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Abstract

Background: Accurate inference of genetic discontinuities between populations is an essential component of intraspecific
biodiversity and evolution studies, as well as associative genetics. The most widely-used methods to infer population structure
are model-based, Bayesian MCMC procedures that minimize Hardy-Weinberg and linkage disequilibrium within subpopulations.
These methods are useful, but suffer from large computational requirements and a dependence on modeling assumptions that
may not be met in real data sets. Here we describe the development of a new approach, PCO-MC, which couples principal
coordinate analysis to a clustering procedure for the inference of population structure from multilocus genotype data.

Methodology/Principal Findings: PCO-MC uses data from all principal coordinate axes simultaneously to calculate a
multidimensional ‘‘density landscape’’, from which the number of subpopulations, and the membership within
subpopulations, is determined using a valley-seeking algorithm. Using extensive simulations, we show that this approach
outperforms a Bayesian MCMC procedure when many loci (e.g. 100) are sampled, but that the Bayesian procedure is
marginally superior with few loci (e.g. 10). When presented with sufficient data, PCO-MC accurately delineated
subpopulations with population Fst values as low as 0.03 (G’st.0.2), whereas the limit of resolution of the Bayesian approach
was Fst = 0.05 (G’st.0.35).

Conclusions/Significance: We draw a distinction between population structure inference for describing biodiversity as
opposed to Type I error control in associative genetics. We suggest that discrete assignments, like those produced by PCO-
MC, are appropriate for circumscribing units of biodiversity whereas expression of population structure as a continuous
variable is more useful for case-control correction in structured association studies.
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Introduction

Genetically structured populations arise when gene flow

between groups of individuals is hindered by geographical,

behavioral, temporal, or genomic barriers. The identification of

natural groups of individuals that have originated due to partial

reproductive barriers has become an important component of

contemporary evolutionary biology research. The existence of

such groups promotes divergence and, ultimately, the origin of

evolutionary novelties. The presence of genetic structure in natural

populations, and its role as an engine of diversification, is an

essential element of modern evolutionary theory.

The failure to recognize population genetic structure has serious

ecological implications. When cryptic subpopulations go unno-

ticed, in situ conservation efforts are compromised [1,2]. Failure to

properly infer genetic structure can result in the quiet disappear-

ance of important, but hidden, contributors to ecosystem diversity

[3–5]. The ex situ conservation efforts of zoos, botanical gardens, or

germplasm repositories, are similarly affected. Inaccurate under-

standing of the patterns of genetic structure in natural populations

can result in incomplete collection strategies and a failure to

archive the standing stock of co-adapted gene complexes from

nature [6]. In ecology, precise inference of population structure is

necessary to accurately describe the distribution of biodiversity

across ecosystems, to improve conservation efforts, and, more

generally, to further understanding of the evolutionary process.

Population structure also has important medical implications

[7,8]. A phenotypic trait, e.g. disease susceptibility, and an allelic

state can become statistically associated over time due simply to

their common occurrence in a reproductively cohesive subpopu-

lation, rather than any causal mechanism. Thus, the false positive

rate is often unacceptably high in associative genetics studies unless

explicit corrections for population structure are built into the

statistical models [e.g. 9,10]. In medicine, accurate inference of

population structure is necessary to control Type I error in

association mapping studies that seek to identify the genes

responsible for diseases that frequent particular human subpop-

ulations.
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The distinct needs of human disease research and ecological

genetics have spurred the development of sensitive methods for

identifying cryptic population structure [11–14]. Foremost among

these new methods for population structure inference is the Bayesian

Markov chain Monte Carlo (MCMC) method that has been

deployed in the software STRUCTURE [11]. Pritchard et al. [11]

recognized the need for a ‘‘natural’’ clustering procedure—an

objective procedure that revealed groups directly from genetic

polymorphism data, rather than relying on subjective, a priori notions

of existing structure. Their method is thus distinguished from many of

the classic statistical procedures for understanding genetic subdivi-

sion, such as F-statistics [15] and analysis of molecular variance [16].

Pritchard et al.’s [11] method relies on the assumption (predicted by

the Wahlund effect) that, if population structure exists, then the mean

deviation from Hardy-Weinberg and linkage equilibrium across a

sampled population should be less given an assemblage of discrete

subpopulations than if the population as a whole was treated as a

single unit. Accordingly, the procedure maximizes Hardy-Weinberg

and linkage equilibrium within K subpopulations by swapping

individuals among them during the progression of a Markov chain.

Sampling from the chain reveals the posterior probability of assigning

each individual to each of the K subpopulations.

While assignment of individuals to subpopulations is automatic

under Pritchard et al.’s [11] model, the determination of K is not.

