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Abstract: Conductive polymer composites (CPC) from renewable resources exhibit many interesting
characteristics due to their biodegradability and conductivity changes under mechanical, thermal,
chemical, or electrical stress. This study is focused on investigating the physical properties of
electroconductive thermoplastic starch (TPS)–based composites and changes in electroconductive
paths during cyclic deformation. TPS–based composites filled with various carbon black (CB) contents
were prepared through melt processing. The electrical conductivity and physicochemical properties of
TPS–CB composites, including mechanical properties and rheological behavior, were evaluated. With
increasing CB content, the tensile strength and Young’s modulus were found to increase substantially.
We found a percolation threshold for the CB loading of approximately 5.5 wt% based on the rheology
and electrical conductivity. To observe the changing structure of the conductive CB paths during
cyclic deformation, both the electrical conductivity and mechanical properties were recorded in
parallel using online measurements. Moreover, the instant electrical conductivity measured online
during mechanical deformation of the materials was taken as the parameter indirectly describing the
structure of the conductive CB network. The electrical conductivity was found to increase during
five runs of repeated cyclic mechanical deformations to constant deformation below strain at break,
indicating good recovery of conductive paths and their new formation.

Keywords: thermoplastic starch; conductive polymer composite; carbon black; electrical conductivity;
mechanical deformation

1. Introduction

Conductive polymer composites (CPCs) are designed by mixing an insulating poly-
meric matrix with conductive fillers. Typically, conductive fillers are metallic powders or
carbonaceous fillers containing graphite, carbon black, and carbon fibers [1]. Substantial
effort has been devoted in the past decade to understanding the features of CPCs with
respect to conductivity changes under external stimuli, such as thermal, electrical, me-
chanical, or chemical stresses [2]. Mechanical deformation is likely the most important
factor that affects the structure of the conductive pathways. It can also lead to substantial
destruction of the filler network structure. From this point of view, investigation of the
dependence of electrical conductivity on mechanical deformation is of particular interest,
especially if measured for electroconductive two–phase systems consisting of an insulating
flexible polymeric matrix filled with an electroconductive filler. An electroconductive
physical network is formed throughout the polymer matrix, enabling facile and rapid
transport of electrons through the composite. It is well known that a sudden increase in
conductivity occurs for these composites in a relatively narrow concentration range for
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the so–called percolation threshold of the filler [3]. Recently, polymers prepared from
renewable resources as matrices for solid conducting composites, including starch [4–12],
cellulose [13], pectin [14], and chitosan [15], have been investigated.

Starch has been considered as one of the most promising candidates in the biopolymer
industry since it is abundant in nature, cost–effective, available from renewable resources,
and biodegradable. However, to be used as a plastic material, it must be processable by
standard plastic technologies. Thermoplastic starch (TPS) is a plasticized version of starch
that can be obtained by the destruction of starch granules in the presence of plasticizers
under heat and shear conditions [16–18]; however, the main shortcomings of TPS are its
hydrophilic character, unsatisfactory mechanical properties, and poor thermal stability
compared to conventional polymers [19–21].

Few studies have been carried out for CPCs based on TPS. In particular, Ma et al. [22]
fabricated TPS membranes filled with multiwall carbon nanotubes by the casting method.
TPS/carbon black (CB) membranes were also prepared by the microwave radiation method
and melt extrusion [23]. Qian et al. used carbon black oxide particles as fillers in the TPS
matrix to obtain well–dispersed particles in the mixture by the casting method and to
increase the tensile strength of the composites [24]. Recently, electroconductive starch–
based films plasticized by an ionic liquid have been investigated as a new preparation
approach [25,26]. Furthermore, some other studies have demonstrated that fillers such
as multiwalled carbon nanotubes, graphene, and graphene oxide can increase the tensile
strength and improve the barrier and electrical properties of CPCs based on TPS [27–29].

