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Therapeutic strategies targeting tumor
 cell/stroma interactions in Renal Cell Carcinoma. CAF could be activated due to the accumulation HIF-1a in
tumor microenvironment, which is related with VHL gene malfunction in RCC cells. Activation of CAF is associated with RCC progression and therapeutic
resistance.
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Cancer-associated fibroblasts (CAF) are a cellular compartment of the tumor microenvironment (TME)
with critical roles in tumor development. Fibroblast activation protein-a (FAP) is one of the proteins
expressed by CAF and its immunohistochemical detection in routine practice is associated with tumor
aggressiveness and shorter patient survival. For these reasons, FAP seems a good prognostic marker in
many malignant neoplasms, including renal cell carcinoma (RCC). The start point of this Perspective paper
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is to review the role of CAF in the modulation of renal cell carcinoma evolution. In this sense, CAF have
demonstrated to develop important protumor and/or antitumor activities. This apparent paradox sug-
gests that some type of temporally or spatially-related specialization is present in this cellular compart-
ment during tumor evolution. The end point is to remark that tumor/non-tumor cell interactions, in
particular the symbiotic tumor/CAF connections, are permanent and ever-changing crucial phenomena
along tumor lifetime. Interestingly, these interactions may be responsible of many therapeutic failures.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

RCC is an aggressive disease with high impact in Western soci-
eties. Standard radio- and chemotherapy regimens are not much
effective strategies in improving survival of patients with meta-
static disease. A significant advance in the treatment of metastatic
RCC has been made in the last decade through the inhibition of the
vascular endothelial growth factor (VEGF), and its receptor
(VEGFR), and the mTOR pathway [1]. Likewise, new therapeutic
approaches focusing on the tumor microenvironment are being
implemented in the last years. In this sense, the blockade of pro-
grammed death-1 (PD-1) and its ligand (PD-L1) in intratumor
inflammatory cells is showing promising results in clear cell renal
cell carcinomas (CCRCC) [2]. Following the idea of targeting not
only the neoplastic cells themselves but also the accompanying
elements taking part of a tumor, the focus is being also directed
against other non-neoplastic cellular compartment: the cancer-
associated fibroblasts (CAF).

This paper reviews the role of CAF in renal cell carcinomas and
analyzes the clinical relevance of FAP expression in these
neoplasms.
Cancer-associated fibroblasts. An overview

Fibroblast activation is a common process in tissues under
diverse conditions, for example, in response to injury. During their
activation, fibroblasts undergo a phenotypic transformation
migrating to the injured area. Once they complete their mission,
the degradation of the extracellular matrix (ECM) triggers their
apoptosis [3]. Tumors, presumably by epigenetic mechanisms,
induce the chronic activation of local fibroblasts, a subgroup of
cells collectively known as CAF [4]. These cells are characterized
by the expression of a subset of proteins such as a smooth muscle
actin (a-SMA), the classic marker of activated fibroblasts, fibroblast
specific protein-1, also known as S100A4, desmin and FAP [5],
among others. To note, the expression of these proteins is not lim-
ited to CAF and their distribution is not homogeneous [6]. This
heterogeneity of CAF population can be attributed, at least in part,
to their different origins. The main source of CAF is the activation of
resident precursors within the tumor [7]. However, endothelial
and epithelial cells can undergo endothelial/epithelial-to-mesench
ymal transition (EndMT/EMT) process and become CAF [8,9]. Bone
marrow fibrocytes and mesenchymal stem cells are also a source of
CAF [10,11]. Even pericytes, adipocytes and vascular smooth mus-
cle cells have been described to transform in CAF under appropri-
ate conditions [12]. Thus, although the origin of CAF has been
widely reviewed in bibliography, still remains as a controversial
issue [13,4,14]. Together with the origin cell type, the activation
is also a complex process in which different cytokines, growth fac-
tor, miRNAs and even exosomes are involved [15,16].