Strategies for estimating K have been proposed [17–19], but most

require many time-consuming STRUCTURE runs [see 12,13,20

for alternative approaches]. A major innovation, in which the

model propagated by the Markov chain treats K as a random

variable, was offered by Pella and Masuda [21]. This model,

which allows the number of subpopulations to be estimated

alongside the assignment of individuals during the progression of a

single Markov chain [22], has been implemented in the software

STRUCTURAMA (available at http://www.structurama.org).

Another approach long used to reveal population structure

without a priori specification of subpopulations is ordination, most

typically in the form of principal component analysis (PCA) or

principal coordinate analysis (PCO). These methods saw early uses

in numerical taxonomy [23] and have since become a mainstay in

population genetics studies of wild species. Ordination is most

commonly used to decompose complex multilocus data sets into

two or three dimensional scatter plots that represent genetic

structure spatially, with putative subpopulations forming distinct

clusters of points. However, the development of statistically

rigorous methods to assign individuals to subpopulations using

ordination results has been problematic. The role of ordination

has largely been limited to informal visual corroboration of pre-

existing ideas about population structure.

There has been a resurgence of interest in ordination in human

genetics, where it has been promoted as a computationally-

efficient, sensitive, and model-free alternative to Bayesian MCMC

methods. Bauchet et al. [24] demonstrated the sensitivity of PCO

for revealing subtle structure among European linguistic groups,

results corroborated using STRUCTURE. Patterson et al. [25]

designed statistical tests, using PCA, for the existence of population

structure in a data set and for the number of significant principal

component axes. Price et al. [14] used statistically significant axes

to continuously adjust genotypic and phenotypic scores along an

‘‘ancestry eigenvector’’ prior to association analysis. Liu and Zhao

[26] coupled ordination and cluster analysis to automatically

assign individuals to K subpopulations. The latter idea is not new

[27,28], nor was extensive empirical validation provided, but the

technique has been successfully used to identify a minimal subset

of loci useful for assigning individuals of unknown origin to

established human subpopulations [29].

In this study, we describe the development of a method, termed

PCO-MC, which uses PCO followed by a statistically rigorous

density clustering procedure (‘‘modal clustering’’) to infer popu-

lation structure. PCO is a natural choice because of a long history

of reliable results, its ability to accept missing data, and its

computational efficiency. The development of the method relies

on an examination of the properties of real data under PCO. We

then discuss the capabilities of the procedure and provide

guidelines for interpreting results using exemplar data sets. Finally,

we compare the performance of PCO-MC with another automatic

assignment procedure, the Bayesian MCMC approach imple-

mented in STRUCTURAMA, using an extensive series of

simulated data sets.

Materials and Methods

Properties of real data in principal coordinate analyses
Twenty four data sets containing multilocus amplified fragment

length polymorphism (AFLP) genotypes, and three data sets

containing inter-simple sequence repeat (ISSR) genotypes, were

obtained (Table 1). Genotypic data had been scored as binary

presence/absence characters by the original authors, and the data

matrices varied in size from 12 to 506 samples and 30 to 2810 loci.

Data sets sampled genetic variation across various taxonomic

levels, from within-population to between-species. These domi-

nant data sets were used to facilitate development of the PCO-MC

method (via exploration of the properties of real genotypic data

subjected to principal coordinate analysis), and to demonstrate

some useful properties of PCO-MC.

NTSYS 2.11x (Exeter Software) was used to calculate principal

coordinates. Pairwise genetic distances were calculated using

Jaccard’s coefficient, appropriate for binary, multilocus data [30].

The resulting matrix was double-centered using the DCENTER

module, then EIGEN was used to compute principal coordinates

along all axes. Coordinate values were weighted by multiplying them

by the percent variation explained by the axis to which they belonged.

Cluster analysis was performed using the MODECLUS

procedure in SAS 9.1 (SAS Institute, Cary, NC). In PROC

MODECLUS, a valley-seeking procedure identifies clusters as

those groups of individuals that occur in regions of high principal

coordinate density surrounded by regions of low density. All

principal coordinate axes can be considered simultaneously.

PROC MODECLUS uses kernel density estimation to generate

an idealized, multidimensional density landscape (technically, the

smoothed hyperdimensional probability density function) from

which coordinate values were assumed to have been sampled.

Density is estimated using a smoothing parameter (R) that

corresponds to the radius of the hyperspherical uniform kernel.

One can imagine moving a hollow sphere (the kernel) throughout

principal coordinate space, stopping frequently to count the

number of points within it, then calculating density as the number

of points divided by the kernel volume. That density value is then

assigned to the point in principal coordinate space upon which the

kernel is centered. This produces a numerically smooth function

from which peaks in density (clusters) can be defined by finding the

valleys of low density between them.

During an analysis, R was varied from a small value that

returned many clusters to a large value that returned one cluster.

In total, 100 fixed-radius R values, spaced in even increments,

were used to sample what we call ‘‘R-space,’’ or the union of all

possible probability density functions for a data set. All analyses

comprehensively sampled ‘‘informative R-space’’ (the subset of

density landscapes that yield more than one and less than N [the

number of individuals] clusters).