In addition to studies comparing the electrical and mechanical properties of electro-
conducting CPCs, papers investigating both the mechanical properties and the electrical
conductivity in parallel using online measurements are of particular interest. This approach
was first suggested by Aneli et al. [30] and Flandin et al. [31] for detecting the changes in
electroconductive pathways through vulcanized rubbers filled with conductive reinforcing
carbon blacks. The method was elaborated in detail by us [32,33], enabling not only to
describe the instant changes of the electroconducting (and reinforcing as well) pathways
during mechanical deformation, but also to find clear correspondence of the changes in
electrical conductivity of the composite filled with carbon blacks with features of stress–
strain curves. In such a way, the decrease of conductivity during first stage of deformation,
where, according to Hooke’s law, the deformation is proportional to strength and the
slope represents Young’s modulus [34], is followed by an increase in conductivity after the
change of the stress–strain curve from linearity to curving continuing by another conduc-
tivity decrease after passing the inflex point on the stress–strain curve. Moreover, similar
behavior was also observed for thermoplastic polymers (e.g., polycaprolactone), indicating
that the changes in reinforcing network of rubber at inflex point correspond to yield point
of the thermoplastics [34]. In this regard, the electrical conductivity indirectly reveals
the changes in filler structure related to mechanical deformation, indicating whether the
conductive pathways are destroyed, remain intact, are reformed, or new electroconductive
structures are formed, which should also lead to the extent of mechanical reinforcement
of the material. The changes in electrical conductivity during mechanical deformation of
elastomer–based composites, either in tensile or in compression mode, are described in
the literature in a few cases [30,34]. However, to the best of our knowledge, TPS has not
yet been investigated as a matrix in similar experiments. The objective of the present work
is to determine rather delicate differences in the electroconductive behavior of TPS–CB
composites. In all cases, the physical and mechanical properties, rheological properties,
conductivity, and electrical behavior during deformation of the TPS–CB composites were
evaluated. Furthermore, various effects were investigated, especially uniaxial deformation
with varying strains, mechanical relaxation, and cyclic deformation.
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2. Materials and Methods
2.1. Materials

Meritena® 100 native corn starch was obtained from Brenntag (Bratislava, Slovakia).
The water content was determined by drying in an oven at 105 ◦C for 5 h. Chezacarb A
(Unipetrol RPA, Litvínov, Czech Republic) was used as a superconductive carbon black (CB).
All of the data for this material were provided by the manufacturer and are summarized in
Table 1. Glycerol was purchased from Centralchem, Ltd. (Bratislava, Slovakia). Double
distilled water was used during the study.

Table 1. Properties of the carbon black (CB) used as filler.

Property Amount

Iodine adsorption 900−1200 mg/g
DBF adsorption 340−420 mL/100g

Specific area 800 m2/g
Particle diameter 2−20 nm

2.2. Preparation of TPS–CB Composites

CB particles at 3, 10, 15, and 20 php (parts based on the dry weight of starch) cor-
responding to 1.7, 5.5, 8.1, and 10.5 wt%, respectively, were dispersed in a mixture of
water and glycerol by applying sonication at ambient temperature for 1 h. The samples
were marked as CB–X, where X is the CB amount in php. To obtain gelatinized starch, a
suspension of starch, CB, glycerol, and water was heated at 80 ◦C for 10 min under contin-
uous mechanical mixing. The weight ratio of starch/glycerol/water was 1.0:0.7:2.3. The
obtained samples were dried at 100 ◦C for 5 h to remove excess water followed by holding
at 60 ◦C overnight to prevent moisture absorption by the material. TPS–CB composites
were then processed by kneading in a laboratory mixer Plastograph Brabender PLE 331
(Brabender GmbH, Viersen, Germany) for 10 min at 130 ◦C and 100 rpm. A 1-mm-thick slab
was prepared by compression molding (laboratory press LabEcon 300, Fontijne Presses,
Delft, The Netherlands) at 130 ◦C using 4 min of preheating without pressure and an
additional 4 min at a pressure of 2.65 MPa. To easily remove the samples, two Teflon
sheets were inserted between metal plaques and molds. To prepare the slabs for online
measurements of the electrical current during deformation, two copper wires were inserted
into the material during compression. Samples (0.7 mm thick) with dimensions of 100 × 10
mm were compression molded using a custom mold. Figure 1 shows the representative
specimen used for online measurements.

Figure 1. Specimen used for online measurements of electrical conductivity during mechanical deformation.

