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Summary
Background Metabolomics profiles were consistently associated with type 2 diabetes (T2D) risk, but evidence on
long-term metabolite changes and T2D incidence is lacking. We examined the associations of 10-year plasma metab-
olite changes with subsequent T2D risk.

Methods We conducted a nested T2D case-control study (n=244 cases, n=244 matched controls) within the Nurses’
Health Study. Repeated metabolomics profiling (170 targeted metabolites) was conducted in participant blood speci-
mens from 1989/1990 and 2000/2001, and T2D occurred between 2002 and 2008. We related 10-year metabolite
changes (D-values) to subsequent T2D risk using conditional logistic models, adjusting for baseline metabolite levels
and baseline levels and concurrent changes of BMI, diet quality, physical activity, and smoking status.

Findings The 10-year changes of thirty-one metabolites were associated with subsequent T2D risk (false discovery
rate-adjusted p-values [FDR]<0.05). The top three high T2D risk-associated 10-year changes were (odds ratio [OR]
per standard deviation [SD], 95%CI): Disoleucine (2.72, 1.97-3.79), Dleucine (2.53, 1.86-3.47), and Dvaline (1.93, 1.52-
2.44); other high-risk-associated metabolite changes included alanine, tri-/diacylglycerol-fragments, short-chain acyl-
carnitines, phosphatidylethanolamines, some vitamins, and bile acids (ORs per SD between 1.31and 1.82). The top
three low T2D risk-associated 10-year metabolite changes were (OR per SD, 95% CI): DN-acetylaspartic acid (0.54,
0.42-0.70), DC20:0 lysophosphatidylethanolamine (0.68, 0.56-0.82), and DC16:1 sphingomyelin (0.68, 0.56-0.83);
10-year changes of other sphingomyelins, plasmalogens, glutamine, and glycine were also associated with lower sub-
sequent T2D risk (ORs per SD between 0.66 and 0.78).

Interpretation Repeated metabolomics profiles reflecting the long-term deterioration of amino acid and lipid metab-
olism are associated with subsequent risk of T2D.
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Introduction
Type 2 diabetes (T2D) is a major public health concern,
and effective T2D prevention strategies are of the
utmost importance.1�4 Novel biomarkers, specifically
those which detect metabolic perturbations long before
disease manifestation, may open new windows for
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Research in context

Evidence before this study

Based on the evidence from a previous meta-analysis
published by our group and literature review of studies
published after that (searching PubMed and EMBASE
for diabetes [and related terms] AND metabolomics
[and related terms]), several classes of plasma metabo-
lites have been consistently associated with incident
T2D. Baseline levels of several metabolites available in
our study were previously associated with type 2 diabe-
tes risk. For example, the three branched-chain amino
acids, alanine, tyrosine, glutamate, phenylalanine,
methionine, and lysine were associated with higher
type 2 diabetes risk, and glycine and glutamine with
lower type 2 diabetes risk. Short-chain acylcarnitines
(C4OH, C5, C5DC) were also associated with higher type
2 diabetes risk. Several phosphatidylethanolamines, tri-
glycerides, and diglycerides were associated with higher
risk and several lysophospholipids with lower type 2
diabetes incidence. The PREDIMED trial did not find
robust associations of one-year metabolite changes
with subsequent T2D risk. We did not identify previous
publications reporting the associations of metabolite
changes over several years with subsequent type 2
diabetes.

Added value of this study

The 10-year changes of thirty-one metabolites were sig-
nificantly (FDR <0.05, Wald test) associated with subse-
quent type 2 diabetes risk, after adjusting for baseline
metabolite levels, as well as baseline levels and concur-
rent changes of anthropometric and lifestyle risk factors
for type 2 diabetes. Greater 10-year increases of
branched-chain amino acids, diglyceride-/triglyceride-
fragments, phosphatidylethanolamines, some vitamins,
and bile acids were associated with higher type 2 diabe-
tes risk. The 10-year changes of lysophospholipids,
sphingomyelins, and plasmalogens were associated
with lower type 2 diabetes risk. These results demon-
strate for the first time that intraindividual changes of
specific lipids and amino acids over a decade are inde-
pendent molecular markers of subsequent type 2 diabe-
tes risk.

Implications of all the available evidence

Complementary to the extensive evidence on baseline
metabolomics profiles and type 2 diabetes risk, our
results indicate that repeated high-throughput meta-
bolic profiling captures changes in plasma amino acid
and lipid profiles associated with the subsequent risk of
developing type 2 diabetes. The dynamic nature of
some metabolite-type 2 diabetes risk associations war-
rants further research into potential biomarker applica-
tions, particularly for monitoring disease risk over time
and research into the molecular targets of type 2 diabe-
tes prevention.
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targeted disease prevention and personalised interven-
tions.

In the past two decades, metabolomics techniques
identified numerous plasma metabolites that were
robustly associated with T2D risk, including branched-
chain amino acids (BCAA), alanine, aromatic amino
acids, phospholipids, ceramides, acylcarnitines, and tri-
glycerides. Other metabolites, including glycine, lyso-
and ether-phospholipids, and sphingomyelins, have
been associated with lower T2D risk.5 Relevant data
from genetic and experimental studies support potential
causal roles for some of these metabolites in the patho-
physiology of T2D.6�9

To our knowledge, no study has examined long-term
changes in metabolites and subsequent risk of T2D. In
the PREDIMED-trial, the association of one-year
changes of lipid and acylcarnitine profiles with subse-
quent T2D risk were mainly in the expected directions
but not statistically significant.10,11 Besides the limited
sample size, the one-year interval between measure-
ments may have been too narrow to capture substantial
metabolic deterioration. One-year increases in alanine
and BCAA were associated with higher subsequent T2D
risk.12,13

Herein, we aimed to examine the relationship of
long-term metabolite changes with subsequent T2D
risk, based on a T2D case-control study nested within
the Nurses’ Health Study (NHS) with repeated metabo-
lomics measurements approximately ten years apart.
The targeted plasma metabolomics profiles included a
broad range of amino acids, lipids, and other organic
compounds. The multivariate analyses were adjusted
for baseline and concurrent changes in body weight,
diet, physical activity, and other lifestyle factors.
Methods

Study design
In 1976, the NHS recruited 121,701 female nurses aged
30�55 years. Ever since, participants have been con-
tacted biennially, assessing lifestyle and health status
with validated, self-administered questionnaires.
Detailed information on recruitment and follow-up pro-
cedures of the NHS has been published.14

A subset of 32,826 nurses provided blood samples in
1989 or 1990, of whom 18,743 provided a second blood
sample in 2000 or 2001. After collection in 15mL hepa-
rin tubes, the blood specimens were shipped on an ice
pack in a Styrofoam container to the study laboratory by
overnight mail (95% were received within 24 h after
blood draw).15 Upon arrival, samples were immediately
centrifuged and aliquoted into cryotubes as plasma,
buffy coat, and red blood cells and stored in liquid nitro-
gen (�130°C). Among participants with blood speci-
mens collected at both time points, we designed a
www.thelancet.com Vol 75 Month January, 2022
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nested case-control study within the NHS, including
244 incident T2D cases and 244 controls (1:1-matching).
Inclusion criteria were availability of required blood
specimens, no prevalent T2D at baseline, no incident
T2D until after the second blood collection, and fasting
� 8 hours at blood collection. Matching factors were
age, race and ethnicity, and calendar time (§3 months)
of the first blood collection (Supplemental Figure 1).
Study inception was defined at the first blood collection
date. All incident T2D cases were diagnosed between
2002 and 2008. The median follow-up time from the
second blood collection to type 2 diabetes diagnosis was
3.9 years (minimum 1.08 years, IQR 2.4-5.3 years, maxi-
mum 6.8 years).