Population Structure Inference
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The weighted principal coordinate data from all 27 real data

sets were processed using PROC MODECLUS with the following

options: METHOD = 6, CASCADE = 1. PROC MODECLUS

can perform a saddle test to determine whether a given cluster is

significantly distinct. Details of the saddle test are available in the

SAS manual (Chapter 42, The MODECLUS Procedure, SAS

Institute, Cary, NC). We post-processed the SAS output to

determine the number of times that each unique cluster was

recovered across the replicated analyses, as well as the associated

p-values. A value, termed ‘‘stability’’, was calculated for each

unique cluster as the percent of informative R-space where the

cluster was found. Hence, two metrics related to the veracity of a

particular cluster, p-value (from the saddle test) and stability, were

obtained and their utility could be compared. A computer

program that produces the SAS commands necessary to perform

an analysis, and post-processes the SAS output for easy

interpretation, is available (http://lamar.colostate.edu/,reevesp/

PCOMC/PCOMC.html).

Evaluation of performance using simulated data
To compare the performance of PCO-MC with the Bayesian

approach of Pritchard et al. [11] as modified by Huelsenbeck and

Andolfatto [22], we used simulated data. Following the strategy of

Huelsenbeck and Andolfatto [22], data sets were simulated using

the software ms [31], which uses an infinite-sites model under the

coalescent to generate highly polymorphic, co-dominant data. 100

data sets were simulated under a symmetric island model with 76

different sets of parameters. An island model is appropriate

because we are most concerned with circumscription, i.e. a

discrete assignment of individuals into groups. Since discrete

clusters are not necessarily the predicted product of other, more

complex, demographic processes (e.g. isolation by distance or

progenitor-derivative relationships), we have not modeled those

important scenarios here, and leave them for future studies. The

model parameters varied were: number of subpopulations (1, 2, 4,

or 10); mutation rate (h= 4N0m, where N0 = diploid subpopulation

size and m= neutral mutation rate); and migration rate

(M = 4N0m, where m = the fraction of each subpopulation made

up of new migrant genotypes each generation). Four mutation

rates (h= 0.5, 1, 2, 4) and six migration rates (M = 0.5, 1, 2, 4, 8,

16) were used. Two very high migration rates (M = 8, 16),

equivalent to two or four migrants per subpopulation per

generation, were included to define the limits of resolution.

The data simulated with ms were converted to diploid data sets

for STRUCTURAMA using a Perl script provided by Peter

Andolfatto. Note that the empirical data sets described earlier

Table 1. Real data sets used.

Organism
Marker
system Samples Loci Citation

Eubacteria:Proteobacteria:Salmonella AFLP 19 166 [55]

Eubacteria:Proteobacteria:Salmonella AFLP 72 176 [55]

Eukaryota:Viridiplantae:eudicotyledons:Cardamine AFLP 86 359 [56]

Eukaryota:Viridiplantae:eudicotyledons:Cicer ISSR 43 150 [57]

Eukaryota:Viridiplantae:eudicotyledons:Coffea ISSR 15 230 [58]

Eukaryota:Viridiplantae:eudicotyledons:Helianthus AFLP 62 91 [59]

Eukaryota:Viridiplantae:eudicotyledons:Humulus AFLP 159 555 Reeves and Richards, unpublished

Eukaryota:Viridiplantae:eudicotyledons:Lathyrus AFLP 37 210 [60]

Eukaryota:Viridiplantae:eudicotyledons:Trollius AFLP 34 185 [61]

Eukaryota:Viridiplantae:eudicotyledons:Trollius AFLP 180 117 [62]

Eukaryota:Viridiplantae:eudicotyledons:Mimulus AFLP 50 474 [47]

Eukaryota:Viridiplantae:eudicotyledons:Pritzelago AFLP 76 674 [52]

Eukaryota:Viridiplantae:eudicotyledons:Veronica AFLP 207 583 [46]

Eukaryota:Viridiplantae:Filicopsida:Polystichum AFLP 28 230 [63]

Eukaryota:Viridiplantae:Liliopsida:Calopogon AFLP 60 468 [64]

Eukaryota:Viridiplantae:Liliopsida:Carex AFLP 67 1394 [65]

Eukaryota:Viridiplantae:Liliopsida:Conostylis AFLP 36 192 [66]

Eukaryota:Viridiplantae:Liliopsida:Dupontia AFLP 121 162 [67]

Eukaryota:Viridiplantae:Liliopsida:Elymus AFLP 161 1265 [68]

Eukaryota:Metazoa:Arthropoda:Decapoda:Penaeus AFLP 26 443 [69]

Eukaryota:Metazoa:Chordata:Teleostei:Brienomyrus AFLP 62 2810 [70]

Eukaryota:Metazoa:Chordata:Aves:Larus AFLP 109 209 [71]

