estimation. One of the sufficient and necessary conditions to
guarantee identifiability when certain types of CDMs are utilized
is the completeness of the Q matrix (Xu and Zhang, 2016;
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TABLE 2 | The classification result for AHM when one column of R matrix missing in the test Q matrix.

Structure The missing

item type

AAR PAR

A1 A2 A3 A4 A5 A6

Linear None 0.991 0.985 0.987 0.981 0.988 0.989 0.925

[100000]’ 0.852 0.991 0.993 0.985 0.993 0.995 0.815

[110000]’ 0.99 0.847 0.992 0.989 0.991 0.993 0.816

[111000]’ 0.992 0.986 0.846 0.989 0.996 0.995 0.818

[111100]’ 0.99 0.992 0.99 0.849 0.993 0.993 0.818

[111110]’ 0.993 0.994 0.991 0.989 0.849 0.994 0.82

[111111]’ 0.988 0.989 0.988 0.991 0.992 0.856 0.811

Convergent None 0.989 0.982 0.98 0.979 0.988 0.985 0.911

[100000]’ 0.875 0.989 0.986 0.982 0.991 0.995 0.824

[110000]’ 0.992 0.867 0.987 0.983 0.991 0.992 0.828

[111000]’ 0.992 0.99 0.852 0.986 0.989 0.995 0.818

[110100]’ 0.992 0.987 0.986 0.847 0.99 0.995 0.814

[111110]’ 0.992 0.989 0.983 0.988 0.87 0.993 0.825

[111111]’ 0.99 0.99 0.981 0.983 0.993 0.877 0.819

Divergent None 0.992 0.983 0.981 0.987 0.975 0.97 0.899

[100000]’ 0.9 0.982 0.98 0.987 0.979 0.975 0.851

[110000]’ 0.991 0.883 0.976 0.992 0.984 0.981 0.833

[111000]’ 0.993 0.98 0.896 0.988 0.981 0.98 0.836

[100100]’ 0.991 0.988 0.981 0.895 0.975 0.975 0.833

[100110]’ 0.993 0.986 0.981 0.988 0.877 0.982 0.825

[100101]’ 0.991 0.985 0.983 0.986 0.979 0.886 0.833

Independent None 0.966 0.958 0.961 0.961 0.957 0.961 0.804

[100000]’ 0.831 0.962 0.966 0.96 0.964 0.968 0.724

[010000]’ 0.966 0.842 0.962 0.964 0.961 0.961 0.73

[001000]’ 0.959 0.965 0.815 0.96 0.965 0.96 0.707

[000100]’ 0.963 0.962 0.965 0.833 0.964 0.959 0.722

[000010]’ 0.963 0.96 0.955 0.968 0.828 0.964 0.715

[000001]’ 0.963 0.961 0.959 0.967 0.958 0.83 0.715

Xu, 2017). When attributes are independent, the concept of
completeness of a Q matrix was first proposed by Chiu et al.
(2009). Completeness means that a Q matrix can distinguish
two different attribute vectors based on an ideal response
pattern. The results of the above study indicate that the Q matrix
must include an identity matrix to guarantee the separation
of different ideal response patterns. This means that the
diagnostic test must include items that only measure a single
attribute to guarantee good classification results. However, in a
situation where attributes are hieratically related to each other,
where a certain attribute is a prerequisite for other attributes,
including items that only measure a single attribute may not be
feasible.

Identifiability is also discussed in the framework of knowledge
space theory (KST) (Heller et al., 2015, 2016, 2017). There
are two main differences between the above studies and our
study: (1) our study focuses on cognitive diagnosis theory,
whereas the above studies focused on KST; (2) our study is
based on restricted Q matrix design. In many application studies

(e.g., Tatsuoka, 1990, 2009; Leighton et al., 2004; Gierl, 2007,
2008; Wang and Gierl, 2011), Q matrix design was restricted.
To address this concern, under the framework of CDMs, this
study focused on identifiability based on unrestricted Q matrix
design, where the test Q matrix represents a special attribute
hierarchy structure (such as divergent, convergent, or linear
structures) and if an item measures one attribute, then it should
also measures all of its prerequisite attributes. Additionally, a
simpler operational procedure for constructing an identifiable
Q matrix was provided in a step-by-step manner to aid
practitioners.

