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Simple Summary: Horse chromosomes have been studied for veterinary diagnostic purposes for
over half a century. The findings show that changes in the chromosome number or structure are
among the most common non-infectious causes of decreased fertility, infertility, and developmental
abnormalities. Based on large-scale surveys, almost 30% of horses with reproductive or developmen-
tal problems have abnormal chromosomes. For a comparison, only 2–5% of horses in the general
population have abnormal chromosomes. Most chromosome abnormalities are rare and found in one
or a few animals. However, two conditions are recurrent: sterile mares with only one X chromosome,
instead of two, and sterile mares with XY male sex chromosomes where the Y has lost the ‘maleness’
gene SRY. The two are signature features of chromosome abnormalities in the horse, being rare or
absent in other domestic animals. The progress in horse genome sequencing and the development of
molecular tools have improved the depth and quality of diagnostic chromosome analysis, allowing
for an understanding of the underlying molecular mechanisms. Nevertheless, cutting-edge genomics
tools are not about to entirely replace traditional chromosome analysis, which still is the most straight-
forward, cost-effective, and fastest approach for the initial evaluation of potential breeding animals
and horses with reproductive or developmental disorders.

Abstract: Clinical cytogenetic studies in horses have been ongoing for over half a century and clearly
demonstrate that chromosomal disorders are among the most common non-infectious causes of
decreased fertility, infertility, and congenital defects. Large-scale cytogenetic surveys show that
almost 30% of horses with reproductive or developmental problems have chromosome aberrations,
whereas abnormal karyotypes are found in only 2–5% of the general population. Among the many
chromosome abnormalities reported in the horse, most are unique or rare. However, all surveys
agree that there are two recurrent conditions: X-monosomy and SRY-negative XY male-to-female sex
reversal, making up approximately 35% and 11% of all chromosome abnormalities, respectively. The
two are signature conditions for the horse and rare or absent in other domestic species. The progress
in equine genomics and the development of molecular tools, have qualitatively improved clinical
cytogenetics today, allowing for refined characterization of aberrations and understanding the under-
lying molecular mechanisms. While cutting-edge genomics tools promise further improvements in
chromosome analysis, they will not entirely replace traditional cytogenetics, which still is the most
straightforward, cost-effective, and fastest approach for the initial evaluation of potential breeding
animals and horses with reproductive or developmental disorders.

Keywords: horse; chromosome aberration; aneuploidy; translocation; structural rearrangements; sex
reversal; chimerism; molecular cytogenetics; FISH; CGH

1. Introduction

Clinical cytogenetic research in horses has been ongoing for over half a century and
has clearly demonstrated that chromosome abnormalities are associated with congenital
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disorders, embryonic loss, reduced fertility, and infertility. Changes in the chromosome
number or structure typically result in genomic imbalance and affect meiotic cell division,
gametogenesis, and the viability of zygotes and embryos. Genetically balanced chromo-
somal changes, such as translocations, can be transmitted, causing fertility problems in
subsequent generations. In cases where chromosomal aberrations do not show phenotypic
or behavioral effects, the carriers can be included in breeding, resulting in significant
economic loss due to veterinary fees and the costs related to maintaining a sterile or a
subfertile horse over the years. Therefore, the cytogenetic screening of potential breeding
animals and clinical cytogenetic evaluation of problem horses are of economic importance
for the equine industry, as well as for the owners and breeders.

During the peak of equine clinical cytogenetics in the 1970s–1990s, many abnormal
karyotypes were published and in the following years, and the findings have been well-
reviewed in books [1,2], book chapters [3–7], and multiple review papers, some specifically
focusing on equine cytogenetics [8–10], others on cytogenetics of domestic animals, includ-
ing the horse [11–14]. Since the last comprehensive and horse-focused reviews about a
decade ago [4,5], equine clinical cytogenetics has advanced qualitatively, mainly thanks
to the progress in equine genomics and the availability of new powerful genomic tools
(reviewed by [15]). At the same time, the quantity of clinical cytogenetic publications
in the horse has reduced compared to the pinnacle times in 1970s–1990s. This, however,
is not because there are less horses with karyotype aberrations but rather because not
every cytogenetic case results in a publication. The majority of recent reports combine
conventional cytogenetics with molecular methods which allow for the validation and
refinement of the findings, but also start revealing the underlying molecular causes and
mechanisms of chromosome abnormalities in the horse.

In this review, we appraise the cytogenetic findings of the past and combine those with
recent reports to identify novel findings and highlight recurrent patterns of chromosome
abnormalities in the horse. We also discuss how molecular tools and the availability of the
horse reference genome have essentially advanced equine clinical cytogenetics today and
what the perspectives for the future are.

2. The Horse Chromosomes
2.1. Chromosome Number

The first reports about horse chromosomes date back to the early 20th century, when,
using spermatogonial and meiotic preparations, it was proposed that the horse diploid
number is approximately 20–37 [16–18] with an XO sex chromosome system [19]. Thanks
to improvements in the chromosome analysis methodology, these early findings were soon
revised showing that like in other mammals, horse has XY sex chromosome system [20] and
the correct diploid number for the domestic horse (Equus caballus, ECA) is 2n = 64 [21–23].

