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Abstract: Cerebrovascular diseases are conditions caused by problems with brain vasculature, which
have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in
the brain and crucial for the formation and resolution of brain edema. Considering brain edema
is an important pathophysiological change after stoke, AQP4 is destined to have close relation
with cerebrovascular diseases. However, this relation is not limited to brain edema due to other
biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in
cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain
edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral
hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the
studies of recent years directly from cerebrovascular diseases animal models or patients, especially
those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an
excellent therapeutic target.
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1. Introduction

Aquaporins (AQPs) are a family of water channel proteins and famous for water transportation
under physical and pathological conditions. Since the first water channel, termed AQP1, was
discovered by Peter Agre in 1992 [1], at least 13 AQP members have been found in mammals [2].
A consensus motif is a common characteristic of all members of AQPs, which is essential for pore
formation [3]. Apart from the pure water channel (AQPO, -1, -2, -4, -5, -6, and -8), there are a subset of
AQPs that also transport glycerol called aquaglyceroporins (AQP3, -7, -9, and -10) [4].

In 1994, Agre’s group isolated the fourth mammalian member of the aquaporin water channel
family (AQP4) by homology cloning, which regulated body water balance and mediated water flow
within the central nervous system (CNS) as the osmoreceptor [5]. AQP4 is the most abundant water
channel in CNS and predominantly expressed in astrocyte foot processes surrounding capillaries
astrocyte processes which are comprised of the glial limiting membrane and in ependymal cells [6,7].
It is crucial for the formation and resolution of brain edema. Besides CNS water balance maintenance,
by means of AQP4 knockout animals, several other biological effects of AQP4 have been demonstrated,
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including neural signal transduction regulation, synaptic plasticity, astrocyte migration, neurogenesis
and neuroinflammation [8-12].

Cerebrovascular diseases are conditions caused by problems with brain vasculature, which
mainly contain ischemic and hemorrhagic stroke. These diseases have a high morbidity and mortality
throughout the world. Because brain edema is an important pathophysiological change after stoke,
AQP14 is destined to have close relation with cerebrovascular diseases. However, this relation is not
limited to brain edema. This review briefly introduces the structure and function of AQP4 and focuses
on the effects of AQP4 on stroke.

2. Structure and Function of AQP4

2.1. Structure and Distribution of AQP4

AQP4 monomers consist of six helical, membrane-spanning domains and two highly conserved
Asn-Pro-Ala (NPA) motifs that create a narrow aqueous pathway [13] (Figure 1A). Similar to other
aquaporins, AQP4 monomers also assemble as tetramers. Importantly, AQP4 tetramers further cluster
in the plasma membrane forming crystal-like supramo-lecular assemblies, termed orthogonal arrays
of particles (OAPs). OAPs can be visualized in membranes by freeze-fracture electron microscopy
whichare originally confirmed to be formed by AQP4 in AQP4-transfected Chinese hamster ovary
cells [14,15]. AQP4 has two major isoforms: M1 and M23, which are transcribed from two different
initiation sites on the same gene. M1 is a relatively long isoform with translation initiation at Met-1,
while M23 is a shorter one with translation initiation at Met-23 [16].
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Figure 1. The structure and distribution of aquaporin-4 (AQP4). (A) AQP4 has six transmembrane
domains (1-6) and five connecting loops (A-E). Loops B and E contain highly conserved “NPA” motifs
(hemipores) that overlap midway creating a highly selective water pore; (B) AQP4 is polarized at the
astrocyte processes facing cerebrospinal fluid (CSF)-brain and blood-brain barrier. Ependymal cells
have basolateral expression of AQP4 [13,14,17].
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Although AQP4 is the most abundant water channel in the brain, it is only detected in the
plasma membrane of astrocytes and ependymal membranes since its discovery over two decades.
Its location can be characterized as the cell surfaces of the blood-brain barrier (BBB) and cerebrospinal
fluid (CSF)-brain barrier. Therefore, AQP4 is expressed in astrocyte foot processes surrounding
capillaries, astrocyte processes which are comprised of the glial limiting membrane, ependymal cells
and subependymal astrocytes [7,18] (Figure 1B). Besides, it was also found that AQP4 mRNA and
protein are expressed by reactive microglial cells. However, this is still controversial because of a lack
of support from further study [19,20]. The polarized distribution of AQP4 depends on some proteins
also with polarized expressionin astrocytes. a-syntrophin, a member of the dystrophin associated
protein complex, plays an important role in anchoring of AQP4 to astrocyte end-foot processes [21,22].
Besides, the matrix constituent agrin is also responsible for AQP4 polarization [21,23].