We validated the baseline metabolomics-T2D risk
associations using a similar case-control sample in
NHS with the same inclusion criteria (except that T2D
incidence was allowed after the first blood collection)
and matching factors described above, including 480
incident T2D cases and 480 controls (1:1-matching). For
these participants, blood specimens and metabolomics
data were only available at baseline (1989-90), and T2D
cases were diagnosed between 1992 and 2008.
Laboratory measurements
For each study participant, two targeted plasma metabo-
lomics profiles based on the two blood specimens from
1989/90 and 2000/01 were generated at the Broad
Institute (Cambridge, MA). We used hydrophilic inter-
action liquid chromatography coupled with positive-ion
mode mass spectrometry detection (HILIC-positive
method) to measure polar metabolites. Raw data were
processed with the TraceFinder 3.3 software (Thermo
Fisher Scientific) and Progenesis QI (Nonlinear Dynam-
ics, Newcastle upon Tyne, U.K.). The annotation of
mass spectra to specific metabolites was confirmed with
authentic reference standards or reference samples.16

Aliquots of the same pooled reference plasma were also
interspersed at 20-sample intervals throughout all
measurements. Every metabolite peak in the mass spec-
tra was standardised to the nearest reference sample by
calculating the ratio between the sample peak area and
the reference peak area and multiplying with the
median peak area across reference samples. Thereby,
the metabolomics data were corrected for temporal drift
in instrument sensitivity and scaled between batches.
Blood specimens from matched case-control pairs and
repeated blood specimens from the same individuals
were handled under identical conditions, shipped to the
lab in the same box, and analysed in the same batch but
in random order.

All blood specimens used in this study were analysed
in consecutive batches. The lab personnel was blinded
to the case-control status of the blood specimen donors.
We removed all metabolites with coefficients of varia-
tion above 0.25 among reference samples or with a
www.thelancet.com Vol 75 Month January, 2022
missing data proportion of 25% or higher from the
metabolomics data. One-hundred-seventy known
metabolites passed these quality control criteria.
Covariables
All covariables were derived from validated self-reported
questionnaires. Body weight and smoking status were
assessed biennially, and physical activity was assessed
every four years. Body mass index (BMI) was calculated
from weight (kg) divided by height in square meters.
Smoking status was categorised into never smokers, past
smokers, and current smokers. We estimated metabolic
equivalents (METS) in hours per week from recreational
and leisure time activities. Diet quality was measured
with the Alternative Healthy Eating Index (AHEI). The
AHEI comprises 11 health-related foods and nutrients
and, for each, assigning 10 points to participants with
the most beneficial and 0 points to those with the most
adverse habitual consumption level.17 The underlying
habitual consumption frequencies were assessed with a
validated 131-item semiquantitative food-frequency
questionnaire (FFQ) administered every four years. We
used dietary data from the years 1990 and 1998. These
self-reported lifestyle and anthropometric variables
were validated and showed good to excellent agreement
with gold-standard measurements.18�22 For analyses of
single metabolite values, the closest available covariable
data before blood collection was used for adjustment.
Type 2 diabetes ascertainment
T2D incidence was detected based on self-reported diag-
nosis and confirmed by a validated supplementary ques-
tionnaire.23 Before 1998, confirmation of T2D
incidence relied on the National Diabetes Data Group
criteria, and from 1998 onwards on the American Dia-
betes Association diagnostic criteria. Validation studies
in the NHS have demonstrated the validity of the sup-
plementary questionnaires to adjudicate T2D diagnosis,
showing that more than 97% of participants with self-
reported T2D detected by questionnaires were re-con-
firmed through medical record review by endocrinolo-
gists blinded to questionnaire information.23,24
Statistical analysis
Among the quality-controlled metabolites, most had
complete data. However, missing values were present
in 23 metabolites, from which five metabolites had
between 1% and 5% missing values, and 18 metabolites
had less than 1% missing values (Supplemental Table
1). Missing values were imputed with half the minimally
measured value. For the 10-year metabolite change anal-
yses, we first log-transformed the metabolite values and
then calculated the 10-year change on the log-scale by
subtracting the first from the second measurement
and transformed the results (D-values) into Z-scores
3
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(mean=0, SD=1). We also constructed, for each metabo-
lite, five balanced categories according to the quintiles
of the metabolite change distribution in the study sam-
ple. For analyses of metabolomics data from a single
time point, we applied inverse normal transformation,
which generates a rank-based standard normal distribu-
tion (mean=0, SD=1), minimising outliers’ possible
influence and generating comparable effect sizes
between metabolites.

For descriptive statistics, we examined the distribution
of non-normal continuous variables according to the
median and interquartile range and the distribution of
approximately normally distributed continuous variables
according to mean and standard deviation. Categorical vari-
ables were described as frequencies across categories. The
normally distributed, inverse normal transformed metabo-
lite values were used to estimate Pearson correlation coeffi-
cients between the two metabolite measurements
approximately 10 years apart. Based on the inverse normal
transformed metabolite values, we also estimated partial
correlations for each metabolite pair adjusted for all other
metabolites, using the ppcor R-package.25

We applied the causal structure learning PC-algo-
rithm26 to the metabolomics data to estimate and
graphically represent the metabolites’ conditional
dependencies. First, we generated a conditional depen-
dency network where edges between pairs of metabo-
lites represented associations that were robust against
adjustment for any set of other metabolites for each of
the three metabolomics experiments (first and second
metabolomics profiles in the case-control samples with
repeated metabolomics measurements and metabolo-
mics data in the validation sample with a single baseline
profile). Then, we retained only edges detected in all
three metabolomics experiments because robust edges
across subgroups are likely to be biologically
meaningful.27,28 We used the Louvain algorithm of the
igraph R-package (http://igraph.org/) to detect densely
connected clusters within the metabolomics network.

