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Keratoconus is a noninflammatory disease characterized by thinning and bulging of the cornea, generally appearing during
adolescence and slowly progressing, causing vision impairment. However, the detection of keratoconus remains difficult in the
early stages of the disease because the patient does not feel any pain. Therefore, the development of a method for detecting this
disease based on machine and deep learning methods is necessary for early detection in order to provide the appropriate
treatment as early as possible to patients. Thus, the objective of this work is to determine the most relevant parameters with
respect to the different classifiers used for keratoconus classification based on the keratoconus dataset of Harvard Dataverse. A
total of 446 parameters are analyzed out of 3162 observations by 11 different feature selection algorithms. Obtained results
showed that sequential forward selection (SFS) method provided a subset of 10 most relevant variables, thus, generating the
highest classification performance by the application of random forest (RF) classifier, with an accuracy of 98% and 95%
considering 2 and 4 keratoconus classes, respectively. Found classification accuracy applying RF classifier on the selected
variables using SFS method achieves the accuracy obtained using all features of the original dataset.

1. Introduction

In many fields (computer vision, pattern recognition, …,
etc.), the resolution of most problems is based on the pro-
cessing of data extracted from data acquired in the real
world and structured in the form of vectors [1]. The quality
of the processing system depends directly on the right choice
of the content of these vectors. But, in many cases, the reso-
lution of the problem becomes almost impossible because of
the very large dimension of these vectors. Therefore, it is
often useful, and sometimes necessary, to proceed to a selec-
tion of the most relevant features compared to the used res-
olution method, by eliminating harmful features to the
adopted system, even if this selection of variables may lead
to a slight loss of information. Moreover, to extract impor-
tant features from these large variables and data, statistical
techniques were used to minimize noise and redundant data

[2]. Thus, the selection of parameters is really important in
improving the model and this is by using correlated and
nonredundant parameters. In addition, learning is done
quickly, and the complexity of the model will be reduced,
making it easier to understand and improving metric perfor-
mance in terms of precision, accuracy, and recall [3].

There are four important reasons why feature selection
is essential. First, spare the model to reduce the number of
parameters. Second, to decrease the learning time. Then,
to reduce overfilling by improving the generalization and
to avoid the problems of dimensionality [4]. So, our moti-
vation is to get the best model with high predictions and
small errors.

It is in this context particularly that this work is
presented that consists in determining the most relevant
parameters for diagnosing keratoconus, which corresponds
to a deformation of the cornea (the transparent coating of
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the iris and the pupil of the eye) which gradually thins [5],
loses its normal spherical shape, and takes on an irregular
cone shape as illustrated in Figure 1 below.

Keratoconus can be diagnosed during a consultation,
motivated by the existence of functional signs secondary to
progressive irregular myopic astigmatism. In general, the
functional signs are not very specific. The most common is
the presence of visual blurring, photophobia, fog, progres-
sive loss of visual acuity predominantly at a distance, mon-
ocular diplopia, or persistent irritation [7]. However, there
are several tools to diagnose keratoconus such as corneal
topography, corneal biomechanics, and optical coherence
tomography OCT. Each tool has its own parameters to diag-
nose the disease, so in this study, we will analyze the differ-
ent parameters using machine learning algorithms, then, a
validation of obtained results by a physician expert in the
field will be performed. In this work, feature selection tech-
niques are used to increase the potential for classifier gener-
alization. Thus, a comparison of the results without and with
feature selection, using filters, wrappers, embedded, and
hybrid methods, will also be presented. The main contribu-
tions of this research are summarized as follows. First, the
analysis of various parameters extracts the most relevant
ones, especially for the analysis of classification data. Second,
a comparative study of different machine learning models,
such as random forest (RF), support vector machine
(SVM), K-nearest neighbors (KNN), decision tree (DT),
Naive Bayes (NB), logistic regression (LR), and linear discrim-
inant analysis (LDA) using critical features. Different models
will have different strengths in classifying data which will
affect classification performance. Also, multiple feature selec-
tion methods are used to get the best accuracy. In addition,
we mainly review the variable selection application and pro-
vide description, analysis, and future research suggestions.
The remain of this paper is organized as follows. The following
section represents the related works. Section 3 describes the
employed methodology in keratoconus classification. The
simulation results are presented in Section 4. Section 5 pre-
sents the result discussion. Finally, the conclusions and future
directions of the research are indicated in Section 6.

2. Related Works

Artificial intelligence (AI) has integrated different domains
of medicine field such as ophthalmology. The number of
works that focused on the detection of ophthalmic diseases
using machine learning (ML) is growing. Several research
teams aim to build intelligent systems for keratoconus diag-
nosis and classification. In [8], authors proposed an ensem-
ble of deep transfer learning considering SqueezeNet (SqN),
AlexNet (AlN), ShuffleNet (SfN), and MobileNet-v2 (MbN)
for improved detection of keratoconus. Built system was
trained on a dataset of 2136 corneal topographic maps and
provided an accuracy in the range of 92.2% to 94.8%. To
evaluate keratoconus diagnosability, the authors of [9] devel-
oped an intelligent system based on deep learning using
color-coded map with Placido disk-based corneal topogra-
phy. Trained on a total of 3390 color-coded map images rep-
resenting 4 eyes classes, the proposed system achieved an