2.2. Animal Models for Studying Function of AQP4

Currently, no effective and specific AQP4 inhibitors have been developed. AQP4 knockout
mice play essential roles in exploring AQP4 function. Since all properties are similar to wild
type mice except absence of AQP4, AQP4 knockout mice are excellent candidates for AQP4 study.
Numerous reports have revealeddifferentAQP4 functions through comparing AQP4 deletion mice
with wild type mice [8-12]. There are mainly three research groups that have reported AQP4 knockout
lines. Verkman’s group, from San Francisco, USA, first generated AQP4 knockout lines in 1997,
though they revealed many biological properties of AQP4 [24]. Afterwards, Hu's group from Nanjing,
China and the group of Ottersen and Nagelhus from Oslo, Norway also generated AQP4 knockout
lines [25,26]. However, there are still some differences in the properties among the AQP4 null mice
lines. For example, brain morphology and BBB integrity are not affected in AQP4 deletion mice
from San Francisco and Oslo [20,26], which are distinct from those of Nanjing [27], suggesting tiny
differences may be produced during the generating process.

Besides AQP4 deletion, there is an alternative tool model; that is, mice lacking polarized
AQP4 expression. It has been proven that o-syntrophin deficient mice lack polarized expression
of AQP4, which are the most commonly used model with depolarized expression of AQP4 [21].
This model demonstrates the significance of polarized distribution of AQP4 in its biological properties.
In a-syntrophin-null mice, development of brain edema of an experimental acute hyponatremia model
was delayed and K* clearance in epileptic seizures was prolonged, which is in accordance with AQP4
deletion mice [28,29]. Therefore, the AQP4 depolarized expression model can be considered as an
alternative approach to test AQP4 function.

2.3. AQP4 and Brain Edema

Brain edema is excess accumulation of fluid in the intracellular or extracellular spaces of the
brain. Brian edema can result from several brain pathologies, including brain trauma, cerebrovascular
diseases, brain tumors, brain inflammation and metabolic diseases [30]. Brain edema may aggravate
the primary diseases. There are four types of brain edema: cytotoxic, vasogenic, osmotic and
interstitial edema, with the former two being the most common and classic [31]. Cytotoxic edema is
intracellular accumulation of water owing to energy failure resulting from impairment of the sodium
and potassium pump in cell membrane. Astrocytes are the major cell type involved in cytotoxic
edema [32]. The typical cytotoxic edema can be seen in early ischemia or hypoxia, cerebral malaria
and hyponatremia. Vasogenic edema occurs due to disruption of BBB, which results in entry of
intravascular proteins and fluid into extracellular space [33]. This kind of brain edema is usually found
in brain tumors, focal inflammation, abscess and late ischemia. It has been revealed the existence
of a brain-wide paravascular pathway for CSF and interstitial fluid exchange termed “glymphatic”
system [34], which contributes greatly to the two types of brain edema. Polarized distribution of AQP4
plays an important role in this pathway [35]. By means of observation to appropriate brain edema
models in AQP4 null mice versus wild types, it has been proven that AQP4 plays an important role
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in regulation of the two types of edema. Manley and colleagues established two models of cytotoxic
edema, acute water intoxication and early cerebral ischemia, and demonstrated brain edema was
significantly reduced in AQP4-deficient mice [36]. Besides, it was reported that AQP4-deficient mice
had remarkably lower brain water accumulation in acute bacterial meningitis, another cytotoxic edema
model [37]. In addition, mice lacking polarized AQP4 expression also had a reduction of water influx
after early cerebral ischemia [28]. As to vasogenic edema, Papadopoulos et al. illustrated AQP4
knockout mice had elevated brain water in three vasogenic edema models: intracerebral fluid infusion,
focal cortical freeze injury and brain tumor implantation [38]. Therefore, it can be concluded that AQP4
is involved in the formation of cytotoxic edema and elimination of vasogenic edema. Whereas, the
brain edema formed by many CNS diseases is usually not a single type, and there are also some
changes in brain edema types during the course. Therefore, the roles of AQP4 in those diseases are also
complicated, and appropriate animal models are required for continuous and dynamic observation.