Associations of metabolites with T2D risk were esti-
mated in conditional logistic regression models using
the clogit function of the survival R-package (https://
CRAN.R-project.org/package=survival), stratifying by
the matched case-control pairs. We used the Efron
approximation 29 for partial likelihood estimators. In
terms of covariable adjustments, all models were condi-
tioned on age, race/ethnicity, and time of blood collec-
tion by the matched case-control design. The matched
design was broken only for the quintile-based categori-
cal models, where age was modelled as a continuous
covariable. The AHEI [points], BMI [kg/m2], and METS
[hours/week] were included as continuous covariables.
Smoking status was modelled as category-based dummy
variables according to the above-defined smoking cate-
gories. All change analyses were also adjusted for base-
line metabolite levels (1989/90) and concurrent
changes in covariables. In secondary analyses, statistical
interactions between the first (1989/90) and the second
(2000/01) metabolite measurement on T2D risk were
tested by including a multiplicative term (metabolitet1*
metabolitet2) along with the main metabolite terms and
covariables in the logistic regression models described
above.

We considered two-tailed p-values below 0.05 (Wald
test) statistically significant. According to the number of
metabolites, all p-values were adjusted for multiple test-
ing by controlling the false discovery rate (FDR).30 We
used SAS version 9.4 (SAS Institute, NC, USA) to pre-
pare datasets and R version 3.6.0 (R Foundation for Sta-
tistical Computing, Vienna, Austria) for all descriptive
and inferential statistical analyses.

Because of participant confidentiality and privacy
concerns, data from the Nurses’ Health Study are not
made publicly available. All data and statistical pro-
grams are permanently stored on the research comput-
ing cluster of the Channing Division of Network
Medicine, Brigham and Women’s Hospital. Requests to
access these data should be made via: https://www.
nurseshealthstudy.org/researchers.
Ethics statement
The study protocol was approved by the institutional
review boards (IRBs) of the Brigham and Women’s
Hospital and Harvard T.H. Chan School of Public
Health, and the IRBs allowed participants’ completion
of questionnaires to be considered as implied consent.
Role of funders
This work was supported by research grants UM1
CA186107, R01 CA49449, DK112940, and DK119268
from the National Institutes of Health. CW was sup-
ported by the German Research Foundation’s (DFG)
individual fellowship #WI5132/1-1 and the Boston Nutri-
tion Obesity Research Center (P30 DK46200). MG-F
was supported by the American Diabetes Association
grant #1-18-PMF-029. DEH was supported by the
National Institutes of Health T32-CA009001. Dr. Li
was supported by NIDDK K99 DK122128 and the Bos-
ton Nutrition Obesity Research Center (P30 DK46200).
The content is solely the responsibility of the authors
and does not necessarily represent the official views of
the National Institutes of Health. None of the funding
sources played a role in the design, collection, analysis,
or interpretation of the data or decision to submit the
manuscript for publication.
Results

Descriptive statistics
Participants’ median ages were 54 and 65 years at the
first and second blood collection, respectively. Com-
pared to participants with incident T2D, we observed
www.thelancet.com Vol 75 Month January, 2022
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higher diet quality (AHEI score), physical activity, pro-
portion of never smokers, and alcohol consumption,
and lower median BMI among controls. Moreover, the
favourable changes of these lifestyle factors were
observed among controls, except that participants quit
smoking at a similar rate among cases and controls.
More cases than controls had first-degree relatives with
T2D (Family history of T2D) (Table 1).

The distributions of 170 quality-controlled, known
metabolites are summarised in Supplemental Table 1.
The 10-year changes were mostly moderate (median
+4%, IQR: -1% to +9% in controls, median +5%, IQR
-1% to +11% in cases), and for all the metabolites the
repeated measurements were positively correlated [con-
trols’ median Spearman correlation coefficient across
metabolites r = 0.45, IQR: 0.38 to 0.53; cases’ median
r = 0.43, IQR: 0.36 to 0.52 (Supplemental Table 2)]. Cor-
relation and partial correlation structures between dif-
ferent metabolites were consistent between time points
(Supplemental Figures 2 and 3) and comparable with
correlations and partial correlations between the 10-year
metabolite changes (Supplemental Figure 4).
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Metabolite changes over ten years and subsequent T2D
risk
We examined the T2D risk-association of intraindivid-
ual metabolite changes over 10 years, matched for age,
race/ethnicity, time of blood sampling, and adjusted for
the metabolite’s baseline level, as well as baseline values
and 10-year changes of BMI, physical activity (METS-h/
week), diet quality (AHEI score), and smoking status.
Thirty-one 10-year metabolite changes showed a nomi-
nally significant T2D risk trend across quintile-based
categories (Ptrend < 0.05) and were significant after mul-
tiple testing correction in the continuous analysis (FDR
< 0.05, Wald test) (Table 2 and Supplemental Tables 3
and 4). The strongest T2D risk-associated metabolite
changes were 10-year increases in BCAA levels [ORD

per SD (95%CI)]: Disoleucine 2.72 (1.95, 3.76), Dleucine
2.53 (1.85, 3.45), and Dvaline 1.93 (1.53, 2.43) (Figure. 1).
Among the other 10-year amino acid changes, Dalanine
and Dmethionine were associated with higher T2D risk,
and DN-acetylaspartic acid, Dglutamine, and Dglycine
with lower T2D risk. Greater 10-year increases in short-
chain acylcarnitines (DC4-OH carnitine, DC5 carnitine),
phosphatidylethanolamines (DC36:4 PE, DC40:6 PE,
DC38:6 PE, DC36:2 PE, DC34:2 PE, DC38:4 PE), vitamins
(Dretinol, Dpantothenate), bile acids (Dglycocholate,
Dglycodeoxycholate / Dglycochenodeoxycholate), and diac-
ylglycerol (DG) / triacylglycerol (TG)-fragment
(DC36:2 DG/TG, DC34:1 DG/TG, DC34:2 DG/TG) were
associated with higher subsequent T2D risk. Smaller 10-
year decreases in lysophospholipids (DC20:0 LPE, DC16:1
LPC plasmalogen), sphingomyelins (DC16:1 SM, DC16:0
SM, DC14:0 SM, DC18:2 SM), and plasmalogens (DC36:3
www.thelancet.com Vol 75 Month January, 2022 5