Eukaryota:Metazoa:Fungi:Ascomycota:Gibberella AFLP 506 30 [72]

Eukaryota:Metazoa:Fungi:Ascomycota:Macrophomina AFLP 24 312 [73]

Eukaryota:Metazoa:Fungi:Ascomycota:Phialocephala ISSR 32 57 [74]

Eukaryota:Metazoa:Fungi:Basidiomycota:Ustilago AFLP 12 207 [75]

Eukaryota:Metazoa:Mollusca:Bivalvia:Anodonta AFLP 104 67 [76]

doi:10.1371/journal.pone.0004269.t001
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contained dominant AFLP and ISSR genotypes while the

simulated data sets were co-dominant. This discordance was

necessary because, at present, there is no Bayesian MCMC

procedure for automatic assignment that treats dominant data

properly (STRUCTURE accepts dominant data, but K must be

determined manually), and methods for population structure

inference are typically compared using co-dominant data. All data

sets contained 100 individuals. A total of 100 data sets were

assembled per model, and all 76 models were addressed twice:

once with 10 co-dominant loci per genotype, and again with 100.

In total, 15,200 data sets that spanned the spectrum from highly

structured (with high h and low migration) to highly admixed (with

low h and high migration) to panmictic (with one unstructured

population) were produced.

STRUCTURAMA analyses of the simulated data proceeded

as described previously [22]. A single MCMC chain was run for

100,000 cycles, 12,500 of which were used as the burn-in

period. The number of subpopulations was treated as a random

variable following a Dirichlet process prior (‘‘numpops = rv’’)

and the prior mean of the number of subpopulations was fixed

at two (‘‘expectedpriornumpops = 2’’). Accuracy of inference is

relatively insensitive to misspecification of this prior, thus a fixed

value is acceptable [22]. 3500 post burn-in samples from the

chain were used to calculate the mean partition, which was then

compared with the expected partition as defined in the ms

simulations.

PCO-MC analyses of the simulated data proceeded as described

for the real data sets with a few exceptions. The shared band

similarity index [32] (the ‘‘BAND’’ coefficient in NTSYS) was used

to calculate genetic distances for the co-dominant data. The

assignment was determined using a stability cutoff of 15% and a p-

value cutoff of 0.9999 (p-values were essentially ignored). Classic

measures of population subdivision were also computed for all

data sets. Fst was calculated as hp [33] using GDA 1.1 [34]. G’st, a

standardized measure of genetic differentiation that represents the

proportion of the maximum differentiation possible for a given

level of subpopulation homozygosity, was calculated using

Hedrick’s [35] equation 4b with values from FSTAT 2.9.3 [36].

Huelsenbeck and Andolfatto [22] measured accuracy as the

average distance of the sampled partitions to the true partition

using a metric described by Gusfield [37], the partition distance.

Because PCO-MC does not produce a partition, but rather a more

generic assignment that may contain nested sets of clusters and

unassigned individuals, the partition distance could not be used. A

correct inference was declared to have occurred whenever the

membership within an inferred subpopulation was precisely that

specified by the ms model used to simulate the data. Accuracy was

measured as the number of subpopulations correctly identified

across all 100 replicate data sets divided by the total number of

correct inferences possible under the given model (e.g. when the

number of subpopulations was four, the number of correct

inferences possible across the 100 replicate simulated data sets was

400). The resulting value is the mean probability of success.

A Type I error occurred whenever a cluster was found that did

not contain precisely the membership specified in the simulation

model. The Type I error rate was calculated by dividing the total

number of Type I errors incurred across the 100 replicate data sets

by the number of correct inferences, a value proportional to the

probability that any single inferred cluster was not a true

subpopulation. Type II error occurred whenever a subpopulation

known to exist was not identified. In this study the calculation of

the probability of Type II error was straightforward: equal to one

minus the mean probability of success. Because the relationship is

deterministic, Type II error is not discussed further.

Results and Discussion

Properties of real data in principal coordinate analyses
PCA and PCO results have commonly been interpreted by

simple visual inspection of plots of points along the first two or

three axes. Although inferences obtained in this manner often

agree with preconceived notions of genetic structure, there are two

fundamental problems. First, the practice is subjective. Patterns

can be deceiving, especially when plots are enhanced with

additional visual information such as outlines, or when the point

marker is varied according to a priori ideas of population structure.

Thus, an objective procedure that is methodologically consistent

with the traditional, strictly visual means of interpreting PCO

output is needed. Second, the first two or three axes may explain

only a small proportion of the total variation in a data set. On

average, only 33% (sd = 16.1%) of the variation was explained by

the first three axes for the 27 real data sets we examined. A rule of

thumb in ordination is to consider axes until 70% to 90% of the

total variation has been explained [38]. More than 20 principal

coordinate axes would be needed to meet the 70% threshold for

half of the real data sets we analyzed. Therefore, any method for

interpreting ordination analyses of multilocus data should be

capable of considering many or all axes simultaneously. The visual

inspection method is inadequate in this respect. An algorithmic

approach that clusters individuals using peaks and valleys in a

multidimensional density landscape satisfies both concerns.