2.3. Mechanical Testing

Dog–bone shaped specimens were obtained using pneumatic toggle press equipment.
For each specimen, the dimensions of the deformed area during the tensile test were
3.5 × 30 mm, and the thickness of approximately 1 mm was precisely measured by using
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a digital caliper. The specimens were stored in airtight plastic containers for 24 h under
ambient conditions prior to analysis, while the overall moisture content for each TPS sample
was determined to be 5.7 ± 1.0%. An Instron 3365 universal testing machine (Instron,
Norwood, MA, USA) was used to perform the tensile test. Tests were carried out at a speed
of 1 mm/minute with a deformation of up to 1% and at a speed of 50 mm/min at higher
deformations, according to ASTM D638. Seven replicates were prepared per formulation.

2.4. Online Measurements of Conductivity during Mechanical Deformation

The measurement of electrical current was performed in parallel with recording
the stress–strain curve using a wireless TRMS multimeter (EXTECH Instruments, Shang-
hai, China). Mechanical testing was performed using the same machine as described in
Section 2.3. The rates of deformation and voltage were 10 mm/min and 30 V, respectively.
In this experiment, the electrical current was measured during five cycles of deformation
with ultimate extensions of 2, 5, 10, and 20%. After the fifth cycle, performed up to preset
deformation, the conductivity measurement was performed up to the break point.

2.5. Dynamic Mechanical Thermal Analysis (DMTA)

For DMTA measurements, a DMA Q800 (TA Instruments, Hüllhorst, Germany) ana-
lyzer was used in tensile mode at an amplitude of 20 µm and a frequency of 10 Hz. The
TPS samples (ca. 10 × 7 × 1 mm3) were treated in the same way as for mechanical testing
described in Section 2.3. The temperature range was fixed from−70 to 60 ◦C with a heating
rate of 2 ◦C·min−1.

2.6. Electrical Conductivity

Before performing the measurements during deformation, the initial electrical con-
ductivity of each material was measured using a Concept 40 (Novocontrol Technologies
GmbH, Montabaur, Germany) for broadband dielectric spectroscopy. The measurement
was performed using an instrument with an Alpha dielectric spectrometer provided by
Novocontrol Technologies GmbH (Montabaur, Germany). Samples were prepared as disks
with a diameter of 20 mm and a thickness of ~0.5 mm. All measurements were carried out
in the frequency range of 0.1 Hz–1 MHz at room temperature. A BDS–1200 parallel–plate
capacitor with two gold–plate electrodes was used as a test cell for the samples.

2.7. Rheological Measurements

The rheological properties of TPS–CB samples (circles with a diameter of 20 mm)
were investigated using an AR 2000 rheometer (TA Instruments, Hüllhorst, Germany)
equipped with a parallel plate geometry of 20 mm. The oscillatory mode measurements
were conducted within the frequency range of 0.1–100 Hz. Before each measurement, the
deformation amplitude was set up in the linear viscoelastic region determined by strain
sweeps at a constant frequency.

3. Results and Discussion

The main concern of this work was aimed at the in situ characterization of the changes
in electroconductive paths during mechanical deformation. The density and structure
of these pathways was estimated according to the electrical conductivity; they can also
contribute to the mechanical behavior of the materials under deformation and should result
in changes in the rheological parameters and structure of the composite.

3.1. Electrical Conductivity

The electrical conductivity of TPS–CB composites measured under static conditions
is plotted as a function of the filler content in Figure 2a. The conducting mechanisms
are also schematically illustrated in Figure 2a, where the electrical conductivity of the
TPS–CB composite changes from the insulating region to the conducting region. First, the
electrical conductivity is increased by approximately one order of magnitude as a result
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of the addition of CB between 0 and 5.5 wt%. This fact indicates that the agglomerates of
CB particles are still isolated, and conducting pathways are not formed in the TPS matrix
(insulating region). A further increase in the CB concentration results in an increase in com-
posite conductivity of over four orders of magnitude, from 3.1× 10−7 to 4.2 × 10−3 S·cm−1

within the percolation concentration region between 5.5 and 10.5 wt% CB. In this region,
the continuous conductive CB network is formed in the TPS matrix.