2.4. Other Function of AOP4

Besides regulation of brain edema, AQP4 can elicit multiple biological effects. Here, we briefly
describe the important ones. Because AQP4 is selectively expressed in astrocytes, it is essential for
astrocytes function. Verkman’s group demonstrated that cultured astrocytes derived from AQP4
null mice had markedly low migration efficiency towards the wound [10]. Moreover, it was verified
using in vivo experiments, and it was found that astrocytes of wild type mice migrated faster than
AQP4 knockout mice [39]. It was indicated that AQP4 promoted migration of astrocytes, which
was beneficial for formation of glial scar. Meanwhile, AQP4 also modulates brain excitability in
epilepsy [40]. Binder et al. demonstrated that the latency to generalized seizures was significantly
lower in wild-type mice comparing with AQP4 deletion mice [41]. This group then explored the
mechanism and the results showed AQP4 knockout mice increased seizure duration via slowing
potassium kinetics [42]. a-syntrophin-null mice exhibited similar effects of prolonging potassium
ions clearance [28]. However, the role of AQP4 in potassium ions buffering is controversial as
Haj-Yasein et al. reported that AQP4 removal did not affect potassium ions recovery following
synaptic activation [43]. Besides potassium ions, it was also reported AQP4 null mice had a
reduction of astrocytic calcium ions spikes initiated by hypoosmotic stress, suggesting AQP4 is
associated with calcium signal transduction [8]. Moreover, AQP4 has a potential to influence synaptic
plasticity [44]. Skucas and colleagues demonstrated that absence of AQP4 selectively impaired
neurotrophin-dependent synaptic plasticity [9]. Consistently, research from other groups also shows
AQP4 is crucial for maintaining normal consolidation of long-term hippocampus-dependent memories
by promoting incorporation of new neurons into spatial memory networks [45]. In addition, AQP4 is
considered to promote neurogenesis. Hu's group showed AQP4 deletion inhibited the proliferation,
survival, migration and neuronal differentiation of neural stem cells derived from the subventricular
zone by disrupting intracellular calcium ions dynamics [46]. Their following experiment using a
depression model indicates AQP4 is required for the antidepressive action of fluoxetine through
regulating adult hippocampal neurogenesis [11].

3. Cerebral Ischemia

3.1. Expression of AQP4

The pathogenic process and pathophysiological mechanism of the corresponding clinical diseases
are properly simulated by the current brain ischemia models. There are mainly focal ischemic models:
middle cerebral arterial occlusion (MCAOQ), including permanent and transient MCAO and global
ischemic models: two or four-vessel occlusion in animal experiments. The well-known cell culture
model is oxygen and glucose deprivation (OGD) with or without reoxygenation. Studies on AQP4
expression after cerebral ischemia mainly focus on animal or cell models. It is well-known that AQP4
mRNA and protein are up-regulated at 30 min after permanent MCAO [47]. After transient MCAO
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of rat pup, AQP4 expression was increased on astrocytic end-feet in the border regions of injured
tissues at 24 h, lasting at least 72 h and normalized at 28 days, which was in accord with brain edema
showed by Magnetic resonance imaging (MRI) [48]. A continuous and dynamic observation was
carried out in another research using a MCAO and reperfusion model, and the results demonstrated
AQP4 expression was significantly increased on astrocyte end-feet both in the core and in the border of
the lesion with two peaks: 1 h and 48 h [49]. However, a recent study of a global cerebral ischemic
model showed no marked change of AQP4 within 48 h [50]. In astrocyte culture, Chikako et al.
found expression of AQP4 was significantly decreased by OGD injury, but gradually recovered
after reoxygenation with a significant up-regulation after 16 h [51]. Other research also showed
up-regulation of AQP4 24 h after OGD/reoxygenation [52]. There are also studies from cerebral
infarction patients. It was demonstrated AQP4 was only expressed on astrocytes and was highly
localized on their end feet facing the outer surface of capillaries [53,54]. Stokum and coworkers’
work focused on AQP4 expression in different cerebral zones of both infarction patients and animal
models. Their results revealed in cortex perivascular AQP4 was reduced with an unchanged AQP4
protein abundance, while an increase of perivascular and plasmalemmal AQP4 was observed in white
matter with a 2.2- to 6.2-fold increase in AQP4 isoform abundance. Meanwhile, ischemic white matter
swelled by approximately 40%, while cortex swelled by approximately 9% [55]. Accordingly, it can
be concluded that AQP4 expression after cerebral ischemia tends to be up-regulated, although the
specific change forms may be different due to different models.