Categorical analysis Continuous analysis

Q1 Q2 Q3 Q4 Q5 P-

Metabolite OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI) Trend OR (95%CI) FDR
Disoleucine ref. 1.68 (1.12, 2.56) 1.95 (1.26, 3.01) 2.23 (1.44, 3.48) 3.53 (2.23, 5.54) 2E-07 2.72 (1.97, 3.79) 3E-07
Dleucine ref. 1.27 (0.84, 1.93) 1.40 (0.92, 2.14) 1.82 (1.15, 2.89) 2.56 (1.70, 3.89) 4E-06 2.53 (1.86, 3.47) 4E-07
Dvaline ref. 1.35 (0.84, 2.16) 1.72 (1.10, 2.70) 1.70 (1.05, 2.76) 2.61 (1.64, 4.17) 5E-05 1.93 (1.52, 2.44) 3E-06
Dretinol ref. 1.36 (0.88, 2.11) 1.31 (0.83, 2.05) 1.75 (1.12, 2.74) 2.23 (1.40, 3.54) 8E-04 1.82 (1.44, 2.30) 3E-05
DN-acetylaspartic acid ref. 0.92 (0.64, 1.34) 0.70 (0.45, 1.11) 0.56 (0.36, 0.88) 0.55 (0.35, 0.88) 0.002 0.54 (0.42, 0.70) 1E-04
DC4-OH carnitine ref. 1.38 (0.86, 2.23) 1.75 (1.08, 2.87) 2.27 (1.41, 3.64) 2.53 (1.57, 4.10) 2E-05 1.84 (1.41, 2.40) 2E-04
Dalanine ref. 1.67 (1.13, 2.44) 1.39 (0.93, 2.07) 1.62 (1.03, 2.53) 2.18 (1.37, 3.48) 0.011 1.68 (1.31, 2.16) 9E-04
DC20:0 LPE ref. 1.00 (0.70, 1.44) 0.85 (0.57, 1.28) 0.54 (0.35, 0.84) 0.63 (0.41, 0.96) 0.003 0.68 (0.56, 0.82) 0.001
Dglycocholate ref. 1.43 (0.93, 2.19) 1.48 (0.97, 2.25) 1.67 (1.10, 2.55) 1.67 (1.01, 2.73) 0.016 1.58 (1.26, 2.00) 0.001
DC16:1 SM ref. 0.72 (0.49, 1.06) 0.67 (0.45, 1.00) 0.97 (0.66, 1.44) 0.39 (0.24, 0.64) 0.004 0.68 (0.56, 0.83) 0.002
DC5 carnitine ref. 1.21 (0.78, 1.87) 1.13 (0.70, 1.82) 1.95 (1.25, 3.05) 2.14 (1.37, 3.33) 1E-04 1.57 (1.24, 1.99) 0.002
Dmethionine ref. 1.11 (0.72, 1.71) 1.13 (0.75, 1.70) 1.14 (0.71, 1.80) 1.92 (1.24, 2.96) 0.015 1.55 (1.24, 1.95) 0.002
DC36:2 from DG/TG ref. 1.48 (0.97, 2.23) 1.20 (0.78, 1.83) 1.28 (0.84, 1.97) 1.82 (1.16, 2.87) 0.049 1.62 (1.25, 2.07) 0.003
DC16:0 SM ref. 0.85 (0.59, 1.25) 0.73 (0.50, 1.06) 0.70 (0.47, 1.06) 0.64 (0.42, 1.00) 0.025 0.66 (0.52, 0.82) 0.003
DC34:1 from DG/TG ref. 1.34 (0.86, 2.09) 1.86 (1.22, 2.85) 1.65 (1.06, 2.57) 1.99 (1.23, 3.21) 0.002 1.68 (1.26, 2.24) 0.005
Dpantothenate ref. 1.38 (0.87, 2.16) 1.58 (1.02, 2.48) 1.34 (0.80, 2.21) 1.80 (1.09, 2.99) 0.008 1.55 (1.21, 1.97) 0.005
DC38:6 PE ref. 1.11 (0.70, 1.75) 1.12 (0.72, 1.73) 1.68 (1.10, 2.60) 1.42 (0.90, 2.26) 0.019 1.43 (1.17, 1.76) 0.005
DC36:4 PE ref. 1.31 (0.84, 2.03) 1.36 (0.88, 2.11) 1.52 (0.97, 2.36) 1.72 (1.09, 2.70) 0.015 1.45 (1.17, 1.78) 0.005
DC40:6 PE ref. 1.14 (0.73, 1.77) 1.26 (0.84, 1.87) 1.35 (0.89, 2.05) 1.82 (1.19, 2.78) 0.007 1.48 (1.19, 1.86) 0.005
DC36:3 PE plasmalogen ref. 0.76 (0.52, 1.11) 0.72 (0.48, 1.07) 0.58 (0.38, 0.89) 0.68 (0.46, 1.01) 0.017 0.74 (0.62, 0.88) 0.006
DC16:1 LPC plasmalogen ref. 0.83 (0.55, 1.24) 0.78 (0.52, 1.18) 0.64 (0.40, 1.0) 0.64 (0.42, 0.99) 0.028 0.68 (0.54, 0.85) 0.007
DC36:2 PE ref. 1.43 (0.95, 2.16) 1.22 (0.79, 1.86) 1.35 (0.87, 2.10) 2.32 (1.45, 3.72) 0.011 1.42 (1.15, 1.76) 0.008
DC34:3 PC plasmalogen ref. 0.70 (0.47, 1.03) 0.59 (0.39, 0.88) 0.58 (0.38, 0.88) 0.63 (0.42, 0.93) 0.019 0.70 (0.55, 0.89) 0.020
DC34:2 PE ref. 1.67 (1.06, 2.58) 1.31 (0.83, 2.06) 1.57 (1.01, 2.43) 2.05 (1.28, 3.32) 0.012 1.38 (1.11, 1.70) 0.020
DC34:2 from DG/TG ref. 1.20 (0.76, 1.86) 1.48 (0.96, 2.24) 1.43 (0.93, 2.21) 1.73 (1.10, 2.77) 0.011 1.46 (1.13, 1.89) 0.022
Dglutamine ref. 0.80 (0.55, 1.17) 0.67 (0.44, 1.01) 0.50 (0.32, 0.77) 0.69 (0.45, 1.07) 0.015 0.74 (0.61, 0.91) 0.027
DC38:4 PE ref. 1.12 (0.71, 1.73) 1.43 (0.94, 2.19) 1.17 (0.76, 1.82) 1.80 (1.15, 2.84) 0.021 1.31 (1.09, 1.59) 0.027
DC18:2 SM ref. 0.81 (0.56, 1.18) 0.70 (0.48, 1.05) 0.64 (0.43, 0.94) 0.64 (0.41, 0.99) 0.006 0.78 (0.65, 0.93) 0.028
Dglycine ref. 0.84 (0.58, 1.21) 0.55 (0.37, 0.83) 0.64 (0.43, 0.95) 0.52 (0.34, 0.79) 6E-04 0.73 (0.58, 0.91) 0.030
DC14:0 SM ref. 0.90 (0.61, 1.32) 0.83 (0.56, 1.24) 0.93 (0.62, 1.41) 0.58 (0.36, 0.92) 0.045 0.77 (0.64, 0.93) 0.030
DGDX / GCDC ref. 1.72 (1.10, 2.65) 1.72 (1.10, 2.67) 1.42 (0.88, 2.28) 1.97 (1.19, 3.28) 0.044 1.35 (1.08, 1.67) 0.033

Table 2: Associations of 10-year-plasma metabolite changes (2000/01 vs. 1989/90) with subsequent risk of developing type 2 diabetes (2002-2008).
Shown are 10-year metabolite changes with nominally significant trend test in the categorical analysis (P < 0.05) and a significant multiple testing-corrected T2D risk association in the continuous analysis (FDR < 0.05, Wald test).