Figure 2. Electrical conductivity of TPS–CB composites as a function of (a) CB content and (b) frequency. The CB
concentration is shown in php as the number after code CB–.

Figure 2b shows the frequency–dependent conductivities of TPS–CB composites for
different filler contents. The electrical conductivity of TPS–CB composites increases with
increasing CB content. Three different modes of dependence are observed for the TPS–
CB composites (Figure 2b). For CB contents below the percolation threshold (i.e., 3 and
10 php), the composite exhibits typical behavior for an insulating polymer, where the
conductivity increases almost linearly (in our case from ~10−7 to 10−5 S·cm−1) as the
frequency increases from 1 Hz to 1 MHz. When the CB content lay approximately in the
percolation threshold (CB–15), the second group showed constant electrical conductivity at
low frequencies of 1–105 Hz, whereas the conductivity increased at frequencies higher than
105 Hz. Both isolated CB particles and conduction pathways exist in this composite. The
conductivity increased with the frequency due to the growing importance of polarization
effects [35]. The third mode of the course appears for the CB content above the percolation
threshold (CB–20), where the absolute value of the conductivity remains constant with
rising frequency, indicating the presence of stable conducting CB paths in the composite.

3.2. Mechanical Properties

Table 2 represents the mechanical data for the TPS–CB composites, including the
ultimate tensile strength, elongation at break, and Young’s modulus values. It becomes
apparent that the ultimate tensile strength of the TPS–CB composite increases with increas-
ing CB content compared to that of neat TPS. On the other hand, the addition of CB to
the TPS matrix leads to a decrease in elongation at break. The increase in the CB content
from 0 to 10.5 wt% (corresponding to 0 to 20 php) results in a substantial enhancement in
tensile strength from 0.30 to 3.18 MPa, while the Young’s modulus is increased from 0.81 to
32.77 MPa.
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Table 2. Mechanical properties, including tensile strength, elongation at break, and Young’s modulus of the TPS–carbon
black (CB) composites.

Sample Code CB Content
(wt%)

Tensile Strength
(MPa)

Elongation at Break
(%)

Young’s Modulus
(MPa)

CB–0 0 0.30 ± 0.02 193.55 ± 25.21 0.81 ± 0.19
CB–3 1.7 0.56 ± 0.01 130.23 ± 13.51 2.26 ± 0.17

CB–10 5.5 1.12 ± 0.06 94.05 ± 5.88 5.60 ± 0.50
CB–15 8.1 1.81 ± 0.26 51.76 ± 17.84 16.24 ± 2.97
CB–20 10.5 3.18 ± 0.16 29.88 ± 8.12 32.77 ± 4.51

As expected, filling the TPS with rigid particles results in stiffer material due to the
reinforcement effect of the CB particles. Reinforcement due to filler addition usually
translates into a continuous decrease in elongation at break, concomitantly with an increase
in Young’s modulus (rigidity), as matrix–filler interactions restrain chain mobility [23]. In
other words, CB particles in the TPS matrix act as physical crosslinkers due to a certain
degree of adhesion of matrix macromolecules onto the filler surface. Therefore, the increase
in tensile strength and Young’s modulus of the TPS–CB composites are mainly related to
CB particles affecting the polymer chain mobility during the elongation process.

Figure 3 shows representative stress–strain curves for neat TPS and TPS–CB compos-
ites. A small linear elastic region followed by a nonlinear zone until the fracture point
can be observed for all samples. Stress increases continuously with rising strain until
fracture, which is typically referred to as plastic deformation. This behavior is similar
to that indicated in the literature for starch–based films [36,37]. The addition of higher
amounts of CB results in a progressive enhancement in maximum tensile strength along
with a substantial decrease in elongation at break, indicating filler–matrix interactions.

Figure 3. Stress–strain curves for TPS–CB composites containing various CB contents, in the picture
the CB concentration is shown in php as the number after code CB–.