3.2. Regulation of AQP4 after Cerebral Ischemia

AQP4 expression is regulated by some signal transduction pathways in some in vivo and in vitro
experiments. It was reported that AQP4 was down-regulated by activating protein kinase C (PKC)
pathway by hydrogen sulfide or melatonin after MCAO, suggesting PKC pathway is essential for
AQP4 down-regulation [56,57]. Mitogen-activated protein kinase (MAPK) pathways include three
main members: extracellular signal-regulated kinase (ERK), C-Jun amino-terminal kinase (JNK) and
p38-MAPK. There are two studies using astrocyte OGD/reoxygenation model, but the results are a little
different. AQP4 was up-regulated by activation of ERK and p38-MAPK pathways [52], while JNK and
p38-MAPK pathways were positive in another study [51]. The distinction may be owing to different
experimental parameters (OGD 4 h vs. OGD 6 h) and the fact that cross talk exists generally among
MAPK family. Therefore, MAPK pathways mainly have an important role in AQP4 up-regulation.

3.3. Effects of AQP4 on Ischemic Edema

In the early stage of cerebral ischemia, the decline of cerebral blood flow causing hypoxia results
in impairment of Na*/K* ATPase. The energy failure leads to accumulation of intracellular sodium,
which draws water into the cell inducing cytotoxic edema [58]. The development of ischemic cellular
damage causes breakdown of BBB, giving rise to leakage of plasma proteins into extracellular space.
The involved mechanisms are complex, including reverse pinocytosis, disputed Ca?* signaling and
action of other agents such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases
(MMPs) [17]. With the advance of BBB disruption, vasogenic edema occurs and even hemorrhagic
conversion appears in some cases. The two types of cerebral edema coexist during the non-acute phase
of cerebral ischemia [59] (Figure 2).

The effects of AQP4 on brain edema after cerebral ischemia are mainly investigated by AQP4
inhibition models, including AQP4 knockout, AQP4 depolarized distribution and AQP4 gene silencing.
Because cytotoxic edema is the predominant type in the early stage, AQP4 inhibits formation of edema
based on the knowledge mentioned above. The first report by Manley et al. showed brain edema
was decreased in AQP4-deficient mice at 24 h after permanent MCAO [36]. Then several studies
reveal similar results in different ischemic models. AQP4 small interfering RNA (siRNA) relieved
cellular edema at 6 h after MCAO [60]. Also, it was shown that AQP4 deletion reduced brain edema
at 24 h after transient MCAO [61]. Yang and colleagues demonstrated that AQP4 knockdown by
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siRNA led to reduced brain edema accompanied by a higher apparent diffusion coefficient (ADC)
value from 0 h to 12 h after hypoxia—ischemia established by suturing the bilateral carotid arteries in
newborn piglets [62]. Moreover, in global cerebral ischemia models, AQP4 knockout alleviated brain
water content at 24 h as well as astrocyte swelling in brain slice [63]. Since AQP4 plays dual roles in
the two types of edema and the brain edema of cerebral ischemia during non-acute phase is mixed
one, the effects of AQP4 during the phase are complex. It was reported brain edema was reduced
in a-syntrophin deficient mice at 48 h and 72 h after transient MCAO [64]. Meanwhile, brain water
content was increased in wild type mice compared with AQP4 deletion mice at 3 days and 5 days
after severe global cerebral ischemia produced by transient four-vessel occlusion [65]. However, a
recent study showed AQP4 deletion increase brain edema determined by MRI especially at 3 days
and 7 days after transient MCAO [66]. Thus, the roles of AQP4 on brain edema in non-acute cerebral
ischemia are complex and possibly related to models and detecting methods. In astrocytes culture,
AQP4 siRNA protects against water influx in the formation of astrocyte swelling, while delays water
clearance in the resolution of astrocyte swelling after OGD/reoxygenation [67]. In addition, it was
reported thrombin preconditioning up-regulated AQP4 with predominant AQP4-M1 isoform at 24 h
after MCAOQ, leading to reduction of brain edema [68]. It was suggested the ratio of AQP4-M23 and
AQP4-M1 may be crucial for edema formation and elimination.
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Figure 2. Mechanisms of edema formation and the effects of AQP4 in cerebral ischemia and
intracerebral hemorrhage (ICH). In cerebral ischemia, AQP4 promotes water entry into perivascular
astrocyte end-feet resulting in cytotoxic edema. As further ischemic cellular damage evolves, the
mechanism shifts into vasogenic edema. During ICH, release of multiple toxic substancescauses
disruption of blood-brain barrier (BBB), which gives rise to vasogenic edema. AQP4 facilitates the
reabsorption of edema fluid from the extracellular space. Then secondary cellular injury leads to energy
failure causing cytotoxic edema. Thus, mixed brain edema exists in the two types of stroke but the
predominant type is different [17,58,69,70].