Case-control sample with repeated metabolomics profiles (1989/90 and 2000/01) and subsequent type 2 diabetes incidence (between 2002 and 2008), n= 244 cases and n = 244 controls, 1:1 matched for age, race/ethnicity, and

time of blood draw.

OR (95%CI): odds ratio (95% confidence interval) per one standard deviation higher levels from a conditional logistic regression model, adjusted for baseline metabolite level, BMI [kg/m2], diet quality [AHEI-points], physical activity

[METS-h/week], DBMI (2000 vs. 1990), DAHEI (1998 vs. 1990), DMETS (2000 vs. 1988), and smoking status [3 categories; never, current, past] at both blood sampling time points.

Q1-Q5: The case-control sample was categorised according to the quintiles of the metabolite distribution; for the categorical analysis, models were not conditioned on matched case-control pair but adjusted for age, all other adjust-

ments remaining the same.

FDR: false discovery rate-controlled p-value (Wald test), adjusted for testing 170 known metabolites.

D: 10-year changes (1989/90 vs. 2000/01).

Abbreviations - DG: diacylglycerol, TG: triacylglycerol, PE: phosphatidylethanolamine, LPE: lysophosphatidylethanolamine, PC: phosphatidylcholine, LPC: lysophosphatidylcholine, SM: sphingomyelin, GDX: glycodeoxycholate,

GCDC: glycochenodeoxycholate.
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Figure 1. Association of 10-year metabolite changes with T2D risk. Colored and labeled dots are T2D-associated 10-year metab-
olite changes (continuous analysis FDR < 0.05 [Wald test] and categorical analysis P < 0.05); small grey dots are non-T2D-associated
metabolite changes (continuous analysis FDR > 0.05). Odds ratio (conditional logistic regression) per one standard deviation higher
10-year metabolite change, matched for age, race/ethnicity, and time of blood draw, and adjusted for baseline metabolite level,
BMI [kg/m2], diet quality [AHEI-points], physical activity [METS-h/week], DBMI (2000 vs. 1990), DAHEI (1998 vs. 1990), DMETS
(2000 vs. 1988), and smoking status [3 categories; never, current, past] at both blood sampling time points. Case-control study with
244 incident type 2 diabetes cases and 244 matched controls.

Abbreviations - Ala: alanine, carn.: carnitine, DG: diglyceride, GCA: glycocholate, GCDC: glycochenodeoxycholate, Gln: glutamine,
Gly: glycine, GXA: glycodeoxycholate, Ile: isoleucine, Leu: leucine, LPE: lysophosphatidyl-ethanolamine, Met: methionine, NAA: N-ace-
tylaspartic acid, PE: phosphatidylethanolamine, PLG: plasmalogen, Pro: proline, ROH: retinol, SM: sphingomyelin, TG: triglyceride, Val:
valine, VB5: pantothenate. (For interpretation of the references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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PE plasmalogen, DC34:3 PC plasmalogen) were associated
with lower subsequent T2D risk (Figure. 1).
Co-occurrence T2D risk-associated metabolite changes
in network clusters
We constructed a data-driven conditional independence
network and identified densely connected metabolite
clusters (Supplemental Figure 5). Higher T2D risk-asso-
ciated 10-year changes co-occurred in clusters of BCAA
& other amino acids, DG/TG-fragments, some vita-
mins, and bile acids (Figure. 2). Inverse T2D-risk associ-
ations co-occurred in clusters of plasmalogens and
sphingomyelins. Three clusters (glycine & other amino
acids, glycerophospholipids, and short-chain FA-con-
taining acylcarnitines & derivatives) included both,
metabolite changes associated with higher and other
metabolite changes associated with lower T2D risk. For
example, in a glycerophospholipid cluster, phosphati-
dylethanolamine changes were associated with higher
T2D risk, while lysophospholipid changes were
inversely associated with T2D risk. Overrepresentation
analysis with knowledge-based metabolite sets sup-
ported the enrichment of significantly T2D-associated
www.thelancet.com Vol 75 Month January, 2022
metabolites changes in metabolite sets related to BCAA
catabolism and bile acid synthesis (Supplemental
Figure 6 and Supplemental Table 5).
Metabolite-T2D risk associations across samples and
time points
We also analysed the T2D risk associations of single
metabolites with and without a 10-year lag time (time-
span between first blood collection [1989/90] and first
incident type 2 diabetes case) separately in age-matched
models adjusted for BMI, physical activity (METS-h/
week), diet quality (AHEI score), and smoking status.
We further verified these associations in a validation
sample with no lag time (n=960, T2D incidence over
sixteen years). Twenty-five metabolites were associated
with subsequent T2D with and without a lag time and
in the validation sample (FDR < 0.05 [Wald test] in all
analyses) (Table 3). When comparing the FDR with and
without a 10-year lag (Figure. 3), the associations of
three BCAA, alanine, and glycine with T2D risk were
markedly stronger in the no-lag analysis, though highly
significant at both times. Several DG/TG-fragments
and aromatic amino acids were significantly (FDR <
7



Figure 2. Co-occurrence of T2D-associated 10-year plasma metabolite changes in metabolomics network clusters. Type 2 dia-
betes-associated (P < 0.05, Wald test) metabolites are color-coded: Orange - high type 2 diabetes risk, Blue � low type 2 diabetes
risk. The data-driven conditional independence network was constructed with the causal structure learning PC-algorithm; clusters
were detected with the Louvain algorithm. Only the clusters with either three or more than 50% type 2 diabetes-associated 10-year
metabolite changes are displayed. Odds ratio (conditional logistic regression) per one standard deviation higher 10-year metabolite
change, matched for age, race/ethnicity, and time of blood draw, and adjusted for baseline metabolite level, BMI [kg/m2], diet qual-
ity [AHEI-points], physical activity [METS-h/week], DBMI (2000 vs. 1990), DAHEI (1998 vs. 1990), DMETS (2000 vs. 1988), and smoking
status [3 categories; never, current, past] at both blood sampling time points. Case-control study with 244 incident type 2 diabetes
cases and 244 matched controls.