Based on the studies by Ding et al. (2008, 2012, 2016), we
formally define a complete Q matrix design in a more general
framework when an attribute hierarchy exits. The proposed
complete Q matrix design can be easily constructed from an
R matrix, which reflects the direct and indirect relationships
between attributes. When attributes are independent, the
proposed design is equivalent to that presented by Chiu
et al. (2009). Such a Q matrix is an important condition for
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TABLE 3 | The classification result for DINA when one column of R matrix missing in the test Q matrix.

Structure The missing

item type

AAR PAR

A1 A2 A3 A4 A5 A6

Linear None 0.979 0.979 0.98 0.977 0.978 0.985 0.893

[100000]’ 0.853 0.98 0.985 0.988 0.986 0.99 0.797

[110000]’ 0.983 0.848 0.983 0.985 0.987 0.991 0.799

[111000]’ 0.986 0.981 0.852 0.977 0.989 0.985 0.798

[111100]’ 0.989 0.984 0.981 0.849 0.978 0.988 0.796

[111110]’ 0.987 0.99 0.984 0.981 0.851 0.988 0.801

[111111]’ 0.986 0.989 0.985 0.984 0.982 0.854 0.795

Convergent None 0.983 0.982 0.974 0.973 0.977 0.978 0.883

[100000]’ 0.873 0.976 0.983 0.975 0.985 0.984 0.797

[110000]’ 0.978 0.865 0.976 0.98 0.982 0.981 0.797

[111000]’ 0.983 0.976 0.846 0.977 0.984 0.986 0.783

[110100]’ 0.989 0.977 0.976 0.852 0.986 0.983 0.794

[111110]’ 0.988 0.982 0.983 0.975 0.868 0.98 0.8

[111111]’ 0.986 0.982 0.979 0.98 0.983 0.874 0.801

Divergent None 0.976 0.956 0.953 0.954 0.946 0.947 0.794

[100000]’ 0.908 0.959 0.959 0.961 0.952 0.948 0.774

[110000]’ 0.974 0.854 0.951 0.955 0.946 0.956 0.739

[111000]’ 0.979 0.948 0.874 0.959 0.955 0.946 0.74

[100100]’ 0.972 0.947 0.95 0.868 0.943 0.938 0.738

[100110]’ 0.977 0.955 0.963 0.954 0.858 0.954 0.742

[100101]’ 0.977 0.959 0.96 0.955 0.953 0.846 0.732

Independent None 0.885 0.87 0.88 0.889 0.873 0.869 0.532

[100000]’ 0.771 0.878 0.895 0.885 0.884 0.885 0.507

[010000]’ 0.881 0.744 0.873 0.872 0.883 0.871 0.478

[001000]’ 0.883 0.882 0.761 0.89 0.876 0.872 0.492

[000100]’ 0.881 0.89 0.876 0.755 0.871 0.88 0.491

[000010]’ 0.868 0.874 0.882 0.874 0.754 0.886 0.483

[000001]’ 0.88 0.872 0.883 0.895 0.884 0.765 0.501

FIGURE 4 | The Average Decrease of AAR when only one item type is missing.
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TABLE 4 | The classification result for NIDA when one column of R matrix missing in the test Q matrix.