Although CAF and tumor cells develop a local symbiotic rela-
tionship governed by the rules of Ecology [17], the specific func-
tions of CAF in tumorigenesis are still not well understood. Both
protumor and antitumor effects have been described in these cells
supporting the idea that some type of cellular specialization must
occur under pressures already unknown [18–20]. More specifically,
main CAF actions have been related to hallmarks of cancer biology
purposed by Hanahan and Weinberg in the beginning of the cen-
tury and actualized a decade later [21,22]. For example, they regu-
late tumor development stages secreting cytokines and growth
factors such as VEGF, FGF-2 or SDF-1a and altering the extracellu-
lar matrix composition to regulate tumor growth promoting angio-
genesis and invasive phenotypes [23]. CAF also have the capacity to
reprogram tumor cell metabolism and immunosuppressive effects.
For example, by CAF/tumor cell contact, CAF undergo Warburg
metabolism and mitochondrial oxidative stress while tumor cells
reprogram toward aerobic metabolism in a process strictly regu-
lated by the Hypoxia Inducible Factor 1 (HIF-1). This way cancer
cells lose glucose dependence and increase the lactate upload to
drive anabolic pathways and in consequence, cell growth [24].
Regarding immunosuppression, Harper and Sainson reviewed
direct (by the creation of an inflammatory signature with immuno-
suppressive function on both adaptive and innate white blood
cells) and indirect effects (by the regulation of the stiffness, angio-
genesis, hypoxia and metabolism) of CAF to regulate the antitumor
immune response [25]. Drug resistance is another crucial factor
during tumorigenesis. TME and primarily CAF have a determinant
role in drug resistance by both cell adhesion mediated drug resis-
tance and soluble factor mediated drug resistance [26].

Considering the comprehensive role of CAF in tumor develop-
ment described above, several attempts have been developed to
target this stromal population [5]. Inhibitors of CAF specific pro-
teins, prodrugs activated only by CAF and even vaccines to target
CAF have been designed, however, all of them have been unsuc-
cessful to date. The identification of biomarkers that may allow
distinguishing different CAF subgroups with specific actions would
open up new possibilities in this research area.
Renal cell carcinoma. A model of tumor/non tumor cell
interaction

RCC is a complex group of tumors originating from diverse
epithelial cells of the kidney tubules. The World Health Organiza-
tion describes more than 15 different histologic subtypes account-
ing for more than 95% of tumors in the adult kidney [27]. In 2018,
kidney tumors represented 2.2% of all cancers, with more than
400,000 cases diagnosed worldwide [28]. These figures make RCC
a health problem of major concern. These tumors are more fre-
quent on male population with a 2:1 ratio, and the incidence is
much higher in developed countries [29]. Although nomograms
and models composed by the sum of different prognostic factors
like UISS (UCLA Integrated Staging System) and SSIGN (Stage, Size,
Grade and Necrosis) [30] have optimized patient prognosis, only
surgery impacts significantly in patient survival. However, about
a third of patients who have undergone curative surgery will
relapse over time. Targeted therapies such as VEGF/VEGFR and
mTOR inhibitors, and immunotherapy, have had promising results
improving significantly the survival in selected patients with
advanced disease [1] Indeed, sunitinib became first line therapy
for metastatic renal cell carcinoma (mRCC) since in 2007 was
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probed that it duplicates patient progression free survival from 5 to
11 months in comparison of previous treatments [31]. mTOR inhi-
bitors extends this period allowing disease control [32]. Recently,
the resurgence of immunotherapy based on immune checkpoint
inhibitors such as nivolumab or ipilimumab have changed the
standard of care of mRCC. Motzer et al. demonstrated in a study
with more than 1000 patients that overall survival and response
rate were significantly higher in patients with nivolumab/ipili-
mumab treatment than with sunitinib [33]. Actually the efforts
are focused in the assessment of the combination and sequence
of both therapies that will optimize patient benefit [34].

CAF have a protumor effect in RCC. In 2015, Xu et al. [35],
showed in vitro that CAF are involved in tumor progression. These
authors demonstrated in CAF/tumor cell co-cultures that CAF were
implicated in tumor cell proliferation and migration, as well as in
the development of mTOR inhibitors resistance [35]. Together with
CAF, immune cells such as Tumor Associated Macrophages (TAM)
have been suggested to mediate mTOR targeting resistance [36],
although there is still no evidence in RCC. Also, CAF seem to have
a role in early phases of CCRCC development through its relation-
ship with hypoxia inducible factor 1 (HIF-1a) (see Graphical
Abstract). The accumulation of this protein is the consequence of
the Von Hippel-Lindau (VHL) gene malfunction, a driver event in
CCRCC [37].

Accumulation of hypoxia inducible factors, induce the expres-
sion of a set of factors such as vascular endothelial growth factor
(VEGF), stromal cell-derived factor-1 (SDF-1), platelet derived
growth factor (PDGF), connective tissue growth factor (CTGF) and
fibroblast growth factor 2 (FGF-2). Together, these factors induce
the recruitment and activation of fibroblasts and other compo-
nents of TME such as macrophages. Interactions between these dif-
ferent cell types generate the remodeling of the ECM, a key
phenomenon for tumor development and metastasis [38].
Although all these specific mechanisms haven’t been described in
RCC yet, expression of cited cytokines has been related to worse
overall survival in RCC suggesting their protumor role [39,40]. Pri-
marily FGF-2, which’s expression in the invasion front correlated
with RCC aggressiveness, where CAF develop key functions [40].