Abbreviations - 2PY: N1-methyl-2-pyridone-5-carboxamide, Ala: alanine, Arg: arginine, carn.: carnitine, DG: diglyceride, GAA: gua-
nidoacetic acid, GABA: gamma-aminobutyric acid, Galn: galactosamine, GCA: glycocholate, GCDC: glycochenodeoxycholate, Gln:
glutamine, Gly: glycine, GXA: glycodeoxycholate, Ile: isoleucine, Leu: leucine, LPE: lysophosphatidylethanolamine, Met: methionine,
MNAM: 1-methyl-nicotinamide; NAA: N-acetylaspartic acid, PE: phosphatidylethanolamine, Phe: phenylalanine, PLG: plasmalogen,
Pro: proline, ROH: retinol, SM: sphingomyelin, TG: triglyceride, Val: valine, VB5: pantothenate. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Articles

8

0.05, Wald test) associated with T2D risk in the analyses
with and without a lag time, with comparable signifi-
cance levels in both analyses. Uric acid was the only con-
sistent and validated T2D risk-associated metabolite
with a substantially stronger T2D risk association in the
10-year lag analysis.

Another group of validated metabolite-T2D risk
associations was only evident in the no-lag analysis,
including acylcarnitine C4-OH, bile acids, some phos-
phatidylethanolamines (all associated with higher T2D
risk), as well as N-acetylaspartic acid, several plasmalo-
gens, and sphingomyelins (lower T2D risk). Allo-isoleu-
cine was the only validated T2D risk-associated
metabolite in the 10-year-lag-analysis that was non-sig-
nificant in the no-lag-analysis. However, the p-values
(0.04 at T1 and 0.07 at T2 [Wald tests]) and effect esti-
mates (1.34 [1.08, 1.64] at T1 and 1.2 [1.02, 1.42] at T2)
for the association of allo-isoleucine with T2D at both
timepoints were comparable (Figure. 3 and Supplemen-
tal Tables 6-8).
Secondary analyses
The plasma level of uric acid in 1990 was significantly
associated with T2D risk (FDR<0.05, Wald test) after
adjusting for the second measurements ten years later,
and T2D risk associations of the early measurements of
another twenty-four metabolites (including BCAA and
most lipid markers in Table 3) were suggestive
(P<0.05, Wald test) when adjusted for the second mea-
surement (Supplemental Table 9). These analyses sug-
gest that even with a second metabolomics profile
relatively close to T2D incidence, the historical metabo-
lomics data (i.e., change of metabolites over 10 years)
convey additional T2D risk information. We detected
significant (FDR<0.05, Wald test) multiplicative
www.thelancet.com Vol 75 Month January, 2022



Case-control sample with repeated metabolomics profiles* Validation sample§

First profile (1989-90) 10-year lag to T2D Second profile (2000-01) No lag Single profile (1989-90) No lag

Metabolite OR (95%CI) FDR OR (95%CI) FDR OR (95%CI) FDR

leucine 1.88 (1.50, 2.36) 3E-06 2.80 (2.13, 3.68) 1E-11 1.99 (1.60, 2.47) 2E-08

isoleucine 2.05 (1.61, 2.61) 8E-07 2.80 (2.13, 3.66) 1E-11 2.12 (1.69, 2.66) 3E-09

valine 1.60 (1.31, 1.94) 9E-05 2.12 (1.70, 2.62) 5E-10 2.18 (1.72, 2.74) 3E-09

alanine 1.36 (1.13, 1.65) 0.009 1.82 (1.51, 2.19) 1E-08 1.79 (1.48, 2.18) 9E-08

glycine 0.69 (0.57, 0.84) 0.002 0.58 (0.48, 0.71) 9E-07 0.63 (0.53, 0.73) 2E-07

C36:2 from DG/TG 1.57 (1.26, 1.97) 0.001 1.93 (1.52, 2.45) 2E-06 1.60 (1.37, 1.88) 1E-07

C34:1 from DG/TG 1.67 (1.35, 2.05) 7E-05 2.08 (1.59, 2.7) 2E-06 2.08 (1.71, 2.52) 4E-11

C34:2 from DG/TG 1.70 (1.36, 2.12) 1E-04 1.90 (1.48, 2.42) 6E-06 1.82 (1.52, 2.18) 3E-09

C34:3 PC plasmalogen 0.66 (0.55, 0.79) 1E-04 0.59 (0.48, 0.72) 9E-06 0.65 (0.55, 0.77) 9E-06

C38:5 from DG/TG 1.52 (1.24, 1.87) 9E-04 1.67 (1.35, 2.03) 1E-05 1.63 (1.39, 1.93) 1E-07

C5 carnitine 1.32 (1.11, 1.58) 0.011 1.60 (1.32, 1.93) 1E-05 1.40 (1.19, 1.67) 4E-04

C34:3 from DG/TG 1.57 (1.25, 1.95) 0.001 1.68 (1.37, 2.08) 1E-05 1.60 (1.34, 1.89) 1E-06

C40:6 PE 1.36 (1.13, 1.65) 0.009 1.65 (1.35, 2.01) 1E-05 1.54 (1.30, 1.80) 3E-06

homoarginine 1.36 (1.13, 1.63) 0.009 1.62 (1.32, 1.99) 3E-05 1.40 (1.17, 1.70) 0.002

C34:1 from DG/TG 1.55 (1.23, 1.95) 0.002 1.62 (1.32, 1.98) 3E-05 1.55 (1.33, 1.82) 7E-07

C36:3 from DG/TG 1.65 (1.28, 2.11) 0.001 1.63 (1.33, 2.02) 4E-05 1.43 (1.24, 1.65) 1E-05

phenylalanine 1.52 (1.25, 1.85) 5E-04 1.43 (1.21, 1.70) 2E-04 1.35 (1.14, 1.60) 0.003

C36:4 from DG/TG 1.62 (1.29, 2.02) 6E-04 1.51 (1.23, 1.83) 3E-04 1.39 (1.20, 1.61) 1E-04

urate 1.82 (1.49, 2.24) 8E-07 1.38 (1.15, 1.65) 0.002 1.48 (1.25, 1.73) 2E-05

C4 carnitine 1.27 (1.08, 1.49) 0.025 1.35 (1.14, 1.59) 0.002 1.23 (1.05, 1.45) 0.034

C3 carnitine 1.35 (1.14, 1.61) 0.005 1.38 (1.15, 1.66) 0.003 1.22 (1.05, 1.43) 0.029

tyrosine 1.31 (1.08, 1.59) 0.040 1.34 (1.12, 1.61) 0.005 1.65 (1.35, 2.01) 9E-06

N4-acetylcytidine 1.38 (1.14, 1.68) 0.009 1.28 (1.07, 1.53) 0.018 1.28 (1.11, 1.49) 0.003