accuracy of 78.5% in keratoconus classification. Authors of
[10] proposed an intelligent system based on time delay neu-
ral network (TDNN) to verify both the progression predict-
ability using two prior tomography measurements and the
system accuracy when labelling the eye as stable or suspect
progressive. Obtained results showed a sensitivity of 70.8%
and a specificity of 80.6% using data of 743 patients captured
by Pentacam. To screen keratoconus using corneal topogra-
phy, authors of [11] adopted three convolutional neural net-
work (CNN) models (VGG16, InceptionV3, and ResNet152)
to develop the proposed system. Trained on a dataset of 354
images, built system achieved accuracies 93.1%, 93.1%, and
95.8% using VGG16, InceptionV3, and ResNet152, respec-
tively. The authors of [12] proposed a convolutional neural
network- (CNN-) based intelligent system for keratoconus
detection. Trained on a data set of 3000 images, provided
by Pentacam technology only, developed system provided a
classification with an accuracy of 99.33%. Authors of [13]
built feedforward neural network- (FNN-) based intelligent
system for keratoconus identification. Developed system dis-
criminate keratoconus eyes with an accuracy of 96.56% on a
dataset of 851 elements using neighborhood component
analysis for features selection (NCAFS). In [14], a RF model
was used to detect keratoconus. The obtained system pro-
vided a classification accuracy of 76% on a dataset of 500
images. Using a dataset of 124 images and using 29 param-
eters, the authors of [15] have developed a keratoconus iden-
tification and classification system using Bayesian neural
networks (BNN). Adopting principal component analysis
(PCA) of features selection, the developed system allowed a
classification with an accuracy of 73% and 80%, respectively,
for supervised and unsupervised learning. In [5], the authors
proposed a keratoconus classification system based on unsu-
pervised machine learning (UnML) and trained on a dataset
of 3156 images. To reduce the dimensionality of the input
data from 420 to eight important variables, the authors
adopted the PCA method. The built system allowed kerato-
conus identification with a specificity of 94.1% and a
sensitivity of 97.7%. In [16], authors have developed a
BNN-based system of keratoconus classification. Classifica-
tion accuracy of this system, using 16 parameters on a
dataset of 60 elements, was 100%. The authors of [17] have
built an intelligent system to classify keratoconus based on
CNN technique. Trained on a dataset of 543 images, the
accuracy of the proposed system was 99.1%. In [18], the
authors developed SVM-based system for keratoconus
detection and classification. Classification accuracy of built
system was between 92.6% and 98.0% on a dataset of 131
images and 25 extracted parameters. Trained on a dataset
of 372 images using 55 parameters, the system proposed in
[19] allowed keratoconus classification using decision trees
(DT) model. Developed system discriminated normal and
keratoconus eyes with a sensitivity of 100% and a specificity
of 99.5% and classified normal and forme fruste keratoconus
eyes with 93.6% sensitivity and 97.2% specificity. The
authors of [20] proposed an SVM-based system for kerato-
conus detection and classification. Classification accuracy
provided by the built system was 98.2% on a dataset of
3502 elements and using 7 parameters. In [21], authors have
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developed a classification system for keratoconus with an accu-
racy of 90% on a dataset of 40 images and 12 parameters. The
authors of [22] have proposed eight classifiers in order to com-
pare their performance. Using 11 extracted parameters on a
dataset of 88 elements, RF, SVM, KNN, logistic regression
(LR), linear discriminant analysis (LDA), lasso regression
(LaR), DT, andmultilayer perceptron neural network (MPAN)
models provided an accuracy of 87%, 86%, 73%, 81%, 81%,
84%, 80%, and 52%, respectively. The authors of [23] devel-
oped a system for early and mild keratoconus detection. Based
on logistic regression, this system allowed early and mild kera-
toconus detection using only 5 selected variables from a dataset
of 27 features. The variable selection was performed using χ2

and Kruskal-Wallis algorithms. The overall accuracy of this
system was 73%. In [24], the authors have proposed a compar-
ative study of 25 different machine learning models allowing
keratoconus detection based on the corneal imaging. Different
classifiers were trained on a dataset of 3151 corneal images, col-
lected from 3146 eyes. Applied on a subset of 8 selected param-
eters using subset selection (SS) and feature ranking (FRank)
feature selection methods, proposed models provided classifi-
cation accuracy varying between 62% and 94%, and the highest
performance was generated by the SVM model. Table 1 below
summarizes the works already cited:

Despite the good performance of different systems already
mentioned in the related works, which allowed a very good dis-
crimination between normal and keratoconus eyes in keratoco-
nus classification, many works of them did not mention that
they used variable selection method. Such methods could
increase system performance, by eliminating irrelevant vari-
ables, reducing data dimensionality, and optimizing algorithm
prediction time. In this work, we propose a comparative study
of keratoconus classification using different classifiers, without
and with features selection, by applying different types of vari-
ables selection algorithms.

3. Methodology

3.1. Feature Selection. The performance of a machine learn-
ing system is affected by several factors, including the repre-
sentation and relevance of the data used by that system.
Generally, not all learning data is always relevant to the sys-
tem. However, the selection of relevant features, by eliminat-
ing less informative, redundant, or even irrelevant variables,
is of great importance to the learning system. The feature
selection model adopted in this work is described in
Figure 2 below.

3.2. Data Preprocessing. The data preprocessing stage con-
sists generally of eliminating irrelevant and redundant vari-
ables, handling missing values in the dataset, and handling
categorical data, such as textual data that is difficult to
understand for machines. The dataset resulting from this
step is then used by different types of algorithms in order
to select relevant features.

3.3. Filters. First, the used dataset was filtered using the
filters. These methods allow to select variables using differ-
ent approaches and criteria to calculate the relevance of a
variable before the learning phase. In other words, the eval-
uation of the importance of characteristics is done indepen-
dently of the use of a classifier. However, the characteristics
retained by the filters can be used by all learning algorithms.
Filters remove irrelevant, redundant, constant, duplicated,
and correlated characteristics in a very efficient manner
[25]. The main filtering methods used in this work are:

(1) Fast correlation-based filter (FCBF) that allows to
select features representing a low correlation with
other features and which are more correlated to the
target variable using symmetrical uncertainty [26]

(a) (b)

Figure 1: Normal eye (a) and keratoconus eye (b) [6].
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(2) Mutual information (MI) which can be defined as
the measure of reduction of uncertainty of a variable
in view of the knowledge of a second variable. It rep-
resents a statistical dependence between two random
variables, thus, measuring their degree of depen-
dence in the probabilistic sense [25]

(3) Analysis of variance (ANOVA) is a statistical model
that allows to compare the mathematical expectation
of several subsamples in order to demonstrate the
possible similarities or differences on specific aspects
in a studied sample [27]

(4) Variance algorithm calculates the variance of differ-
ent features. This algorithm selects the features for
which the variance is greater or equal to a special
threshold t defined initially

3.4. Wrapper Methods. The weakness of filters is the fact that
they do not consider the learning algorithm when selecting

variables. Wrapper methods solve this problem by introduc-
ing the learning algorithm during feature selection. This
method evaluates the classification performance of a subset
of variables during the selection procedure using a classifier
[25]. The wrapper algorithms used in this study are:

(1) Recursive feature elimination (RFE) is a selection
feature algorithm in which specific weight values
are assigned to features by application of external
estimator. This process is repeated recursively, and
in each step, attributes whose weights are the smal-
lest ones are removed from the current set. It works
until the desired set of features to select from is even-
tually reached. In the RFE approach, the number of
features to select should be initially defined [28]

(2) Sequential forward selection (SFS) is an iterative
algorithm starting from an empty subset of variables.
For each iteration, FFS algorithm evaluates the vari-
ables individually and retains the variable that best

Table 1: Summary of previous works in keratoconus classification since 2012.