3.4. Effects of AQP4 on Ischemic BBB and Neural Cells Injury

In addjition to the influence of brain edema, AQP4 can elicit other biological effects as mentioned
above. As a result, AQP4 may affect ischemic BBB and neural cells injury not only dependent on
regulation of brain edema. Since AQP4 is highly concentrated in the important location of BBB,
it is regarded to play important roles in maintaining BBB integrity in development and mature
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individuals [71,72]. However, in a global cerebral ischemic model, AQP4 deletion reduced BBB
disruption measured by Evans blue dye extravasation [65]. Similar result was also found in a transient
MCAOQO model [61]. It may result from inhibition of secondary injury to BBB by reduction of brain
edema in AQP4-null mice, but dynamic and systematical observation to ischemic BBB injury remains
to be carried out in the future. Moreover, it was demonstrated AQP4 knockout improved outcome
and neurological function, reduced infarction volume, increased neuronal survival, and blocked
apoptosis and inflammatory response after cerebral ischemia, which was consistent with brain edema
reduction [61-63,65]. However, AQP4 deletion was reported to be beneficial at long term (14 days
after MCAOQO) with neuronal survival improvement and neuroinflammation reduction without a direct
effect on edema formation, suggesting a complex role of AQP4 in the ischemic pathophysiological
cascades [66]. In an in vitro experiment, AQP4 siRNA also attenuated astrocytes injury induced by
OGD/reoxygenation [52,73]. Nevertheless, one study revealed reverse results that AQP4 deletion
aggravated inflammation and promoted neuronal loss at 24 and 72 h after MCAO [74]. Meanwhile, in
chronic cerebral ischemia (35 days after MCAQO), AQP4 knockout had more severe brain atrophy and
more neuronal loss as well as impaired astrocyte proliferation and glial scar formation [75]. In summary,
the effects of AQP4 on cerebral ischemia may be very complex and include several mechanisms. In the
early stage, owing to the inhibition of relatively single cytotoxic edema, AQP4 should exhibit protective
effects. As the disease development and long-term existence of mixed edema, effects of AQP4 are
very complex, which are determined by the predominance of dual effects on the two types of edema
and certain neuroprotective effects. As to chronic ischemia, AQP4 probably contributes to facilitative
effects on neurorestoration because of its roles in astrocytes migration and neurogenesis promotion.

4. Intracerebral Hemorrhage (ICH)

4.1. Expression of AQP4

The research related to ICH is only limited to few animal model studies due to the absence of
proper cell models. Animal models of ICH contain autologous blood injection, bacterial collagenase
injection and spontaneous ICH models, and the former two are the most commonly used [76].
In collagenase models, bacterial collagenase disrupts the basal lamina of blood vessels and causes
blood leakage leak into the surrounding tissue. Both have merits and demerits and they differ in
ways that influence outcome. However, none of them mimic the pathophysiologic course of human
spontaneous ICH, causing relative lag in experimental ICH research [77].

Several articles have revealed AQP4 expression is up-regulated from 3 h after ICH, reaches the
peak at 2-5 day, and lasts for at least 14 days, which is not different between autologous blood [78-83]
and collagenase models [84-86]. Meanwhile, it was also reported AQP4 polarity was disturbed in
spite of AQP4 up-regulation [87]. Moreover, AQP4 is internalized following ICH and the lysosome is
involved in degrading the internalized AQP4 [86]. No research has referred to AQP4 expression in
ICH patients.