DMGV 1.36 (1.13, 1.63) 0.009 1.23 (1.04, 1.46) 0.035 1.45 (1.23, 1.70) 9E-05

beta-alanine 1.34 (1.10, 1.60) 0.018 1.26 (1.04, 1.53) 0.047 1.39 (1.20, 1.62) 1E-04

Table 3: Metabolites that were significantly associated with type 2 diabetes-risk in three distinct metabolomics profiles from two case-
control samples, nested within the Nurses' Health Study.
* Type 2 diabetes case-control study with repeated metabolomics profiles: first metabolomics profile 1989/90 (n= 248 case-control pairs); second metabolo-

mics profile in 2000/01 (n= 244 case-control pairs); type 2 diabetes incidence between 2002 and 2008.
x Type 2 diabetes case-control study with one metabolomics profile in 1989/90 (n= 480 case-control pairs); type 2 diabetes incidence between 1992 and

2008.OR (95%CI): odds ratio (95% confidence interval) per one standard deviation higher levels from a conditional logistic regression model, matched for

age, race/ethnicity, time of blood draw, and adjusted for BMI [kg/m2], diet quality [AHEI-points], physical activity [METS-h/week], and smoking status [3 cate-

gories; never, current, past], assessed at the time of metabolomics profiling.FDR: false discovery rate-controlled p-value (Wald test), adjusted for testing 170

metabolites.Abbreviations - DG: diacylglycerol; DMGV: dimethylguanidino valerate; LPE: lysophosphatidylethanolamine; PC: phosphatidylcholine; PE: phos-

phatidylethanolamine, SM: sphingomyelin; T2D: type 2 diabetes; TG: triacylglycerol.
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interactions on T2D risk between the first and second
measurements of carnitine, acetaminophen, and N-ace-
tylleucine, none of which was highlighted in Table 2
(Supplemental Table 10). These analyses suggest that
the risk associations of the second measurement
(2000/01) do not depend on baseline levels (1989/90)
for most metabolites. We detected no statistically signifi-
cant associations of 10-year metabolite changes with
participant age on T2D risk (all FDR > 0.05 [Wald test];
data not shown). These interaction analyses suggest
that the 10-year metabolite change-associated T2D risk
estimates are consistent across the study subpopula-
tions. To account for dietary retinol sources, we adjusted
for baseline levels and concurrent changes in habitual
red meat consumption and use of vitamin supplements
and the results did not appreciably change. (Supple-
mental Table 11).
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Discussion
In a case-control study of middle- to older-aged women
nested within the NHS, we examined long-term metab-
olite changes and subsequent T2D incidence. The 10-
year changes of thirty-one metabolites were significantly
(FDR <0.05, Wald test) associated with subsequent
T2D risk, adjusted for the baseline metabolite level,
baseline and changes of BMI and T2D-related lifestyle
factors. Greater 10-year increases of BCAA, phosphati-
dylethanolamines, some vitamins, bile acids, and DG/
TG-fragments were associated with higher T2D risk.
The 10-year changes of lysophospholipids, sphingomye-
lins, and plasmalogens were associated with lower T2D
risk. To our knowledge, this is the first study to assess
long-term changes in repeated metabolomics profiles
with subsequent T2D incidence. We also observed and
validated twenty-five T2D risk-associated metabolites in
9



Figure 3. Significance levels of metabolite-type 2 diabetes associations with and without over ten-year lag before disease incidence.
P-values (Wald test) are from a conditional logistic regression model, matched for age, race/ethnicity, and time of blood draw, and
adjusted for BMI [kg/m2], diet quality [AHEI-points], physical activity [METS-h/week], and smoking status [3 categories; never, cur-
rent, past], assessed at the time of metabolomics profiling. T1: 1989/90; T2: 2001/02; type 2 diabetes incidence between 2002 and
2008. Case-control study with 244 type 2 diabetes cases and 244 matched controls.
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the 10-year lag analyses. Most of these metabolites were
previously linked to T2D risk, but we are not aware of
analyses restricted to participants with >10 years lag
time to T2D incidence.

BCAAs were among the most robust metabolomics
T2D risk markers in earlier studies.31�36 Mendelian ran-
domization6 and pharmacological intervention37 studies
support adverse effects of BCAA on glucose homeosta-
sis. Herein, we show, for the first time, that long-term
BCAA increases were associated with higher subse-
quent T2D risk. Furthermore, the 10-year increases of
short-chain acylcarnitines (DC4OH, DC5), BCAA catab-
olism products, were associated with higher T2D risk.
The 10-year increases of alanine and methionine were
also associated with higher T2D risk and glycine’s and
glutamine’s 10-year changes with lower T2D risk. All
these associations are consistent with previously
reported associations of the metabolites’ baseline levels
with T2D risk31�35,38�44 and with our analysis of single
metabolite measurements with subsequent T2D risk,
including the 10-year lag analyses. Our observations
indicate perturbed amino acid metabolism preceding
T2D incidence for more than a decade and further dete-
rioration of amino acid metabolism over time confer-
ring additional T2D risk.

Several prospective cohort studies reported associa-
tions of complex lipids with T2D risk. Baseline levels of
DG, TG, and phosphatidylethanolamines were
previously related to higher T2D risk.43,45 We extended
this evidence by showing that several phos-
phatidylethanolamines’ and DG/TG-fragments’ greater
10-year increases were associated with subsequently
higher T2D risk. Conversely, smaller 10-year decreases
of various sphingomyelins, lysophospholipids, and
plasmalogens were associated with lower T2D risk,
consistent with our findings and previous reports of
plasmalogens’,10 lysophospholipids’,10,43 and
sphingomyelins’10,40 baseline level-associations with
lower T2D risk.

Furthermore, we observed higher subsequent T2D
risk with greater 10-year increases of retinol, pantothe-
nate, and bile acid plasma levels. Other studies found
T2D risk associations with baseline bile acid levels.46�48

The evidence on plasma retinol levels and T2D risk is
inconsistent,49,50 and little information on pantothe-
nate-related T2D risk is available. The lack of effect
attenuation after adjusting for primary dietary sources
of retinol (red meat intake and use of vitamin supple-
ments) suggests that the T2D risk association may
reflect perturbed lipid metabolism rather than dietary
Abbreviations - 2PY: N1-methyl-2-pyridone-5-carboxamide, AA
arginine, C: cytidine, carn.: carnitine, DG: diglyceride, DMGV: dim
GABA: gamma-aminobutyric acid, Galn: galactosamine, GCA: glycoc
cine, GXA: glycodeoxycholate, Ile: isoleucine, Leu: leucine, LPE: lyso
nicotinamide; NAA: N-acetylaspartic acid, PE: phosphatidylethanola
retinol, SM: sphingomyelin, TG: triglyceride, Tyr: tyrosine, Val: valine,
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intake. The novel associations of 10-year N-acetylas-
partic acid changes with lower T2D risk aligns with our
recent report of a metabolic signature of walnut con-
sumption that contained acetylaspartic acid, which was
associated with lower T2D risk in the PREDIMED-
trial.51 However, direct external evidence on N-acetylas-
partic acid and T2D risk is lacking.