An important technical issue is whether principal coordinate

values can be used directly, without transformation, for density

estimation. Principal coordinate values typically do not follow a

normal distribution. This is not a problem because neither the

density-based clustering algorithm, nor the non-parametric tests of

significance implemented in PROC MODECLUS have distribu-

tional assumptions. But, it would be preferable if the dispersion of

points along an axis accurately reflected the importance of that

axis for explaining variation in the data set. This will generally be

true without transformation because, by definition, low order axes

hold the greatest variance (Figure 1A)—high variance means

greater dispersion of points, and thus greater resolving power,

along low order axes. But range is an important component of

dispersion as well and the range of values encountered decreases

erratically from low to high order axes (Figure 1B). This could

cause the undesirable scenario where a high order axis of little

significance exerts a detrimental effect on density estimation due to

a few outlying values (Figure 1D). Rather than making an explicit

determination of which axes hold signal and which hold noise

(contra [25]), we have used a simple weighting scheme whereby a

coordinate value is multiplied by the percent of variation explained

by the axis to which it belongs. The weighted range presents a

much more uniform decline (Figure 1C), akin to that observed for

the variance. Likewise, the potential negative effect of outlying

values is mitigated by this transformation (Figure 1E).

Thus, the PCO-MC approach uses weighted coordinate values

from all axes simultaneously to estimate a multidimensional

density landscape (see Figures 2I–L for representative landscapes).

The precise form of the density landscape depends upon a

smoothing parameter, R (see Table S1 for animations). Ultimately,

R determines the number of clusters found, cluster membership,

and significance values. Rather than rely on methods for finding a

single, globally optimal R [39], we sample numerous R-values,

thereby preserving locally optimal solutions. For each R, cluster

membership and the associated p-value are noted. The support for

the existence of a particular cluster can then be presented as a p-

value, or as a stability value calculated as the frequency of

occurrence of that cluster across a range of R-values.

Population Structure Inference
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The stability-based support metric appears more sensitive and

better able to reveal subtle population structure than p-values. To

accumulate stability, a cluster merely needs to be inferred

repeatedly across a range of R-values. To achieve statistical

significance, a cluster must first be inferred, then receive a

significant p-value, a condition dependent upon the particular

value of R used, variation within the cluster, and the total number

of clusters. Moreover, while both support metrics were biased

(larger clusters received better support values), the statistical

association between p-value and cluster size was much stronger

(R2 = 0.4258, p,0.0001 vs. R2 = 0.1417, p = 0.0153). Regression

analysis suggested that 20+ individuals should be sampled per

putative subpopulation to expect a p-value less than 0.05 (Figure

S1). On the contrary, minimum sample sizes are not required to

achieve high stability. Therefore, to avoid sampling restrictions,

and to better discriminate between real and artifactual subpop-

ulations we prefer the stability-based support metric.

Capabilities of PCO-MC and interpretation of results
In what follows we describe the application of PCO-MC to four

exemplar data sets with varying levels of genetic subdivision, from

highly structured to virtually unstructured. These data sets are

used to demonstrate some desirable properties of the method.

Data set 1, Humulus lupulus. We produced a data set of

AFLP genotypes from 159 native North American Humulus lupulus

(hops) individuals. Three named taxonomic varieties were

included (lupuloides, neomexicanus and pubescens), with sampling

focused on 29 populations of var. lupuloides from the Great

Plains. Strong genetic structure in this data set is evident,

visualized as two plateaus in cluster number as R was varied (i.e.

either two or three clusters were most commonly found across R-

space, Figure 2A). A total of four clusters stable over more than

one third of informative R-space were recovered. Three

corresponded to the named taxonomic varieties; the fourth

included both var. lupuloides and var. neomexicanus. All clusters

were statistically significant except for var. neomexicanus, perhaps

due to small sample size (n = 9). Thus, PCO-MC suggests that the

important genetic discontinuities in native North American

Humulus are between named varieties, and that there is little

evidence for strong genetic structure within var. lupuloides.

PCO-MC may find sets of clusters that can logically be nested.

This is distinct from the approach of Huelsenbeck and Andolfatto

[22], which produces a mean partition with individuals uniquely

assigned to one of K clusters, or the approach of Pritchard et al.