3.3. Dynamic Mechanical Thermal Analysis (DMTA)

The DMTA curves for the TPS–CB composites are shown in Figure 4. Figure 4a shows
the storage modulus of the samples as a function of temperature. Below the glass transition,
the storage modulus increases with increasing CB content in the composites, as expected.
The increase in the storage modulus of the TPS–CB composite with a higher CB content
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should be attributed to the reinforcement effect of CB. Furthermore, the better dispersion
of the CB particles in the TPS matrix leads to a substantial enhancement of the storage
modulus of the TPS–CB composite. This explanation corresponds with the results from
other published data for TPS composites filled with clay particles [38,39], including our
previous publication [16].

Figure 4. (a) Storage modulus, (b) loss modulus, and (c) tan δ curves for TPS–CB composites containing various CB contents.
The CB concentration is shown in php as the number after code CB–.

The loss modulus and tan δ curves are presented in Figure 4b,c, showing a more com-
plex evolution of the thermomechanical behavior in the presence of CB. The temperatures
at which the maximum value for tan δ appears as determined from the data in Figure 4c
are presented in Table 3. TPS typically shows two transition peaks in the DMTA curves.
The alpha transition at low temperatures, Tα, which is related to the low molecular weight
plasticizer, and the beta transition, Tβ, which occurs at higher temperatures and belongs to
the starch–rich domains described in the literature [40,41]. As depicted in Figure 4c, the
addition of CB results in a temperature increase for the starch–rich phase transition. The
shift in Tg to higher temperatures due to the incorporation of CB can be explained by the
filler–polymer interaction and a lower degree of chain freedom [42]. The interfacial interac-
tion between the TPS matrix and fillers is an essential factor affecting the starch backbone
stiffness. CB particles act as a physical crosslinker of starch molecules, thus increasing the
glassy state transition temperature of the starch–rich phase. However, the agglomeration of
CB particles can lead to an opposite effect due to the decrease in the values for the effective
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filler–polymer interaction and the number of physical crosslinking points. Certainly, this
effect is expected to manifest itself mainly at higher CB concentrations, which is supported
by the changes in the transition temperatures shown in Table 3. The lower transition
temperature corresponding to Tg is almost identical for all composites with CB contents up
to 15 php, while the material containing 20 php exhibits a Tg that is 10 ◦C higher. On the
other hand, the second peak appears at the highest temperature for TPS containing 10 php
CB, which is the CB concentration at the beginning of the percolation area, while the excess
CB results in certain softening of the material due to increased CB agglomeration, which is
assumed to contribute to lower effective contact for the CB surface with starch.

Table 3. Temperatures at which maximum values for tan δ appear as extracted from Figure 4c.

Sample Code 1st Peak T (◦C) 2nd Peak T (◦C)

CB–0 −56.1 3.3
CB–3 −55.5 9.9

CB–10 −53.2 12.8
CB–15 −54.2 3.2
CB–20 −48.8 9.3

3.4. Rheological Measurements

Electroconductive polymer composites containing conductive macrofillers are gen-
erally highly filled materials to provide sufficient electrical conductivity [43]. High filler
content can dramatically affect the viscoelastic properties of the polymer matrix and worsen
processability. Therefore, rheological measurements in the melt are important tools for
understanding the effects of filler type and its concentration on material behavior since the
data may indicate possible structural changes such as crosslinking, degradation, and chain
recombination [44]. To study the structural variations, the linear viscoelastic behavior in the
melt of TPS samples filled with various amounts of CB was investigated by oscillatory shear
measurements at 150 ◦C. Figure 5 shows frequency sweeps as dependences of (a) storage
modulus G′, (b) loss modulus G′′, and (c) complex viscosity (η*) on the angular frequency
(ω) for neat TPS and TPS–CB composites with varying filler loading ranging from 1.7 wt%
to 10.5 wt%. It is clearly observed that the increase in shear moduli/η* linearly depends on
increased filler loading as a result of an effective reinforcement effect of the CB. Moreover,
the slope of the G′ curves in the low–frequency region slightly decrease with increasing
filler content and become less frequency–dependent (the increment of G′ decreases with
increasingω). This phenomenon is well known, especially for nanocomposites exhibiting
“gel–like” (solid–like) behavior, and is attributed to the formation of a physical network by
fillers. To determine the gel–like behavior, the dependence of G′ at the lowest frequency
was used as a function of CB loading, similar to Kasgoz [43]. These authors reported
that the increment in G′ at ω of 0.1 rad·s−1 depends on the filler content and increases
dramatically above a critical volume of the filler fraction defined as the rheological perco-
lation threshold (ϕp). Generally, the ϕp values are related to the formation of fractal flocs
within composite systems, and rheological percolation, as such, does not require physical
contact between filler particles and is more likely due to the hydrodynamic effects of fillers
on the polymer melts. Kotsilkova et al. [45,46] pointed to the existence of two critical
concentrations describing the first and second percolation thresholds. While the first ϕf
represents only local percolation based on fractal floc formation, the second ϕp* is directly
related to the formation of a continuous three–dimensional floc network. Zhu et al. [47]
also used a low amplitude oscillatory shear test for the determination of two percolation
thresholds by comparison of G′ and G” values at aω of 1 rad·s−1.
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Figure 5. Dependence of (a) storage modulus G′ and (b) loss modulus G′′ vs. frequency for neat TPS and after addition of
1.7, 5.5, 8.1, and 10.5 wt% CB loading (corresponding to 3, 10, 15, and 20 php in sample codes, respectively).