Authors Year Method Dataset Inputs Accuracy
Feature
selection

Al-Timemy et al. [8] 2021 SqN, AlN, SfN, MbN
2136
images

N.A 92.2% to 94.8% N.A

Kamiya et al. [9] 2021 CNN
3390
images

N.A 78.5% N.A

Jiménez-García
et al. [10]

2021 TDNN
743

images
6 N.A Yes

Kuo et al. [11] 2020
VGG16, InceptionV3,

ResNet152
354

images
N.A 93.1%, 93.1%, 95.8% N.A

Cao et al. [22] 2020
RF, SVM, KNN, LR, LDA, LaR,

DT, MPAN
88 eyes 11

87%, 86%, 73%, 81%, 81%,
84%, 80%, 52%

Yes

Lavric et al. [24] 2020 25 classifiers
3151
images

8 62% to 94% SS, FRank

Velázquez-Blázquez
et al. [23]

2020 LR 178 eyes 5 73%
X2, Kruskal-

Wallis

Lavric and
Valentin [12]

2019 CNN 3000
180 × 240 × 3
(images)

99.33% Yes

Issarti et al. [13] 2019 FNN 851
141 × 141
(images)

96.56% NCAFS

Salem and
Solodovnikov [14]

2019 RF 500 N.A 76% Yes

Hallett et al. [15] 2019 BNN 124 29
73% (supervised) 80%

(unsupervised)
PCA

Luna et al. [16] 2019 BNN 60 16 100% N.A

Kamiya et al. [17] 2019 CNN 543
6 × 224 × 224

(image)
99.1% N.A

Yousefi et al. [5] 2018 UnML 3156 420 N.A
PCA

NonLinear_
tSNE

Hidalgo et al. [18] 2017 SVM 131 25 92.6% to 98% N.A

Ali et al. [21] 2017 SVM 40 12 90% N.A

Smadja et al. [19] 2013 DT 372 55 N.A N.A

Arbelaez et al. [20] 2012 SVM 3502 7 98.2% N.A
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improves the model. The selection process stops
when the performance of the system is no longer
increased by adding a new variable [29]

(3) Sequential backward selection (SBS) is an iterative
algorithm initially using all the features of the data-

set. BFE eliminates the least significant variable in
each iteration until no performance improvement
is noticed [29]

(4) Genetic algorithms (GA) are iterative algorithms
based on the genetic evolution process. GA consti-
tutes chromosomes from an initial population by
proposing potential solutions to the studied prob-
lem. This initial population of solution evolves using
three operators (selection, crossing, and mutation
operators) to converge to the best solution [30]

(5) Hybrid recursive feature addition (HRFA) creates a
model using only the most relevant variable selected
by ranking different variables of the original dataset.
The algorithm adds the most important feature at each
step and reassesses the performance of the model [31].
If the metric exceeds an arbitrarily defined threshold,
the variable is retained otherwise it can be deleted. This
processing is repeated until all variables are evaluated

The feature subset selected by a wrapper method repre-
sents a strong dependence on the classifier used in the selec-
tion phase. However, changing the classification algorithm
can produce poor classification performance.

 Selecting critical features for data classification

Ranking and choosing of best features

Classifier

Selected feature subsetMutual informationAnova

CorrelationVariance

Filter

Selected feature subset

Classifier

Random forest

Embedded
Generate a subset Learning algorithm & performance

Wrapper

Hybrid recursive feature addition

Recursive feature elimination

Backward feature
elimination

Forward feature
selection

Genetic Algorithm

Selected feature
subset

Classifier

Generate a subset

Learning
algorithm

Selected feature subset

Classifier

Filter Wrapper

Hybrid

Data Preprocessing

Data

Figure 2: Feature selection model.

Table 2: Studied feature selection methods.

Methods Algorithms

Filter

Mutual information

Fast correlation

ANOVA

Variance

Embedded Random forest

Wrapper

Sequential forward selection

Recursive feature elimination

Sequential backward selection

Recursive feature addition

Genetic

Hybrid Hybrid recursive feature addition

5Computational and Mathematical Methods in Medicine



3.5. Embedded Methods. Embedded methods select the fea-
tures judged critical during the training of the machine
learning model adopted for the classification [32].

3.6. Hybrid Method. Hybrid method is a combination of a
filter and a wrapper method of features selection. The fea-
tures retained using the filter algorithm are evaluated by
the wrapper algorithm to find the best subset of features [25].

Choosing the right method for selecting features usually
depends on the initial goal. Filters are very good in reducing
data size and eliminating redundant features. Wrapper
methods on the other hand are very powerful at producing

good classification precision using a given classifier.
Table 2 below illustrates different types of feature selection
algorithms used in this study:

3.7. Classification Methodology. The main objective of this
work is to compare performance and execution time of dif-
ferent machine learning models in the classification of kera-
toconus. Classification is realized in first time using all
features of the dataset of keratoconus, available in Harvard
Dataverse [33]. In the second time, the classification is per-
formed after a selection of crucial features by the application
of different types of feature selection algorithms already
cited on the original dataset. In other words, keratoconus

Best features selected

Choose the best model

Dataset

Best model selected

Train 1 Test 1 Train 10 Test 10.....

10-Fold cross validation

Logistic regression
Linear discriminant analysis

K neighbors classifier
Gaussian naive bayes classifier

Random forest classifier

Decision tree classifier
Support vector machine

Figure 3: Keratoconus classification model.

1. For b=1 to B:
a. Draw a bootstrap sample of size N from the training data.
b. Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating the following steps for each terminal

node of the tree, until the minimum node size nmin is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees fTbgB1
To make a prediction at a new point x:

RegressionðAveragingÞ: f̂ Brf ðxÞ = 1/B∑B
b=1TbðxÞ

Classification (voting): Let ĈbðxÞ be the class prediction of the bth random-forest tree.

Then : Ĉ
B
rf ðxÞ =majority votefĈbðxÞgB1

Algorithm 1: Random forest algorithm.
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classification is realized using different models with and without
feature selection. The 10-fold cross-validation technique has
been commonly used for different machine learning models

in order to avoid the overfitting problem. Figure 3 below illus-
trates the classification methodology adopted in this study.