Certain signal transduction pathways are crucial for regulation of AQP4 following ICH. It was
reported that nuclear factor kB (NF-«B) participated in AQP4 up-regulation [80]. Furthermore, Chu et
al. demonstrated that activation of JNK and ERK pathways, ERK pathway, and JNK and p38-MAPK
was responsible for increase of AQP4 by VEGF, granulocyte-colony stimulating factor (G-CSF) and
erythropoietin (EPO), respectively [88-90]. This indicates MAPK pathways also play important roles
in AQP4 up-regulation.

4.2. Effects of AQP4 on Hemorrhagic Edema

Brain edema following ICH remains complicated. Studies using animal models revealed
autologous blood injected into the brain causes the activation of thrombin, plasminogen activator and
urokinase. These substances activate inflammatory cells and disrupt BBB, leading to vasogenic
edema. The above mechanism starts at several hours and peaks at several days after ICH.
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Subsequently, secondary cellular injury due to the substances from CNS cells disruption and red
blood cells lysis leads to cytotoxic edema. Thus, these degradation products maintain mixed edema,
which lasts about two to three weeks. As a result, ICH results in multiple forms of edema while
the predominant type is probably vasogenic [69,70] (Figure 2). In general, brain edema and BBB
disruption following ICH are more severe than cerebral ischemia, which usually greatly contribute to
ICH-induced neurological deficits.

Several studies have showed that the changing trend of AQP4 is parallel with brain edema
after ICH [82,83]. However, the effects of AQP4 cannot be determined without further investigation.
Tang and colleagues first observed the roles of AQP4 in ICH using AQP4 knockout mice. They focused
on brain edema surrounding hematoma and used two methods to measure brain water content and
brain specific gravity. The advantage of the latter is that it is possible to obtain reliable results in tissue
samples as small as 10-30 mg. Both methods showed AQP4 deletion aggravated brain edema at 1,
3 and 7 days after ICH [78]. Similar results were obtained by Chu et al. [88,89]. Considering AQP4
contributes to clearance of vasogenic edema and this type is predominant in ICH, it is probable that
AQP4 mainly acts on elimination of hemorrhagic edema. In addition, brain edema following ICH also
has close relation with disruption of AQP4 polarized distribution [87]. As to patient studies, one study
on polymorphism in AQP4 genes suggests AQP4 gene variant, single nucleotide polymorphism (SNP)
rs1054827, is independently associated with brain edema after ICH [91].

4.3. Effects of AQP4 on Hemorrhagic BBB and Neural Cells Injury

Disruption of BBB is an important pathophysiological change after ICH and contributes to
formation of vasogenic brain edema, giving rise to poor prognosis. It was found BBB function
measured by Evans blue extravasation was worsened by AQP4 deletion at 1, 3 and 7 days after
ICH compared with wild type mice [78,88,89]. As for the morphology of BBB, electron micrographs
showed AQP4 deletion resulted in swelling and irregular capillary endothelial cells with opening
of tight junction [78,90]. Meanwhile, AQP4 knockout reduced expression of tight junction proteins
including occludin, zonula occluden-1 (ZO-1) and claudin-5 [90]. These results suggest AQP4 may
have protective effects on BBB disruption after ICH both morphologically and functionally.

The presence of AQP4 gene also improves neurological function, increases the survival rate
and inhibits neuronal death and apoptosis after ICH [78,88,89,92]. Chu et al. first investigated the
mechanisms involved in AQP4’s effects on apoptosis. In this work, AQP4 deletion increased apoptosis
and the cell types involved were predominantly neurons and astrocytes. The apoptosis-related
proteins including activated caspase-3 and caspase-8 were increased. Meanwhile, higher levels of
tumor necrosis factor-oc (TNF-cot) and interleukin-1f3 (IL-1(3) as well as their receptors were detected
in AQP4 knockout mice. The inhibitors of the two cytokines alleviated cells apoptosis after ICH.
It suggests AQP4 deletion increases apoptosis following ICH, and the underlying mechanism may be
that cytokines, especially TNF-oc and IL-1 {3, initiate the apoptotic cascade and activates caspase-3 and
caspase-8 [92]. Therefore, AQP4 may affect ICH and even other CNS diseases by edema independent
of neuroinflammatory pathways.