[11] with admixture, where the probability of assignment of each

individual to each cluster is estimated (although hierarchy can be

imposed by iterating across multiple values of K [40]). For

simplicity of display, we arrange the nested sets from PCO-MC

into a tree [41,42]. The PCO-MC assignment for the Humulus

data, which produced four clusters that could be nested, is shown

in tree form in Figure 3. Until studies can be undertaken to

Figure 1. Weighting scheme to improve density estimation. A)
Percent of total variation explained by each principal coordinate axis for
an exemplar data set from Humulus lupulus. B) Before weighting, high
order axes may contribute disproportionally to the dispersion of points
along an axis. One problematic pair of axes (PCO4 and PCO13) is
indicated. C) After weighting, the maximum distance between points
better reflects the importance of the axis. D) Before weighting, two
outliers present along PCO157 could detrimentally affect the analysis
because density estimation only considers dispersion between points,
not axis importance. E) After weighting, the spatial information present
in inconsequential axes exerts little influence. Arrows mark the position
of the two outliers.
doi:10.1371/journal.pone.0004269.g001
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determine whether such hierarchical arrangements accurately

represent hierarchical population structure, we recommend that

they be regarded simply as a tool to provide a quick visual

summary of support for the clusters found.

Data set 2, Veronica spp. PCO-MC produces results

consistent with current understanding. A series of detailed

studies showed sharp genetic discontinuities between populations

of western Mediterranean Veronica subgenus Pentasepalae, in spite of

limited morphological divergence and widespread homoplasy [43–

46]. We re-analyzed the AFLP data set of Martı́nez-Ortega et al.

[46], which includes 207 individuals sampled from 62 wild

populations in Spain and Morocco, using PCO-MC. Our results

confirmed their conclusions. PCO-MC identified as clusters the

same eight taxa first described by Martı́nez-Ortega [43] using

morphological and cytogenetic data (Figure S2A). While the eight

clusters are easily observed in a plot of the first three principal

Figure 2. Density clustering of principal coordinates using four exemplar data sets. A–D) Relationship between p-value and the number of
clusters inferred across R-space. Significant p-values (points below dotted line at p = 0.05) are found when cluster number (solid line) is insensitive to
changes in R. E–H) Plots of first two principal coordinate axes. The positions of individuals are labeled according to the assignment made by PCO-MC
for the single value of R shown, but using all possible axes. I–L) Representative density landscapes inferred from the first two principal coordinate
axes and a single R value.
doi:10.1371/journal.pone.0004269.g002
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coordinates (2D, Figure 2F; 3D not shown), it is important to point

out that their inference was automatic within the PCO-MC

procedure. In less obvious cases, like those that follow, speculation

about cluster number and membership can be avoided.

Data set 3, Mimulus spp. PCO-MC can be used to reveal

novel hypotheses or test existing hypotheses. Beardsley et al. [47]

studied relationships among seven species of Mimulus section

Erythranthe from the western United States. Within section

Erythranthe, biological barriers to reproduction among species are

often weak; however, strong ecological and geographical barriers

to gene flow are in place [48–50]. In contrast to Veronica, where

morphologically indistinguishable populations showed genetic

structuring consistent with complete reproductive isolation, these

Mimulus species exhibit substantial morphological divergence

despite the possibility of low-level gene flow among them.

PCO-MC identified clusters containing M. cardinalis (cluster 1,

Figure 2G), M. parishii (cluster 5), the Northern race of M. lewisii

(cluster 3), and the Sierra Nevada race of M. lewisii (cluster 2). Two

individuals described as ‘‘intermediates’’ between Sierran and

Northern M. lewisii (cluster 7) appeared in a central position

between their parents when the first three axes and a single R

value were used, and were appropriately left unassigned when all

coordinate axes were considered (Figure S2B). These results are

consistent with Beardsley et al. [47]. In contrast, we found no

evidence that M. verbenaceus and M. eastwoodiae are distinct from one

another (cluster 4), a discrepancy possibly due to small sample size.

But, we note that M. verbenaceus and M. eastwoodiae have contiguous,

if not overlapping, ranges on the Colorado Plateau, are both

hummingbird pollinated, and are fully crossable with no apparent

reduction in F1 fitness [48]. Further sampling could resolve

whether M. verbenaceus and M. eastwoodiae form a single genetically

homogeneous group with two morphologically divergent pheno-

types, or whether they are discrete evolutionary lineages.

Beardsley et al. [47] found that the Sierran and Northern races

of M. lewisii were sister taxa. This, plus the observation of

intermediate individuals in the wild, led them to retain M. lewisii as

a single species. Vickery and Wullstein [48], noting substantial

divergence in floral and vegetative morphology, isozymes, and

petal pigmentation chemistry, as well as moderate postzygotic

barriers to gene flow, suggest that the two races could be construed

as two species. PCO-MC found no association between the

Sierran and Northern races of M. lewisii. The clusters are as distant

from one another in principal coordinate space as any two species

considered (clusters 2 and 3). The sister-taxon relationship found

by Beardsley et al. [47] may be an artifact of the application of

bifurcating trees to populations with a history of limited gene

exchange [51]. Thus, the results of PCO-MC were consistent with

Vickery and Wullstein [48]: the genetic discontinuity between

races of M. lewisii is sufficient for their consideration as separate

species.