Structure The missing

item type

AAR PAR

A1 A2 A3 A4 A5 A6

Linear None 0.989 0.986 0.981 0.975 0.967 0.958 0.865

[100000]’ 0.914 0.99 0.984 0.975 0.97 0.966 0.805

[110000]’ 0.992 0.907 0.984 0.984 0.973 0.968 0.814

[111000]’ 0.995 0.991 0.899 0.982 0.971 0.968 0.813

[111100]’ 0.994 0.988 0.974 0.893 0.969 0.966 0.8

[111110]’ 0.994 0.987 0.984 0.961 0.882 0.961 0.794

[111111]’ 0.996 0.99 0.989 0.978 0.957 0.859 0.788

Convergent None 0.991 0.984 0.967 0.97 0.967 0.96 0.851

[100000]’ 0.924 0.989 0.974 0.969 0.968 0.968 0.8

[110000]’ 0.992 0.935 0.974 0.976 0.974 0.968 0.828

[111000]’ 0.994 0.985 0.874 0.969 0.970 0.964 0.777

[110100]’ 0.993 0.984 0.967 0.877 0.968 0.964 0.777

[111110]’ 0.994 0.988 0.972 0.973 0.89 0.962 0.803

[111111]’ 0.993 0.99 0.975 0.972 0.96 0.875 0.786

Divergent None 0.991 0.959 0.946 0.97 0.939 0.941 0.78

[100000]’ 0.927 0.965 0.95 0.975 0.945 0.947 0.76

[110000]’ 0.989 0.899 0.957 0.97 0.935 0.935 0.735

[111000]’ 0.99 0.956 0.872 0.973 0.941 0.941 0.72

[100100]’ 0.989 0.965 0.949 0.923 0.95 0.941 0.761

[100110]’ 0.992 0.961 0.947 0.968 0.867 0.943 0.725

[100101]’ 0.991 0.964 0.952 0.968 0.939 0.871 0.733

Independent None 0.936 0.926 0.938 0.926 0.924 0.94 0.675

[100000]’ 0.819 0.927 0.918 0.913 0.936 0.927 0.585

[010000]’ 0.933 0.829 0.934 0.931 0.938 0.937 0.621

[001000]’ 0.925 0.937 0.824 0.927 0.922 0.933 0.599

[000100]’ 0.929 0.928 0.93 0.844 0.925 0.925 0.609

[000010]’ 0.919 0.932 0.933 0.922 0.829 0.933 0.601

[000001]’ 0.933 0.928 0.923 0.915 0.935 0.853 0.613

FIGURE 5 | The Average Decrease of PAR when only one item type is missing.
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TABLE 5 | The classification result for Reduced RUM when one column of R matrix missing in the test Q matrix.

Structure The missing

item type

AAR PAR

A1 A2 A3 A4 A5 A6

Linear None 0.996 0.993 0.991 0.994 0.992 0.99 0.957

[100000]’ 0.935 0.996 0.995 0.995 0.997 0.995 0.914

[110000]’ 0.994 0.931 0.995 0.996 0.995 0.994 0.905

[111000]’ 0.996 0.993 0.933 0.996 0.996 0.993 0.908

[111100]’ 0.996 0.994 0.993 0.935 0.995 0.995 0.909

[111110]’ 0.996 0.995 0.995 0.992 0.925 0.996 0.901

[111111]’ 0.997 0.995 0.996 0.995 0.991 0.859 0.836

Convergent None 0.993 0.993 0.99 0.991 0.993 0.992 0.952

[100000]’ 0.94 0.996 0.992 0.993 0.996 0.994 0.911

[110000]’ 0.992 0.954 0.994 0.991 0.995 0.992 0.92

[111000]’ 0.994 0.993 0.924 0.99 0.995 0.994 0.895

[110100]’ 0.994 0.993 0.99 0.925 0.995 0.992 0.896

[111110]’ 0.996 0.995 0.995 0.993 0.927 0.992 0.899

[111111]’ 0.993 0.996 0.993 0.995 0.991 0.875 0.845

Divergent None 0.991 0.982 0.983 0.985 0.977 0.974 0.902

[100000]’ 0.969 0.985 0.984 0.988 0.982 0.981 0.896

[110000]’ 0.991 0.943 0.985 0.987 0.979 0.981 0.879

[111000]’ 0.992 0.982 0.923 0.988 0.978 0.984 0.858

[100100]’ 0.991 0.984 0.982 0.957 0.978 0.983 0.888

[100110]’ 0.991 0.982 0.981 0.985 0.915 0.979 0.851

[100101]’ 0.992 0.985 0.986 0.983 0.982 0.916 0.859

Independent None 0.945 0.938 0.941 0.941 0.934 0.933 0.72

[100000]’ 0.877 0.94 0.944 0.941 0.936 0.935 0.683

[010000]’ 0.942 0.869 0.933 0.94 0.942 0.939 0.682

[001000]’ 0.941 0.938 0.874 0.941 0.938 0.944 0.687

[000100]’ 0.944 0.944 0.938 0.875 0.942 0.94 0.69

[000010]’ 0.944 0.941 0.945 0.93 0.873 0.93 0.682

[000001]’ 0.94 0.943 0.934 0.942 0.939 0.861 0.677

guaranteeing accurate classification results when combined with
an attribute profile estimation approach utilizing conjunctive
assumptions, such as the RSM, AHM, and a family of conjunctive
restricted latent class models. The complete restricted Q matrix
design is equivalent to the model identifiability condition for the
DINA model when item parameters are known, which follows
from the logic outlined by Xu and Zhang (2016).