Random forest (RF) is an ensemble of many individual
decision trees. It is a classification prediction method which
is based on decision trees. This method is proposed by Brei-
man in 2001 [34]. RF is one of ensemble methods that
involve using many learners to improve the performance
of any single one of them individually. This method can be
described as technique that uses a combination of a group
of weak decision trees together, to create a stronger and
aggregated one. The classification algorithm of RF is struc-
tured as follows [35].

If the data change a little, the performances the
individual trees may change but the forest is relatively stable

Input data:
i. Dataset D.
ii. A distance calculation function.
iii. A number K

To predict a new observation X, do:
1. Calculate all distances of this observation with the other observations in the dataset D.
2. Retain the K observations from the dataset close to X using the selected distance calculation function.
3. Take the values of retained observations:

a. if regression: Calculate the average of retained observations values.
b. if classification: Calculate the mode of retained observations values.

4. Return the value calculated in step 3 as a predicted value by K-NN for the observation X.

Algorithm 2: KNN algorithm.

1. Computing the within-class and between-class scatter matrices.
2. Computing the eigenvectors and their corresponding eigenvalues for the scatter matrices.
3. Sorting the eigenvalues and selecting the top k.
4. Creating a new matrix that will contain the eigenvectors mapped to the k eigenvalues.
5. Obtaining new features by taking the dot product of the data and the matrix from step.

Algorithm 3: LDA steps.

Input: Sample S
Start: Initialize the current tree to the empty tree; the root is the current node.
Repeat

Calculate the Gini(p) index of the current node p
GiniðSÞ =∑k

i=1ðjSij/∣S ∣ Þ × ð1 − jSij/∣S ∣ Þ
If the current node p is terminal, then

Assign it a class.
Else

Select a test and create as many new child nodes as there are possible answers to the test: Choose the test t that maximize
Δ(p, t). Where p is the current position, t is a test and Pg and Pd are the proportions of elements on the positions p1and p2,
respectively.

Δðp, tÞ = GiniðpÞ − ðPg × Giniðp1Þ + Pd × Giniðp2ÞÞ
End if
Pass to the next unexplored node if there is one

Until obtaining a decision tree
End

Algorithm 4: CART algorithm.

Table 3: Description of different original dataset classes.

Size of original dataset
Class

Number of
rows

Percentage
size

Number of
features

Number of
rows

446 3162

C1 264 8.3%

C2 2595 82.1%

C3 221 7%

C4 82 2.6%
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Figure 4: Continued.
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because it is a combination of many trees, and this is the
main advantage of RF.

Naive Bayes (NB) technique is based on the Bayes theo-
rem. The Naïve Bayes is a probabilistic classifier which is
well suited for high dimensional datasets. Despite of its sim-
plicity, NB algorithm can outstrip more efficient other clas-
sifiers. NB classifier computes probability estimates rather
than predictions. To verify whether a given observation
belongs to a specific class, NB algorithm calculates probabil-
ity each output value. NB assumes that the attributes present
do not influence each other and are mutually independent
[36]. This is called conditional independence.

Consider a dataset D composed of N attributes, and each
tuple of D is structured in N values. Suppose that C1 and C2
are the two available class labels for the target data. For each
new tuple X, NB classifier predict that X ∈ Ci if the class Ci
has a highest probability condition on X, i.e.,

If P Ci

X

� �
> P

Cj

X

� �
where 1 ≤ j ≤m: ð1Þ

If the class Ci had the maximum probability which
PðCi/xÞ is maximized, this class is called maximum poste-
rior hypothesis. As PðXÞ is constant for all the classes the
equation can be depicted as:

P
Ci

x

� �
= P

X
Ci

� �
∗ P Cið Þ: ð2Þ

K-nearest neighbor (KNN) algorithm is a simple and
easy supervised machine learning algorithm that can be
used to solve classification and regression problems.
According to the measure of similarity, like the distance
functions, K-NN provides a classification of the new

cases, by attributing them to the most present category
among these K neighbors [37].

The distance of the case to be classified to the other cases
is ensured using some norm-based measurement functions,
such as

Euclidean distances :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
xi − yið Þ2

s
, ð3Þ

orManhattan distances : 〠
n

i=1
xi − yij j: ð4Þ

The K-NN algorithm can be described as follows [38].
Logistic regression (LR) is a statistical-based classifica-

tion model, and it is a linear predictive algorithm based on
the concept of probability. The decision rule of the LR is
ensured by a complex function called Sigmoid function.
The probability generated by Sigmoid function is limited
between 0 and 1. When the predicted value is greater than
a threshold, the event is likely to occur, while when this value
is below the same threshold, it is not [39]. The Sigmoid func-
tion is defined as follows:

P Y jXð Þ = 1
1 + e−f xð Þ , ð5Þ

f xð Þ = x0 + x1β1+⋯+xkβk + ε, ð6Þ
where xj and βj are the features and their corresponding
weights/coefficients.

Linear discriminant analysis (LDA) is a supervised clas-
sification technique belonging to competitive machine learn-
ing models, developed in 1936 by R. A. Fisher. It is a simple
and robust classification method which produces models
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Figure 4: Classification accuracy of different models using all features (a) and applying mutual information (b), ANOVA (c), embedded (d),
embedded with a filter (e), and filter with RFE (f) feature selection algorithms.
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Figure 5: Continued.
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that provide a good accuracy as more complex methods [40].
The idea behind LDA is to search a linear combination of
variables (predictors) that best separates two classes
(targets). Linear discriminant analysis process can be
described into 5 steps as follows [40].

The within-class scatter matrix is calculated using the
following mathematical equation [40]:

SW = 〠
c

i=1
Si, ð7Þ

where c is the total number of distinct classes and

Si = 〠
n

x∈Di

x −mið Þ x −mið ÞT , ð8Þ

and

mi =
1
ni

〠
n

x∈Di

xk, ð9Þ
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Figure 5: Classification accuracy of different models using RFE (a), filter with HRFA (b), filter with SFS (c), SFS (d), genetic (e), and filter
with SBS (f) feature selection algorithms.
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Figure 6: Classification accuracy of different models using SBS feature selection algorithms.
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where x is a sample (a row) and n is the total number of
samples within a given class.