Data set 4, Pritzelago alpina. PCO-MC does not find

structure when none exists. While this property is best

demonstrated using simulated data (below), we present a real

example here. Kropf et al. [52] studied the high alpine plant

Pritzelago alpina in the disjunct mountain ranges of central and

southern Europe. Their thesis was that European alpine species

should show less population subdivision than lowland or montane

species with the same continental distribution. This ‘‘displacement

refugia model’’ was based upon predicted changes in available

habitat during repeated cycles of glaciation. Using AMOVA and a

neighbor-joining tree-based analysis, Kropf et al. [52] claimed

evidence for significant structuring of genetic diversity in P. alpina

into four or five geographical regions. However, citing poor

support for basal relationships among populations from different

geographical regions in the neighbor-joining tree, and the lack of

resolution of distinct groups in a principal coordinate analysis, they

concluded that the AFLP data were consistent with their thesis.

Reanalysis of the Kropf et al. [52] AFLP data set using PCO-

MC provided no support for any geographic structuring of genetic

diversity within P. alpina. There were no plateaus in cluster

number across R-space (Figure 2D), no statistically significant

clusters, and only a few stable clusters (which corresponded to

single populations or geographically disjunct assemblages of

populations) (Figure S2C). Thus, PCO-MC supports the displace-

ment refugia model but is inconsistent with some of their

interpretations. One of the reasons for this inconsistency could

be that their phylogenetic trees, which were built from population

level data, may be over-resolved [51].

Evaluation of performance using simulated data
Because the true population structure is not generally known for

real data sets sampled from nature, it is necessary to use simulated

data to evaluate the performance of any genetic clustering

procedure. Huelsenbeck and Andolfatto [22] have defined a series

of data sets, extended here, that are useful for this purpose. By

varying the mutation and migration rates in a coalescent model, a

complex assemblage of data sets representing a broad range of

population subdivision can be produced. The range of subdivision,

considered from the perspective of PCO, and from Fst and G’st, is

shown in Figures 4 and 5, respectively.

With the Bayesian MCMC approach of Huelsenbeck and

Andolfatto [22], where K is treated as a random variable

(hereafter, ‘‘K = rv’’), Type I error control is inherent to the

procedure. By analyzing data sets simulated with no population

structure (i.e. derived from a single panmictic population) we

estimated the probability of Type I error of their procedure to be

0.125%. With PCO-MC, Type I error control is accomplished by

applying a post-analysis cutoff criterion to distinguish correct from

incorrect inferences. We prefer to use a minimum stability value

instead of a maximum p-value for this purpose. Across all

simulated data sets, ninety-five percent of incorrect clusters had

stability values less than 11%. Ninety-five percent of correct

clusters had stability values greater than 16%. Thus, any stability

cutoff value between 11% and 16% should provide adequate Type

I error control (15% is optimal).

The success of PCO-MC and K = rv in retrieving the expected

subpopulations is shown in Figure 6. For data sets with 10 loci, the

Figure 3. Hierarchical assignment resulting from PCO-MC
analysis of Humulus data set. Numbers at nodes are stability values.
Asterisks indicate statistically significant clusters (p,0.05).
doi:10.1371/journal.pone.0004269.g003
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K = rv method performed slightly better. As implied by Figure 4,

PCO-MC’s strength of inference is compromised when few loci

are considered. When population substructure exists, adding loci

focuses dispersed principal coordinate values into compact clusters

of points.

Both methods, however, were relatively insensitive to subtle

population subdivision when only 10 loci were sampled. We use

the standardized population differentiation metric G’st [35] to

illustrate. Unlike Fst, G’st allows the unbiased comparison of

population differentiation between data sets that differ in the level

of within-subpopulation homozygosity. This is important here

because variation in the mutation rate causes differences in the

level of within-subpopulation homozygosity between ms simulation

models. In contrast to Fst, the G’st contours are roughly isoclinal to

the contours representing performance (Figure 5). Hence, for this

study, G’st is a consistent predictor of the magnitude of population

subdivision necessary for a particular method to perform well, but

Fst is not.

For K = rv and 10 loci, more than 95% of the correct clusters

were returned when G’st.0.5 (Fst.0.08), and for PCO-MC, when

G’st.0.7 (Fst.0.15). Values reported are minimum values,

calculated using data sets with two subpopulations. Higher levels

of subdivision were necessary for accurate inference as subpop-

ulation number increased, possibly due to fewer individuals per

subpopulation or to bias in the Fst and G’st estimators. When the

number of loci was increased to 100, the overall power of inference

of both methods increased dramatically, but PCO-MC exhibited

broadly superior performance over the simulation parameter

space, both in terms of a higher probability of correct inference

and a lower probability of Type I error (Figure 6). With 100 loci,

PCO-MC proved to be substantially more sensitive than K = rv,

providing .95% correct retrieval of subpopulations when

G’st.0.2 (Fst.0.03), whereas for K = rv, G’st had to be greater

than 0.35 (Fst.0.05) to achieve similar performance (Figure 5).