Because completeness is only one of the important conditions
for the identifiability of a Q-matrix-based CDM, a very important
future research direction is to study additional conditions
related to Q matrix design and discuss additional model
identifiability conditions. Our current work only indicates that
including one R matrix in the design can guarantee the
identifiability of an ideal response pattern, which is one of the
model identifiability conditions. Additional conditions must be
investigated to guarantee the identifiability of attribute profiles
and item parameters.

Another limitation of this study is that we only focused
on conjunctive CDMs, which are naturally appropriate for

the hierarchical attribute assumption. The impact of an
ideal response pattern on classification accuracy is larger
for conjunctive models than for compensatory models. We
expect that completeness is not sufficient to guarantee good
classification results in a compensatory model. It would be
worth to investigating Q matrix design when utilizing general
models, such as the log-linear cognitive diagnostic model
(LCDM;Henson et al., 2009), the generalized deterministic input,
noisy, “and” gate (G-DINA; De La Torre, 2011) model, and
other general diagnostic models. Liu et al. (2016) conducted
a simulation study to investigate three different Q matrix
designs by utilizing the hierarchical log-liner model (Templin
and Bradshaw, 2014). However, their Q matrix design seems
to be a mixed structure, which contains both items that satisfy
the specified attribute hierarchy and items that do not satisfy
the specified hierarchy. In the future, it is worth investigating
mixed-type Q matrix design.

The third limitation of this study is that it mainly focused
one factor (i.e., attribute hierarchy) that affected identifiability.
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TABLE 6 | Classification rates for five conjunctive models when test Q matrix does not contain the entire R matrix.

Model Structure Test Q

Matrix

AAR PAR

A1 A2 A3 A4 A5 A6

RSM Independent None R 0.663 0.656 0.67 0.677 0.669 0.665 0.237

All R 0.787 0.794 0.752 0.741 0.763 0.751 0.399

Divergent None R 0.85 0.72 0.715 0.765 0.697 0.699 0.347

All R 0.975 0.826 0.815 0.946 0.819 0.828 0.582

AHM Independent None R 0.818 0.83 0.83 0.829 0.833 0.83 0.524

All R 0.995 0.995 0.995 0.996 0.995 0.996 0.972

Divergent None R 0.875 0.82 0.88 0.778 0.872 0.894 0.57

All R 0.997 0.99 0.993 0.996 0.99 0.99 0.957

DINA Independent None R 0.747 0.751 0.75 0.756 0.749 0.743 0.384

All R 0.955 0.959 0.957 0.958 0.959 0.95 0.766

Divergent None R 0.902 0.796 0.869 0.771 0.832 0.824 0.529

All R 0.994 0.966 0.97 0.978 0.966 0.967 0.856

NIDA Independent None R 0.854 0.844 0.84 0.852 0.857 0.841 0.449

All R 0.981 0.975 0.975 0.978 0.983 0.978 0.877

Divergent None R 0.767 0.868 0.91 0.859 0.896 0.905 0.573

All R 0.997 0.974 0.952 0.983 0.955 0.947 0.823

rRUM Independent None R 0.885 0.889 0.882 0.883 0.898 0.887 0.588

All R 0.976 0.978 0.979 0.979 0.979 0.982 0.879

Divergent None R 0.886 0.908 0.941 0.913 0.913 0.944 0.726

All R 0.999 0.989 0.987 0.995 0.995 0.985 0.939

However, there are many other factors, such as the completeness
and accuracy of the test Q matrix, number of attributes,
examinees, items, item quality, and distribution of examinees,
which may affect identifiability. To avoid excessive complexity,
the test Q matrix was assumed to be correct to avoid the effects
of an incorrect test Q matrix. The number of items and attributes
were fixed as 30 and six, respectively, which are popular choices
in real-world applications. Additionally, the sample size was fixed
as 1,000. We expect that the effect size observed in simulations
would decrease as the sample size decreases. However, in this
study, because our tests were intended to measure six attributes
and there are 26 = 64 types of attribute profiles or categories,
even when a large sample size of N = 1,000 was generated,
there were only approximately 19 participants in each category,
which is a marginal number for correctly evaluating categories.
Furthermore, the distributions of items and examinee parameters
were fixed and followed a common distribution to avoid the
effects of item quality and population size. In the future, if a
smaller number of attributes is measured, a smaller sample size

may be investigated. Other factors may also be investigated to
produce more general results.
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