Our network analyses showed that the T2D risk-asso-
ciated metabolite changes tended to co-occur in clusters
of interdependent metabolites. Notably, for the lipid
clusters, the network analysis suggested that upregula-
tion (TG-/DG-fragments, phosphatidylethanolamines)
or downregulation (sphingomyelins, lysophospholipids,
plasmalogens) of groups of interrelated lipids is related
to T2D risk. The enrichment analysis with knowledge-
based metabolite sets suggested the overrepresentation
of T2D-related 10-year metabolite changes in metabo-
lites linked to BCAA degradation and bile acid biosyn-
thesis. Further exploration of the interdependencies of
long-term metabolite changes in relation to subsequent
T2D risk is warranted.

Our study further elucidates the metabolic altera-
tions that precede T2D incidence. We observed that
plasma levels of BCAA were elevated more than 10 years
before T2D onset and further increased before T2D
diagnosis. High plasma BCAA levels may reflect
impaired BCAA oxidation in hepatic and adipose tis-
sue.8 However, dietary energy and animal protein over-
load may also contribute to high BCAA plasma
levels,13,52,53 with possible adverse metabolic
consequences.54,55 The T2D risk-related increase in
short-chain acylcarnitines may reflect upregulated but
incomplete BCAA oxidation in skeletal muscle, compet-
ing with mitochondrial fatty acid oxidation.6,8,56 Fatty
acid overload may also contribute to the T2D-related
increase in plasma levels of phosphatidylethanolamines
and TG/DG-fragments.56 The T2D risk-related
decreases of sphingomyelins, plasmalogens, and lyso-
phospholipids may reflect substrate rechanneling into
other lipid classes.

Glycine is utilised in several key metabolic adapta-
tion pathways, including glutathione synthesis, regula-
tion of one-carbon metabolism, porphyrin and carnitine
synthesis, and conjugation of bile acids and other acyl
moieties.57 Genetic evidence links circulating glycine
levels to ammonia detoxification via the urea cycle, sug-
gesting that glycine depletion may reflect competitive
inhibition of its synthesis by upregulated amino acid
catabolism.58 However, genetics also suggest that low
glycine levels may reflect progressive insulin resistance
MU: 5-Acetylamino-6-amino-3-methyl uracil, Ala: alanine, Arg:
ethylguanidino valerate, G: guanine, GAA: guanidoacetic acid,
holate, GCDC: glycochenodeoxycholate, Gln: glutamine, Gly: gly-
phosphatidylethanolamine, Met: methionine, MNAM: 1-methyl-
mine, Phe: phenylalanine, PLG: plasmalogen, Pro: proline, ROH:
VB5: pantothenate.
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rather than be a primary etiological factor in type 2 dia-
betes development.59 Increasing alanine levels may
reflect retrograde nitrogen transport from muscle to the
liver (Cori cycle). The interaction of these metabolic pro-
cesses with hyperinsulinemia is likely bidirectional. The
metabolic perturbations impose a constant challenge on
the insulin-dependent regulation of glucose homeosta-
sis, and in turn, hyperinsulinemia and progressing
insulin resistance lead to further dysregulation of amino
acid and lipid metabolism. Many details of the mecha-
nisms and modes of interaction in this vicious cycle
remain elusive. However, our findings underpin that
repeated metabolomics profiles reflect a progressive
deterioration of amino acid and lipid metabolism that
ultimately culminates in T2D incidence.

A critical criterion to use biomarkers to monitor dis-
ease risk in a disease prevention setting is that bio-
marker changes indicate changes in subsequent disease
risk. For example, the broad clinical application of LDL-
cholesterol as a biomarker to monitor the risk of CVD is
supported by evidence that lowering LDL levels is
related to lower CVD risk.60 The past two decades of
metabolomics research have established links between
baseline lipid and amino acid metabolites and future
T2D onset.5 However, comprehensive analyses of long-
termmetabolite changes in relation to T2D risk are lack-
ing. Hence, our study fills a critical gap in the evidence
for possible applications of metabolomics profiling as
potential biomarkers to monitor T2D risk.

We presented results from the first study with
repeated metabolomics profiles after several years and
subsequent T2D incidence, nested within a well-charac-
terised prospective cohort. However, our study had limi-
tations. We emphasised results significant after
multiple testing-correction in each of the three metabo-
lomics profiles, increasing the likelihood of type II
errors. Therefore, we provided all metabolite-T2D asso-
ciations across all metabolomics profiles in the supple-
ment, facilitating future replication studies. The
metabolomics platform that generated our data targeted
cationic metabolites, including amino acids and lipid
species. Repeated metabolomics profiling of other
molecular classes such as metabolites involved in carbo-
hydrate metabolism and broader lipid profiling may
reveal additional T2D-associated metabolite changes.
Our observational analyses cannot prove causal relation-
ships. Moreover, direct evidence on the tissues of origin
and the contributing metabolic processes to plasma
metabolite levels is scarce. Our findings’ biological
interpretation is, therefore, speculative. However,
adjusting for baseline metabolite levels should block the
influence of unmeasured baseline-confounders in the
change analysis, and the association of metabolite
changes with subsequent T2D risk constitutes a special
case of temporality. Therefore, our study substantially
strengthens the evidence base on the molecular mecha-
nisms of T2D aetiology in humans. Our models were
not adjusted for clinical markers of glucose homeosta-
sis. Studies that relate metabolite changes to established
T2D pathogenic mechanisms are warranted, examin-
ing, for example, the relationship with change in
markers of insulin resistance, insulin secretion, blood
levels of glucose, HbA1c, HDL-cholesterol, triglycerides,
and hepatic enzymes. Our study population was limited
to white women. Studies of the T2D risk related to long-
term metabolite changes in men and other races and
ethnicities are warranted.

The present study provides evidence that long-term
changes in several plasma metabolite levels are associ-
ated with subsequent T2D risk, independent of the
baseline metabolite levels. Additionally, we showed that
metabolomics profiles reflect the molecular disease pre-
disposition more than a decade before T2D diagnosis.
Our observations indicate that high-throughput meta-
bolic profiling captures progressive perturbations of
amino acid and lipid metabolism underlying early T2D
aetiology. These findings contribute to the accumulat-
ing evidence suggesting metabolomics profiling as a
critical tool in T2D risk prevention research. Specifi-
cally, our observation that the change in several metabo-
lite levels was associated with subsequent T2D risk
suggests potential metabolomics applications for track-
ing T2D risk change over time. Further research is war-
ranted to elucidate the determinants of the T2D-
associated metabolite changes and possible interplay
with established T2D risk biomarkers.
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