Figure 4. Range of variation and admixture encountered in
simulated data sets as viewed by PCO. Number of subpopula-
tions = 4 for all rows of graphs except the last, where a single, panmictic
population was simulated. Migration rate (M) is specified at left.
Mutation rate (h) = 0.5. Representative plots of the first two principal
coordinate axes are shown. When population structure is present,
adding loci increases the density of points within a cluster, permitting
more accurate inference.
doi:10.1371/journal.pone.0004269.g004

Figure 5. Levels of population subdivision in simulated data
sets as viewed by Fst and G’st. X axes = mutation rate (h), Y
axes = migration rate (M). Contour plots were generated using
interpolation between data sets sampled at the X’s plotted in the top
left panel. Bold solid lines in G’st plots represent the 95% success
contour for PCO-MC analysis using 100 loci, dashed lines are for K = rv.
Below these lines the level of population subdivision was sufficient for
correct identification of more than 95% of known clusters.
doi:10.1371/journal.pone.0004269.g005
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There appears to be a relatively distinct lower limit on the level

of population subdivision necessary before Bayesian MCMC

methods, as a class, will yield accurate assignments. We find that

the limit of resolution for the K = rv method of STRUCTUR-

AMA (G’st.0.35; Gst.0.025) is similar to that found for

STRUCTURE [11] and BAPS [13] using a different simulation

strategy [53]. Those methods began to break down in accuracy

(,97% correct) with G’st,0.39 and Gst,0.05. Accordingly, we

predict that PCO-MC should outperform the methods of

Pritchard et al. [11] and Corander et al. [13] as well, in cases

where structure is subtle and many loci are available. We caution,

however, that this prediction is based on simulated data, which

may differ fundamentally from real data. In real data sets, the

evidence of coancestry that manifests as faint genome-wide linkage

disequilibrium may be augmented by factors that were not

modeled here (e.g. natural selection and the organization of the

genome into discrete chromosomes).

We find it surprising that a simple metric such as multilocus

genetic distance, if properly transformed and interpreted, can

produce extremely accurate inferences of subtle population

structure. Importantly, when the probability of retrieval of correct

subpopulations was high, the probability of retrieval of erroneous

subpopulations was low. This relationship is not necessarily an

expectation for a procedure like PCO-MC, which does not

produce a partition (where Type I error and success rates are

interdependent).

Conclusion
The use of genetic data to assign individuals to subpopulations

for ecological studies is a different goal from population structure-

based correction of the false positive rate in associative genetics. If

the purpose is to produce a description of intraspecific biodiversity,

circumscription of natural groups is necessary, and a discrete

assignment seems most useful. If the purpose is Type I error

Figure 6. Relative performance of K = rv and PCO-MC methods for population structure inference using simulated data. X
axes = mutation rate (h), Y axes = migration rate (M). Contour intervals are shaded according to the probability of successful inference. Below the thin
black line, Type I error was acceptable (a,0.05). Type I error was ,0.05 for all combinations of h and M when PCO-MC was applied to the 100 locus,
10 population data sets.
doi:10.1371/journal.pone.0004269.g006
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control for structured association mapping, a representation of

population structure as a continuous or quasi-continuous variable

(e.g. [14,54]) is most appropriate. The results of this study suggest

that, if the goal is circumscription, then Bayesian MCMC

approaches should be reserved for small data sets, where they

are accurate and computationally efficient. For large genome-scale

data sets, we propose that highly-sensitive two-step procedures that

couple ordination with clustering may be best.

Supporting Information

Figure S1 Exponential regression of two support metrics (p-

value and stability) on cluster size for 27 real data sets. Grey points

indicate observed support values; triangles indicate median

support values calculated when three or more clusters of a

particular size were found. Regressions were performed using

median values. A) P-value is strongly associated with cluster size.

Dotted line indicates a p-value of 0.05. Twenty or more

individuals per subpopulation should be sampled in order to

achieve p,0.05. B) Stability value is weakly associated with cluster

size. In general, smaller subpopulations can be inferred by using a

stability based cutoff instead of a significance based cutoff.

Found at: doi:10.1371/journal.pone.0004269.s001 (0.06 MB TIF)

Figure S2 Hierarchical assignments from PCO-MC analysis of

three additional exemplar data sets. Numbers at nodes are stability

values. Asterisks indicate clusters found to be statistically

significant (p,0.05). A) Veronica spp. [46]. B) Mimulus spp. [47].

C) Pritzelago alpina [52].

Found at: doi:10.1371/journal.pone.0004269.s002 (0.18 MB TIF)

Table S1 Animations demonstrating change in the density

landscape, and thus the assignment, with changing R value.

Found at: doi:10.1371/journal.pone.0004269.s003 (0.05 MB

DOC)
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