As shown in Figure 6a, the ϕf and ϕp* values for TPS filled with CB were found to be
5.5 wt% and 8.1 wt%, which correspond to CB–10 and CB–15, respectively, and are almost
identical to the percolation threshold region valid for electrical conductivity. The first
critical concentration ϕf was determined from the crossing point of the first two distinctive
slopes. Zhu et al. [47] used the crossing point of G′ and G′′ curves to determine the second
percolation threshold. In our case, the TPS–CB composites showed gel–like behavior in
the full frequency range, and the G′–G′′ crossing point could not be evaluated in this
manner. Therefore, the second percolation threshold was determined in a similar way to
the Kasgoz et al. approach [43].

Figure 6b shows the Cole–Cole plots for neat TPS (η′′ vs. η′) and its composites with
various CB loadings. The presence of different concentrations of filler remarkably affects
the rheological properties of TPS. At a lower CB loading of up to 5.5 wt%, viscosity curves
are arc–shaped similar to that for unfilled TPS but show a tendency towards linearity
through a straightening of the arc, especially with increasing filler content. On the other
hand, courses with completely different shapes are observed for composites filled with
higher CB amounts, reaching linear variation. The linear variation of the Cole–Cole plots is
frequently associated with the densification of a 3D network. Many reports [44,48–50] show
an increase in the slopes of linear Cole–Cole plots, which are usually due to either invasive
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treatments such as irradiation leading to (chemical) crosslinking within the polymer or the
addition of an interaction–capable compatibilizer/filler increasing polymer–filler interac-
tions. Thus, the change in the Cole–Cole plot indicates that a critical filler concentration
above the stable 3D reinforcing physical network of filler particles is formed [49].

Figure 6. (a) Dependence of storage moduli for TPS–CB composites at an angular frequency of 0.1 rad·s−1 (G′(0.1ω)) as
a function of volume fraction of CB for estimating the critical volume fraction (ϕp) and (b) Cole–Cole plots at 150 ◦C
for neat TPS and TPS–CB composites filled with various concentrations of CB (1.7, 5.5, 8.1, and 10.5 wt% of CB loading
corresponding to 3, 10, 15, and 20 php in sample codes, respectively).