Zagzag et al. [41] demonstrated that the loss of function of VHL
gene induced the signaling of stromal cell derived factor-1 (SDF-1)
through its receptor CXCR4 and described it as a new angiogenic
pathway. The expression of SDF-1/CXCR4 by different cellular com-
ponents of CCRCCs, including CAF, suggests a paracrine signaling
which would increase the expression of the receptor and its ligand
under hypoxic conditions [41]. SDF-1/CXCR4 signaling has been
proved to affect angiogenesis, tumor cell proliferation and
chemoresistance by the communication of tumor cells with TME
[42]. In RCC in particular, CXCR4 upregulation, a direct effect of
HIF 1a accumulation, correlated with metastatic ability and was
detected in RCC circulating cells of mRCC patients. These evidences
suggest that the SDF-1/CXCR4 biological axis is a main regulator of
Table 1
Summary of interactive signaling pathways between CAF and tumor cells in RCC and thei

Authors Interactive signaling pathway between CAF and tum

Zagzag et al. 2005 [41] VHL-HIF axis malfunction induces SDF-1/CXCR4 path
by paracrine signaling

Wu et al. 2008 [44] CCL3/CCR5 axis paracrine signaling recruits fibroblas
progression by HGF and MMP-9 overexpression

Bakhtyar et al. 2013 [45] CCRCC cells induce periostin expression by CAF whic
proliferation

Xu et al. 2015 [35] CAF/RCC in-vitro co-culture promotes tumor progress
Chuanyu et al. 2017 [46] Periostin promotes migration and invasion of renal ce

terminal kinase pathway
organ-specific metastases in CCRCC and set out the potential of tar-
geting this signaling pathway [43].

However, the influence of CAF in CCRCC goes further than VHL
malfunction (Table 1). An in vivo RCC model showed that the che-
mokine CCL3 and its specific receptor CCR5 play a key role in the
intratumor accumulation of CAF and other inflammatory cells such
as granulocytes or macrophages [44]. Consequently, CAF increased
the expression of the hepatocyte growth factor (HGF), a major
angiogenic factor, and also the MMP-9 accumulation, this way con-
tributing to the development of tumor metastasis [44].

The symbiotic relationship between tumor cells and CAF is
illustrated by the upregulation of stromal periostin (PN) detected
in CCRCC [45]. This adhesion protein secreted in the ECM has been
detected in many cancers and has been related to cell motility,
invasion and EMT processes. In vivo and in vitro experiments have
demonstrated that tumor RCC cells induce the expression of PN by
stromal cells [46]. Furthermore, the expression of PN is located in
the boundary region between the xenograft tumor mass and the
non-tumor tissue. Such expression is coincident with a-SMA
expression, the classic marker of activated fibroblasts, both in pri-
mary and metastatic CCRCC. Functionally, PN enhances signifi-
cantly CCRCC cell line attachment, NIH3T3 cell proliferation, and
AKT activation [45].

All in all, the studies analyzed above demonstrate the implica-
tion of CAF in proliferation, angiogenesis, metastasis development
and drug resistance during RCC tumorigenesis. This fact has postu-
lated CAF as potential clinical tools for RCC diagnosis, prognosis
and treatment. Several interstitial collagenases, which are mainly
secreted by CAF [47], have demonstrated to have prognostic rele-
vance in some neoplasms. The expression levels of MMP-2 and
MMP-9, for example, have been correlated with tumor progression
in a wide variety of neoplasms, included RCC [48,49].

On the other hand, the expression of Fer, a non-receptor tyro-
sine kinase, in stromal cells, including fibroblasts and immune
cells, correlated with a better prognosis in RCC [50]. This finding
contrasts with Fer expression in tumor cells, where it has been
linked with tumor aggressiveness and shorter survivals [51]. Fer
expression in the stroma has been associated with a lower intra-
tumor macrophage density (measured by CD68+ expressing cells)
and correlated positively with CD57+ cell density, a common mar-
ker of NK cells in humans. Overall, these results suggest that stro-
mal Fer may act as a suppressor of tumor progression in RCC
although the clarification of the specific mechanisms involved in
this process is unclear.