The between-class scatter matrix is calculated using the
following mathematical equation:

SB = 〠
c

i=1
Ni mi −mð Þ mi −mð ÞT , ð10Þ

where

mi =
1
ni

〠
n

x∈Di

xk, ð11Þ

m = 1
n
〠
n

i

xi: ð12Þ
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Figure 7: Comparison of classification performance based on the accuracy of different models using all features (a) and applying mutual
information (b), ANOVA (c), embedded (d), embedded with a filter (e), and filter with RFE (f) feature selection algorithms.
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The linear discriminants are provided by solving the
generalized eigenvalue problem of the following matrix:

S−1WSB: ð13Þ

Decision tree (DT) is a tree-structured classification

model. Each node of a DT represents a test evaluating
an attribute of any individual in the population. The
arcs from a node represent the responses to the test
associated with this node. Each sheet of DT corre-
sponds to a class, called the default class. The DT used
in this work is based on the CART algorithm presented
below [41].
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Figure 8: Comparison of classification performance based on the accuracy of different models using RFE (a), filter with HRFA (b), filter
with SFS (c), SFS (d), genetic (e), and filter with SBS (f) feature selection algorithms.

13Computational and Mathematical Methods in Medicine



Support vector machine (SVM) consists in finding a
hyperplane (straight line in the case of two dimensions) that
best separates these two classes in the case of a binary classi-
fication [42]. The separating hyperplane is represented by
the following equation [43]:

H xð Þ =wTx + b, ð14Þ

wherew is a vector ofm dimensions and b is a term. The deci-
sion function, for an example x, can be expressed as follows:

Class = 1 Si H xð Þ > 0,

Class = −1 Si H xð Þ < 0:

(
ð15Þ

In reality, most of the problems are multiclass; in this case,
solutions based on SVM methods reduce the multiclass
problem to a composition of several biclass hyperplanes
making it possible to draw the decision boundaries between
the different classes.

3.8. Evaluation Metrics. In different steps of keratoconus
classification, the performance evaluation of obtained results
is based in classification accuracy, recall, f 1-score, ROC
curve, and prediction time.

The precision is a measure that expresses how accurate
your model is relatively to those predicted positive, how
many of them are actually positive [44]. In our case, preci-
sion indicates eyes correctly predicted having keratoconus
out of all eyes actually having keratoconus. Precision is
calculated using the following formula:

Precision = TP
TP + FP

: ð16Þ

The recall (or true positive rate) is the measure of our
model correctly identifying true positives [44]. Thus, for all
instances who actually have keratoconus disease, recall tells
indicates how many the model correctly identified as having
a keratoconus disease. Recall is computed using the follow-
ing equation:

Recall =
TP

TP + FN
: ð17Þ

The f 1-score is a metric combining false positives and
false negatives to strike a balance between precision and
recall [44]. It is a weighted average (or harmonic average)
of the precision and recall. Model is considered perfect when
F1-score is 1, while the model is considered as a total failure
when F1-score is 0. F1-score is computed as follows:

F1 − Score = 2 ∗
Precision ∗ Recall
Precision + Recall

: ð18Þ

The accuracy is a popular measure that describes classi-
fication performance of the model over all classes [44]. It
represents the ratio between the number of correct predic-
tions to the total number of predictions. Accuracy is calcu-
lated using the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
, ð19Þ

where true positives (TP) is number of correct samples
predicted as “yes.” True negatives (TN) is number of correct
samples predicted as “no.” False positives (FP) is number of
samples that are incorrectly predicted as “yes” when they are
actually “no.” False negatives (FN) is number of samples
that are incorrectly predicted as “no” when they are
actually “yes.”

Execution time is the measurement of the time con-
sumed by different machine learning models for the training
and prediction phases to perform a classification.

Area under ROC curve (AUC) curve is a graph that
represents relationship between false positive rate and true
positive rate of a test for all possible thresholds. Ordinates
represent false positive rate and abscissas correspond to true
positive rate. ROC curve expresses the ability of a classifier to
differentiate between true positive (TP) and false positive
(FP) rates [44]. The value of ROC lies between 0.5 and 1,
and efficient classifier tends to maximize the ROC value
towards 1.
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Figure 9: Comparison of classification performance based on the accuracy of different models using SBS feature selection algorithms.
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Figure 10: Continued.
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4. Simulation Results

4.1. Dataset Description. The current comparative study is
based on the public keratoconus dataset of Harvard
Dataverse [33], available in: https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/G2CRMO.
Structured in csv file, this dataset is composed of 446
features of 3162 rows. Eyes are classified in 4 classes as
described in Table 3 below.

This dataset is extracted and used in [5] from a dataset of
12,242 eye images acquired from SS-1000 CASIA OCT
Imaging Systems images and representing corneal swept
source optical coherence tomography (OCT) in multiple
centers across Japan.

4.2. Technical Description of the Used Calculator. The differ-
ent classification models studied were implemented in
Python using Jupyter application. All the simulations were
carried out with CUDA 10.1 under Ubunto16.04, using a
Xeon E5-2697V4 CPU (18 cores, 36 threads) ECC: on, a
RAM of 64Gbytes DDR4 2133 MHz, a GPU 1 GTX 1070
Ti (8GB GDDR5, CUDA cores: 2432), total 38912 threads,
ECC: off and a 2 Tesla k80 GPU (24GB GDDR5, CUDA
cores: 4992), total 53,248 threads, ECC: on.

4.3. Obtained Results considering Two Classes. Obtained
results of first classification task, applying different algo-
rithms of features selection on the original dataset, consider-
ing just two classes of eyes (class 1 for normal eyes with a
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Figure 10: Classification accuracy of different models using all features (a) and applying mutual information (b), ANOVA (c), embedded
(d), embedded with a filter (e), and filter with RFE (f) feature selection algorithms.
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Figure 11: Classification accuracy of different models using RFE (a), filter with HRFA (b), filter with SFS (c), SFS (d), genetic (e), and filter
with SBS (f) feature selection algorithms.
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total of 264 elements, and class 2 of keratoconus eyes with à
total of 2989 elements) and using different classification
models are illustrated in Figures 4–6 below.

Figures 7–9 show the classifier performance compari-
son based on the accuracy, using retained features by dif-
ferent features selection methods and considering 2
keratoconus classes.