3.5. Conductivity during Uniaxial Deformation

Since parallel measurements of stress–strain curves and electrical conductivities re-
quire the material to be studied to have a rather high conductivity, only composites with a
CB content above the percolation threshold could be used. Therefore, only two materials
were tested, namely, CB–15 and CB–20, during five runs of cyclic deformations with various
ultimate extensions of 2, 5, 10, and 20%, followed by deformation up to the break point
after each set of cyclic runs. The courses are presented in Figures 7 and 8, respectively. The
current slightly increases during each consecutive deformation cycle, while all dependen-
cies are almost identical in the rising–strain period. It is assumed that higher conductivity
during consecutive deformation cycles indicates the formation of new conductive paths
or healing of minor defects in current paths, resulting in good conductivity recovery dur-
ing deformation. Table 4 represents the absolute values for the current at the beginning
of the first cycle and the up–to–break run. The conductivity at the starting point of the
up–to–break experiment is higher than that at the beginning of the first cycle. All these
findings indicate the existence of good conductivity path recovery after cyclic deformation.
Mechanical deformation appears to be the most crucial factor affecting the structure of the
conductive pathways [51]. Generally, it leads to substantial destruction of the filler network
structure, but the massive formation of new paths has also been reported, especially in
rubber [52] and thermoplastics, e.g., polycaprolactone [30,34,53]. For the composite with a
starch matrix containing a CB content well above the percolation concentration, an almost
constant current is observed for all cycles, as illustrated in Figure 8. This implies that in
TPS creates much lower shear stress during mechanical deformation; the forces generated
are not sufficient to destroy the conductive CB paths, especially since deformations are
much smaller than those reported for rubber.
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Figure 7. Dependence of normalized current and stress on deformation during five runs of cyclic deformation (left–hand
side) and up–to–break deformation (right–hand side) for CB–15, containing 15 php CB, after various cyclic strains of (a) 2%,
(b) 5%, (c) 10%, and (d) 20%.
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Figure 8. Dependence of normalized current and stress on deformation during five runs of cyclic deformation (left–hand
side) and up–to–break deformation (right–hand side) for CB–20, containing 20 php CB, after various cyclic strains of (a) 2%,
(b) 5%, (c) 10%, and (d) 20%.
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Table 4. The values of the current measured at the starting point of cyclic deformation and up–to–break experiments.

Sample Code Starting Point of
Current (µA)

2% Strain 5% Strain 10% Strain 20% Strain

CB–15
Cyclic deformation 1.18 1.05 1.29 1.34

Up–to–break 1.23 1.14 1.83 1.79

CB–20
Cyclic deformation 2.44 2.68 2.45 3.64

Up–to–break 2.54 2.76 2.94 3.67

For the CB–15 composite (Figure 7), a decrease in conductivity before the break is
observed due to the destruction of the conductive pathways formed by the filler [34];
however, the conductivity of CB–20 is interestingly constant before it breaks, as shown in
Figure 8. This means that the number of conductive pathways is higher in CB–20. Herein,
this confirms that a core of the conductive filler structure is sufficiently strong to maintain
constant conductivity and remain intact. However, mechanical deformation might result
in the decay of some pathways.

The stress–strain cycles exhibit standard shapes with typical hysteresis features, where
during increasing deformation, the stress is significantly higher than the values measured
at the same strain but during a decrease in deformation. It is worth noting that the
viscoelasticity manifesting itself in the TPS results in generating a hysteresis loop, which
means that a large amount of mechanical energy is dissipated during the first extension
cycle [54]. A decrease in loading and unloading stress occurs in the cycles because of
the plastic deformation and hysteresis effect of the composite with the thermoplastic
matrix [55]. On the other hand, evident signs of permanent deformation are observed for
the composites, especially for cyclic deformations of 10% and higher. However, even in this
case, permanent deformation exhibits itself from comparison of only the first and second
runs, while the permanent deformation is almost nonexistent for the following cycles.

4. Conclusions

TPS–CB composites were obtained in the present study by incorporating CB conduc-
tive fillers into the plasticized starch matrix. To achieve well–dispersed CB particles in the
TPS matrix, a combination of both solvent dissolution and melt processing was performed
by ultrasonication and the use of a Plastograph Brabender mixer, respectively. The cor-
relations between the TPS–CB composite percolation thresholds and morphologies were
confirmed by conductivity measurements. The reinforcing effect of CB particles results in a
remarkable increase in tensile strength and Young’s modulus but a substantial decrease
in deformation at break. The electrical conductivities of the TPS–CB composites increase
with increasing CB loading. According to the percolation theory, TPS–CB composites form
a three–dimensional conductive network at CB concentrations over 5.5 wt%, which is
defined as the percolation threshold for the system investigated. Furthermore, the electrical
conductivity increases or at least remains constant during five runs of repeated cyclic
mechanical deformations to constant deformation below strain at break, indicating more
perfect recovery of conductive paths and their new formation. This work provides new
insight for designing and constructing conductive materials based on starch, which are
promising for electromagnetic shielding applications.
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