Gupta et al. [52] developed a fibroblast-derived ECM based
on a 3D culture model to assess the clinical relevance of stro-
mal markers in combination with their analysis in pathologic
specimens. The authors concluded that palladin was a useful
biomarker of poor prognosis in non-metastatic RCC [52]. In
addition, they suggested that the assessment of stromal pro-
gression could be added to tumor stage as a useful clinical
prognostic variable since stromal transformation not always
r specific actions in tumor development.

or cells Effect

way overexpression which presumably increases angiogenesis Protumor

ts to the tumor environment where they induce tumor Protumor

h induce tumor cell proliferation and attachment and CAF Protumor

ion by MAPK/Erk and Akt pathway activation Protumor
ll carcinoma through the integrin/focal adhesion kinase/c-Jun N- Protumor



Fig. 1. High power view of a high grade clear cell renal cell carcinoma (A) showing positive immunostaining with fibroblast activation protein restricted to the cancer-
associated fibroblasts within the tumor (B) (original magnification, �400).
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correlates with tumor stage [52]. The authors remarked the
usefulness of 3D culture models as surrogates of in vivo mod-
els, considering their capacity to mimic them by the increase
of stromal markers as a-SMA, palladin and urokinase receptor
associated protein [52].

The usefulness of FAP as a biomarker in CCRCC has been
described recently [53,54]. FAP is a transmembrane serine protease
expressed by CAF in epithelial tumors originated in a wide variety
of tissues [55]. Although the specific actions of this protease
remain unclear, a relationship with the urokinase-mediated plas-
minogen activation system has been observed. Actually, FAP may
form protein complexes with the urokinase plasminogen activator
receptor (uPAR), its main substrate being a2-antiplasmin [56].
uPAR has been closely related to an aggressive behavior in cancer
and has been proposed as a potential new therapeutic target [57].

The immunohistochemical expression of FAP in formalin-fixed
paraffin embedded tumor samples (see Fig. 1) correlated with high
tumor diameter, high grade and high stage in a series of 208 CCRCC
[53]. Furthermore, this protein was a strong predictor of aggres-
siveness, the survival rate of patients with FAP positive tumors
being significantly lower [53]. Another study analyzing 59 CCRCC
and their paired metastases showed a correlation between FAP
expression in CAF and histological parameters of aggressive behav-
ior like necrosis and sarcomatous phenotype [54]. Furthermore,
FAP expression in primary CCRCC was associated with the develop-
ment of synchronous lymph node metastases [54].

FAP positive cells have been described as SDF-1 synthesizers. In
fact, the induction of SDF-1 expression by FAP+ CAF has been
described to promote tumorigenesis and the escape of immune
surveillance in melanoma and pancreatic ductal carcinoma
[58,59]. Moreover, targeting this SDF-1 resulting from FAP+ CAF
has been proved to synergize with immunotherapy [60]. Unravel-
ling if this effect occurs in RCC would have a direct impact in the
era of immunotherapy resurgence.

CAF are main responsible of ECM remodeling in TME by the pro-
duction and secretion of proteases [61,62] Fibroblast activation
protein has a unique dual enzymatic activity (both collagenase
and serine-peptidase), that enables the reorganization of collagen
and fibronectin fibers to promote tumor cell invasion in pancreatic
cells [63]. Strong relationship of FAP with RCC aggressiveness sug-
gests a similar role for CAF and FAP in this tumor [54].
Conclusions and future perspectives. Targeting CAF, a new front
against tumor microenvironment

In the era of personalized medicine and targeted therapies the
comprehension of the tumor as a society composed by different
elements extends the scope of action of anti-cancer drugs. This
aspect acquires special relevance in RCC due to its radio- and
chemo-resistant identity. In fact, tyrosine-kinase receptor
inhibitors-based antiangiogenic treatment and PD-1/PD-L1 target-
ing immunotherapy are the main treatments that significantly
improve patients’ survival. An effective targeting of CAF, one of
the most important cell population in tumor microenvironment,
seems the ideal complement considering their protumor role.

The fact that FAP is exclusively expressed in CAF, makes this
protein an attractive target to develop CAF-mediated anti-tumor
drugs. Different strategies have been designed such as inhibitors
of its enzymatic activity [64,65], prodrugs activated by its activity
[66], FAP targeting antibodies [67], vaccines and even CAR-T cell
technology [68]. Some of them are still being tested in clinical
trials.

Although these strategies seem promising, targeting CAF in an
effective manner appears much more complex than inhibiting
the function of a specific protein. Unraveling if CAF conform sub-
groups specialized in different actions marks a milestone in the
comprehension of the role of CAF in cancer in general and in RCC
in particular. Similarly, understanding the impact of FAP expres-
sion by a subset of CAF will measure the usefulness of FAP target-
ing strategies. Removing the protumor cohort of CAF and
potentiating the effect of those with antitumor activity is still uto-
pic. However, reeducating those foes to friends as recently was
proposed by Chen et al. would undoubtedly suppose a step forward
in the war against cancer [69].
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