4.4. Obtained Results considering Four Keratoconus Classes.
The same proposed model is evaluated using the original
dataset and considering the four classes of eyes as already
illustrated in Table 2, both without and with features selec-
tion. Figures 10 and 11 below represent simulation results.

The classification algorithm comparison based on the
classification accuracy of different models associated to the
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Figure 12: Comparison of classification performance based on the accuracy of different models using all features (a) and applying mutual
information (b), ANOVA (c), embedded (d), embedded with a filter (e), and filter with RFE (f) feature selection algorithms.
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classification task considering 4 keratoconus classes is illus-
trated in Figures 12 and 13 below.

The results provided by the previous simulations show that
the random forest algorithm represents the highest perfor-
mance compared to other algorithms, both with and without
features selection. RF algorithm allowed keratoconus classifica-

tion with an accuracy around 98% in the case of classification
according to 2 classes and exceeding 91% in the case of the clas-
sification considering 4 keratoconus classes. These results are
obtained by using a number of variables to be retained fixed
at a maximum of 10 for the features selection algorithms which
require mentioning the number of features to be selected.
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Figure 13: Comparison of classification performance based on the accuracy of different models using RFE (a), filter with HRFA (b), filter
with SFS (c), SFS (d), genetic (e), and filter with SBS (f) feature selection algorithms.
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5. Discussion

The main objective of this work is to present a comparative
study of different machine learning models’ performances in
the case of keratoconus classification, based on the public
keratoconus dataset of Harvard Dataverse, both without
and with feature selection. Each classification technique
was applied using all the variables of the dataset, then by
applying 11 features selection algorithms to select relevant
variables. To assess studied model’s ability to correctly clas-
sify keratoconus, 2 classification tasks were performed. The
first classification was carried out retaining only 2 classes
(normal eyes and keratoconus eyes), and the second classifi-
cation was carried out considering 4 classes (class 1 for
normal eyes, class 2 for healthy eyes with form fruste
keratoconus, class 3 for eyes with mild keratoconus, and
class 4 for eyes with advanced keratoconus stage).

In overall, RF algorithm has a good ability of differenti-
ating between normal eyes and keratoconus eyes. RF
classifier provided the best performance in terms of classifi-
cation accuracy using all features and for all algorithms of
variable selection accepted the filter combined to the HRFA
algorithm in the case of 2 and 4 classes of keratoconus.
Table 4 below shows the performance of RF model in terms
of classification accuracy retaining 2 and 4 keratoconus clas-
ses with respect to the different algorithms of features selec-
tion already mentioned.

On the other hand, and as illustrated by Table 2 below,
RF algorithm represented the highest performances by the
application of the SFS algorithm of feature selection. In the
case of the classification using only 2 eye classes, this method
generated an accuracy of 98.10% using just 10 variables,
against 98.0% by the same classifier applied to all the dataset
composed of 446 variables. Also, the execution time in this

case was reduced remarkably from 16.014 seconds to 3.241
seconds. In the second classification task, taking into
account 4 classes of keratoconus, the classification accuracy
of the RF was of the order of 95.32% by processing the 10
selected variables using the SFS algorithm, against 95.32%
by use of all dataset variables with a significant decrease in
execution time from 20.485 seconds to 3.702 seconds.

Table 5 below illustrates the performances of different
classifiers, applied with different techniques of features selec-
tion, considering 2 and 4 classes.

Generally, algorithms of RF, LR, and LDA represent the
best performances in different keratoconus classification
tasks. Figure 14 below illustrates the ROC curves compari-
son of RF, LR, and LDA algorithms applied on the retained
variables, using SFS features selection algorithm, with
respect to the keratoconus classes C1, C2, C3, and C4.

Obtained ROC curves show that RF, LR, and LDA
models discriminate accurately different classes of keratoco-
nus using just 10 variables instead of 446 features, hence, the
effectiveness of SFS algorithm in the selection of relevant
variables, thus, reducing the execution time and material
resources of computations. RF algorithm represents the
highest performance with an area under curve (AUC)
between 98% and 100% across different keratoconus classes.
LR and LDA models provide an AUC varying between 94%
and 100% for different keratoconus classes.

However, concerning the comparison of the feature
selection algorithms according to the calculated execution
time, this work made it possible to classify these algorithms
into 3 categories. A first category of the fastest algorithms
which are dedicated to execution on personal computers
and whose calculated execution time does not exceed 3
minutes, these algorithms are mutual information, ANOVA,
embedded, embedded with filter, filter with RFE, RFE, and
finally, filter with HRFA algorithms. The second category
of these algorithms concerns algorithms for which the calcu-
lated execution time varies from 18 minutes to 313 hours,
these algorithms require efficient calculators with good hard-
ware configurations, and this category is composed of filter
with SFS, SFS, genetic, and filter with SBS algorithms. The
third category is composed of algorithms for which the
execution time exceeds 300 hours, and the algorithms of
this category are SBS algorithm which was applied just
on the case of keratoconus classification considering two
classes, due to the expensive prediction time it consumed.
Table 6 below resumes different categories of features
selection algorithms.

In order to validate the proposed methodology, the
adopted process is applied on the database keratoconus
[45] composed of 42 features out of 205. Table 7 below pre-
sents a brief description of the used dataset:

In the case of binary classification considering 2 kerato-
conus classes (normal and keratoconus eyes) and using a
subset of six selected variables, the highest performance
was achieved, applying 10-fold cross-validation, by RF
classifier using genetic selection features algorithm. The
best-obtained accuracy was in the range of 93%. In the case
of 6 keratoconus classes, the highest performance was
provided by the NB model, trained on a subset of 6 selected

Table 4: Classification accuracy of RF model with respect to
different feature selection methods.

Model Feature selector

Keratoconus
classification
accuracy

2 classes 4 classes

Random forest

All features 98.0% 95.32%

MI 97.15% 90.54%

ANOVA 97.03% 90.83%

Embedded 97.63% 91.21%

Embedded and filter 96.81% 89.79%

Filter and RFE 97.63% 93.17%

RFE 97.91% 93.83%

Filter and HRFA 88.9% 77.9%

Filter and SFS 97.76% 93.64%

SFS 98.1% 95.32%

Genetic 98.04% 94.34%

Filter and SBS 97.34% 93.71%

SBS 98.07% N.A

20 Computational and Mathematical Methods in Medicine



Table 5: Precision, recall, f 1-score, accuracy, and execution time of different models using different features selection algorithms.