Furthermore, AQP4 can be located in downstream of certain drugs and proteins, thus mediates
their effects on ICH. Although several articles reported some factors reduced brain edema and BBB
disruption with a decrease of AQP4 [81,85], it is still hard to conclude the effects are associated
with AQP4. Chu and colleagues tested the effects of VEGF, G-CSF and EPO on brain edema, BBB
permeability and cells injury following ICH and examined whether they were AQP4 dependent using
AQP4 deletion mice. They found these effects were associated with AQP4 [88-90]. Thissuggests AQP4
can mediate other neuroprotective factors’ effects as downstream pathways.

5. Subarachnoid Hemorrhage (SAH)

SAH is a devastating subtype of stroke with high mortality, which is mostly followed by aneurysm
rupture [93]. Early and delayed brain injuries are included in the pathophysiology. Early brain injury
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occurs immediately after SAH and lasts up to 72 h. Brain edema appears at early phase of SAH
due to disruption of BBB via multiple mechanisms causing vasogenic edema, which is probably
the major type [94]. Meanwhile, cytotoxic edema is detected also at early stage owing to ischemic
insult [95]. Delayed brain injury mainly results in vasospasm and brain edema in this stage is similar
to cerebral ischemia.

Research on SAH patients shows AQP4 is up-regulated on the astrocytic processes with loss of
polarization [96]. Till now, studies in SAH models mainly focus on effects of AQP4 on early brain injury.
AQP4 is increased at 6 h after SAH and maintains high levels within 72 h [97-101]. Moreover, one
study indicates an increase of AQP4 at 7 days after SAH, which is located in the phase of delayed brain
injury [102]. Thus, AQP4 may be up-regulated early after SAH and last for a relatively long time.

AQP4 may play a dual role in brain edema after SAH due to the mixed type of edema. Tait et al.
demonstrated AQP4 knockout markedly reduced brain edema and BBB disruption at 6 h and 24 h after
SAH with an increase of intracranial pressure and aggravation of neurological function [98]. In addition,
it was shown that there was no improvement in neurological deficits and neuroinflammation at 7 days
after SAH in AQP4 deletion mice compared with wide type control mice [103]. Therefore, AQP4 may
play opposite roles in the early and delayed brain injury and further research using AQP4-null mice is
urgently required.

6. Conclusions

As the most abundant AQP in the CNS, the expression of AQP4 is increased in three kinds of
cerebrovascular diseases, including cerebral ischemia, ICH and SAH. The direct effect on the related
brain edema is the basis of the action of AQP4 for these diseases. However, vasogenic edema and
cytotoxic edema may simultaneously appear in these diseases and the roles of AQP4 in the two types
of edema are opposite. Meanwhile, AQP4 also shows other biological effects in addition to the effect
on brain edema. Thus, the roles of AQP4 in these diseases are relatively complicated, which may
be determined by the balance between its effect on the predominant brain edema type and other
biological effects. Furthermore, it may also play different roles in alternative phase of the diseases.
Thus, the effects of AQP4 on cerebrovascular diseases remain to be investigated, which may become
the theoretical basis of AQP4 regulation treatment.

AQP4 plays an important role in the formation and clearance of brain edema, and appropriate
regulation of AQP4 may treat brain edema from perspectives of mechanism as a remedy of the
disadvantages of the current common treatment, such as dehydrant or surgery. Although AQP4
gene knockout is an excellent tool to study AQP4, it cannot be used clinically. Furthermore, AQP4
gene silencing or over-expression is only locally applied, and invasive procedures are required.
Therefore, the highly selective antagonist or agonist of AQP4 may be a better choice. It is
well-known that neuromyelitisoptica (NMO) is characterized by autoantibodies directed against
AQP4. However, purified NMO-IgG injected intravenously increased brain edema and infarct size
at 24 h after MCAO [103]. Moreover, Igarashi et al. developed an AQP4 inhibitor TGN-020 and
found intraperitoneal injection of TGN-020 reduced brain edema and infarct size at 24 h after MCAO.
Nevertheless, no other research has duplicated their results [104]. Thus, a highly selective antagonist
or agonist of AQP4 that can be used systemically remains to be further developed, and it promises to
become a novel, effective measure of treating cerebrovascular diseases.
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