Method Model
Keratoconus classification using 2 classes Keratoconus classification using 4 classes

Precision Recall
F1

-score
Accuracy

Time in
second

Precision Recall
F1

-score
Accuracy

Time in
second

All features

LR 0.97 0.97 0.97 97.38% 1.384256 0.93 0.94 0.93 93.52% 2.281342

LDA 0.96 0.96 0.96 96.17% 1.949949 0.9 0.9 0.9 89.88% 1.747491

KNN 0.96 0.96 0.95 95.73% 6.792791 0.91 0.91 0.91 91.37% 5.829261

CART 0.97 0.96 0.96 96.14% 5.563709 0.92 0.92 0.92 91.49% 6.864419

NB 0.95 0.93 0.94 93.30% 0.273079 0.89 0.65 0.71 64.80% 0.242261

SVM 0.93 0.92 0.88 91.88% 9.076491 0.76 0.82 0.75 82.36% 14.471874

RF 0.98 0.98 0.98 98.00% 16.014512 0.95 0.95 0.95 95.32% 20.485403

Filter and mutual
information

LR 0.93 0.93 0.93 93.46% 0.898035 0.81 0.87 0.84 87.35% 2.377594

LDA 0.97 0.97 0.97 96.93% 0.230103 0.87 0.9 0.87 90.01% 0.092326

KNN 0.95 0.96 0.95 95.61% 0.259209 0.83 0.87 0.84 87.32% 0.192763

CART 0.96 0.96 0.96 95.67% 0.180062 0.88 0.88 0.88 87.83% 0.190027

NB 0.95 0.94 0.94 94.06% 0.060432 0.87 0.8 0.82 79.79% 0.059485

SVM 0.9 0.92 0.89 91.97% 0.796906 0.77 0.83 0.75 82.58% 1.20752

RF 0.97 0.97 0.97 97.15% 3.884638 0.89 0.91 0.89 90.54% 4.793544

ANOVA

LR 0.95 0.95 0.95 95.29% 1.03231 0.82 0.88 0.85 88.49% 1.463929

LDA 0.96 0.96 0.96 96.27% 0.144063 0.86 0.89 0.86 89.28% 0.092706

KNN 0.95 0.96 0.95 95.57% 0.203406 0.86 0.88 0.87 87.92% 0.186572

CART 0.96 0.96 0.96 95.61% 0.155927 0.87 0.87 0.87 87.13% 0.165356

NB 0.95 0.93 0.94 92.85% 0.06592 0.88 0.69 0.74 68.66% 0.067247

SVM 0.95 0.95 0.95 95.35% 0.628557 0.8 0.86 0.81 85.52% 1.203339

RF 0.97 0.97 0.97 97.03 3.067386 0.9 0.91 0.9 90.83% 4.246253

Embedded

LR 0.97 0.97 0.97 96.97% 0.772439 0.83 0.89 0.85 88.87% 1.47536

LDA 0.97 0.97 0.97 97.12% 0.183223 0.88 0.9 0.87 89.66% 0.191917

KNN 0.96 0.96 0.96 96.33% 0.351021 0.89 0.89 0.88 88.74% 0.198216

CART 0.97 0.97 0.97 96.55% 0.399475 0.88 0.88 0.88 88.39% 0.343518

NB 0.96 0.95 0.96 95.16% 0.059198 0.9 0.82 0.85 82.16% 0.061666

SVM 0.96 0.96 0.96 96.05% 0.745212 0.81 0.86 0.82 86.24% 1.343924

RF 0.98 0.98 0.98 97.63% 4.735932 0.91 0.91 0.91 91.21% 5.290628

Embedded and filter

LR 0.96 0.96 0.96 96.08% 0.71674 0.8 0.87 0.83 86.62% 1.191328

LDA 0.96 0.96 0.96 96.11% 0.216366 0.89 0.88 0.85 88.49% 0.059547

KNN 0.96 0.96 0.96 96.21% 0.185542 0.86 0.88 0.86 88.43% 0.151569

CART 0.96 0.96 0.96 95.45% 0.084678 0.86 0.86 0.86 85.42% 0.088294

NB 0.94 0.94 0.94 94.28% 0.06354 0.88 0.89 0.88 88.90% 0.059538

SVM 0.95 0.95 0.94 94.88% 0.510619 0.8 0.86 0.81 85.80% 0.873448

RF 0.97 0.97 0.97 96.81% 2.4646 0.89 0.9 0.89 89.79% 2.605076

Filter and RFE

LR 0.98 0.98 0.98 97.63% 0.802103 0.8 0.86 0.82 86.15% 2.173507

LDA 0.97 0.97 0.97 97.09% 0.180395 0.87 0.9 0.87 89.91% 0.091918

KNN 0.95 0.96 0.95 95.57% 0.287014 0.83 0.87 0.84 87.29% 0.16819

CART 0.96 0.96 0.96 96.21% 0.162709 0.9 0.89 0.89 89.28% 0.18652

NB 0.95 0.94 0.94 94.31% 0.064485 0.87 0.86 0.87 86.31% 0.055916

SVM 0.9 0.92 0.89 91.97% 0.838237 0.77 0.83 0.75 82.58% 1.209206

RF 0.98 0.98 0.98 97.63% 3.765689 0.93 0.93 0.93 93.17% 4.597132
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Table 5: Continued.

Method Model
Keratoconus classification using 2 classes Keratoconus classification using 4 classes

Precision Recall
F1

-score
Accuracy

Time in
second

Precision Recall
F1

-score
Accuracy

Time in
second

RFE

LR 0.94 0.94 0.94 94.37% 0.724412 0.83 0.89 0.85 88.87% 1.428089

LDA 0.97 0.97 0.97 96.84% 0.173882 0.89 0.9 0.87 89.88% 0.09103

KNN 0.97 0.97 0.97 97.06% 0.272294 0.9 0.9 0.9 89.98% 0.213538

CART 0.97 0.97 0.97 96.52% 0.13398 0.91 0.9 0.91 90.26% 0.206897

NB 0.96 0.96 0.96 95.61% 0.055933 0.91 0.86 0.87 85.52% 0.05992

SVM 0.96 0.96 0.96 96.14% 0.502924 0.81 0.86 0.82 86.43% 1.160413

RF 0.98 0.98 0.98 97.91% 3.210188 0.94 0.94 0.94 93.83% 4.381234

Filter and HRFA

LR 0.84 0.92 0.88 91.65% 0.234221 0.7 0.83 0.76 82.89% 1.201195

LDA 0.84 0.92 0.88 91.65% 0.068874 0.7 0.83 0.76 82.96% 0.063042

KNN 0.86 0.91 0.88 90.99% 0.173318 0.74 0.81 0.77 80.58% 0.157148

CART 0.86 0.87 0.86 86.78% 0.078698 0.74 0.76 0.75 76.13% 0.075387

NB 0.84 0.92 0.88 91.65% 0.060843 0.75 0.83 0.76 83.05% 0.057565

SVM 0.84 0.92 0.88 91.65% 0.589599 0.7 0.83 0.76 82.99% 1.006607

RF 0.86 0.89 0.87 88.90% 2.95956 0.74 0.78 0.76 77.90% 3.135792

Filter and SFS

LR 0.96 0.96 0.96 96.30% 0.661703 0.81 0.87 0.84 87.45% 1.456912

LDA 0.97 0.97 0.97 96.96% 0.092182 0.87 0.89 0.86 89.06% 0.092238

KNN 0.96 0.96 0.96 95.86% 0.20427 0.84 0.87 0.85 86.75% 0.198333

CART 0.96 0.96 0.96 95.98% 0.136162 0.9 0.9 0.9 89.98% 0.226029

NB 0.94 0.94 0.94 94.21% 0.057639 0.89 0.86 0.87 86.12% 0.059771

SVM 0.9 0.92 0.89 91.97% 0.639869 0.81 0.87 0.83 86.62% 1.280597

RF 0.98 0.98 0.98 97.76% 3.377056 0.93 0.94 0.93 93.64% 4.575722

SFS

LR 0.98 0.98 0.98 97.60% 0.627829 0.8 0.86 0.82 86.34% 1.447075

LDA 0.97 0.97 0.97 97.31% 0.150447 0.89 0.9 0.88 89.95% 0.091448

KNN 0.96 0.96 0.96 96.40% 0.264232 0.9 0.9 0.9 90.01% 0.179493

CART 0.97 0.97 0.97 97.09% 0.148523 0.91 0.91 0.91 91.33% 0.158256

NB 0.95 0.94 0.94 94.12% 0.059645 0.91 0.86 0.88 86.09% 0.056018

SVM 0.96 0.96 0.95 95.89% 0.516274 0.76 0.85 0.8 85.04% 1.071349

RF 0.98 0.98 0.98 98.10% 3.241881 0.95 0.95 0.95 95.32% 3.702065

Genetic

LR 0.97 0.98 0.97 97.53% 0.660959 0.82 0.88 0.84 87.98% 1.426594

LDA 0.97 0.97 0.97 96.81% 0.090565 0.9 0.9 0.9 90.36% 0.091082

KNN 0.97 0.97 0.97 96.81% 0.198013 0.84 0.87 0.85 87.13% 0.183919

CART 0.97 0.97 0.97 97.12% 0.148974 0.91 0.91 0.91 90.20% 0.191642

NB 0.96 0.95 0.95 94.75% 0.058466 0.91 0.88 0.89 87.51% 0.055448

SVM 0.95 0.95 0.95 95.32% 0.636181 0.81 0.87 0.83 86.75% 1.192417

RF 0.98 0.98 0.98 98.04% 3.51857 0.94 0.94 0.94 94.34% 4.337631

Filter and SBS

LR 0.97 0.97 0.97 96.93% 0.662359 0.81 0.87 0.83 86.88% 1.44051

LDA 0.96 0.96 0.96 96.24% 0.090107 0.88 0.9 0.87 89.60% 0.091316

KNN 0.95 0.96 0.95 95.67% 0.192713 0.84 0.87 0.85 86.88% 0.190318

CART 0.96 0.96 0.96 95.70% 0.14732 0.9 0.9 0.9 90.26% 0.189021

NB 0.94 0.94 0.94 94.44% 0.055937 0.89 0.83 0.85 82.86% 0.055396

SVM 0.9 0.92 0.89 91.94% 0.649443 0.81 0.87 0.82 86.53% 1.272575

RF 0.97 0.97 0.97 97.34% 3.432132 0.94 0.94 0.93 93.71% 4.532753
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Figure 14: Comparison of ROC curves of RF, LDA, and LR algorithms with respect to the normal eyes class (a), forme fruste keratoconus
class (b), mild keratoconus class (c), and advanced keratoconus class (d) using the selected variables by applying SFS method.

Table 5: Continued.

Method Model
Keratoconus classification using 2 classes Keratoconus classification using 4 classes

Precision Recall
F1

-score
Accuracy

Time in
second

Precision Recall
F1

-score
Accuracy

Time in
second

SBS

LR 0.98 0.98 0.98 97.85% 0.662359

LDA 0.97 0.97 0.97 97.31% 0.090107

KNN 0.96 0.96 0.96 96.08% 0.192713

CART 0.97 0.97 0.97 96.90% 0.14732 N.A

NB 0.95 0.94 0.94 93.87% 0.055937

SVM 0.95 0.95 0.94 95.07% 0.649443

RF 0.98 0.98 0.98 98.07% 3.432132
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variables using Boruta [28] algorithm of feature selection.
The classification accuracy of this model was 71%.

6. Conclusions

In conclusion, the current work represented a comparative
study of keratoconus classification performances using dif-
ferent machine learning classifiers. The classification was
performed in 2 steps, retaining 2 target classes then consid-
ering 4 target classes, applying and without features selec-
tion. The obtained results demonstrated that RF algorithm
combined to SFS algorithm, which has selected just 10 fea-
tures, provided a classification accuracy relatively higher
than the use of all features, i.e., 446 variables. Given the
importance of execution time in addition to classification
performance, the use of SFS algorithm has reduced significa-
tively the execution time and has increased classification
accuracy by eliminating harmful variables to classification
models, hence, the usefulness and the impact of including
selection of critical and relevant features to be used in the
classification, especially in the case of largest datasets. This
work was carried out as part of a project involving machine
and deep learning, in the field of ophthalmology, which aims
to produce an intelligent system capable of detecting and
classifying keratoconus based on the analysis of topographic
maps of the eyes.

Data Availability

The current comparative study is based on the public kerato-
conus dataset of Harvard Dataverse, available in: https://
dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10
.7910/DVN/G2CRMO.
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