2.2. Application of Different Chromosome Banding Techniques

Horse cytogenetics has evolved in conjunction with human cytogenetics and adopted
from the latter all main chromosome differential staining or banding techniques (reviewed
by [3]). Of the many techniques developed in the 1970s, only a few have remained in active
everyday use in equine clinical chromosome analysis. Among these, the most common
are G-banding [24] and its fluorescent version with 4′,6-diamidino-2-phenylindole, known
as DAPI-banding [25]. The latter produces G-band-like pattern and is an essential part of
all molecular cytogenetic methods (see Section 4). C-banding [26] is an excellent method
to visualize horse sex chromosomes and is still in use as an additional method in cases
involving sex chromosome abnormalities [27,28]. Compared to these, R-banding [29] and
NOR-banding [30] are predominantly used for research [31–33] and not for routine clinical
karyotyping.
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2.3. Karyotype Features and Chromosome Nomenclature

In order to properly characterize chromosome abnormalities and communicate the
findings between cytogenetic laboratories, standard karyotypes, and chromosome nomen-
clatures have been developed. These are agreements among researchers worldwide about
how to number the chromosomes and arrange them by size, centromere position, and
specific banding patterns, and demarcate individual chromosomal regions and bands.

To date, three standard karyotypes have been developed for the horse, the first from
1980 [34] and the second from 1990 [35], mainly differed by chromosome arrangement and
numbering, but provided detailed description of the horse karyotype and chromosome
banding patterns and established common grounds for clinical cytogeneticists. The third
and current standard karyotype from 1997 [36] maintained the second arrangement [35]
but included an enumerated nomenclature of chromosome bands.

According to ISCNH 1997 [36], the autosomes are divided into two groups: in the
first group there are 13 pairs of meta- and sub-metacentric chromosomes, the second
group includes 18 pairs of acrocentric chromosomes. Within each group, the autosomes
are ordered by length. The sex chromosomes—a sub-metacentric X chromosome and an
acrocentric Y chromosome [37]—are located in the center of the karyogram, next to the
row of the three smallest bi-armed chromosomes. Horse sex chromosomes show distinct
C-banding patterns. The X chromosome has two C-bands, one corresponding to the
pericentromeric heterochromatin, another to an ampliconic array of ETSTY7 sequences [38]
interstitially in Xq17. The ETSTY7 sequences prevail in the Y chromosome, which is
almost completely C-band positive. Heterochromatin-rich pericentromeric C-bands are also
present in most of the autosomes, except chr11. The latter is devoid of centromeric satellite
DNA and presents an example of a chromosome with a neo-centromere where centromere
function precedes satellite repeat accumulation [39]. The standard also describes the
location of the 18S-5.8S-28S ribosomal RNA gene clusters or nucleolus organizer regions
(NORs), which are in the telomeric region of chr1 and in the secondary constriction in chr28
and chr31. Some studies also found NOR in chr27 [40,41], though a more recent study [33]
did not confirm the presence of a fourth pair of an NOR-bearing chromosome.

3. Chromosome Aberrations
3.1. Emerging Patterns of Chromosome Abnormalities—Large-Scale Studies

Diagnostic cytogenetic research in horses dates back to the late 1960s, preceding the
introduction of chromosome banding techniques [42]. The first karyotype abnormalities
detected by banding methods were published by Chandley et al. in 1975 [43]: in 7 mares
referred for research due to reproductive problems, aneuploidies 63,X and 63,XXX; mo-
saicism 63,X/64,XX and 64,XY sex reversal were identified. Over the following years,
several large-scale cytogenetic surveys [8,44–46] started to reveal the most prevalent and
specific patterns of chromosome abnormalities in the horse.

A study of 180 mares with gonadal dysgenesis [44] found chromosomal abnormalities
in 54%. The most common abnormality was X-monosomy (63,X), followed by 64,XY
male-to-female sex reversal syndrome. Two mares showed structural abnormalities of
one X chromosome [64,X,del(Xp)]. Chromosomal abnormalities, such as 63,X; 63,X/64,XX;
64,X,del(Xp) and 64,XX,i(26q), were also found in 4 fillies that were tested due to their
small size and poor thriving [44].

A survey by Power [8], recorded X-monosomy in 204 mares (51%) out of 401 tested
horses with chromosomal abnormalities. Of these, 70% had non-mosaic X-monosomy. Like
in the survey by Bowling et al. [44], the second most frequent karyotype aberration was XY
sex reversal, which was diagnosed in 27% out of the 401 horses. Over 13% of horses had
various non-mosaic and mosaic forms of sex chromosome aneuploidies, such as 65,XXX;
65,XXY; 66,XXXY; 64,XX/65XXX; 63,X/64XY; 63,X/65,XYY; 64,XX/65,XXY; 63,X/64,XX/64,XY;
63,X/64,XY/65,XXY; 63,X/64,XX/65,XXY; 64,XX/64,XY/65,XXY; 63,X/64,XX/64,XY/65,XXY
and 63,X/64,XX/65,XXX/65,XXY/66,XXXY/66,XXYY). The remaining 6% had structural
aberrations (translocations, deletions, isochromosomes) or autosomal trisomies.
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A third survey by Parada et al. [45] examined 244 mares with reproductive problems.
Chromosome aberrations were found in 10 of the studied mares, which accounted for 4%
of the entire study population, and 12.8% of completely sterile mares [45]. Like in the two
previous large-scale surveys [8,44], the most common aberration was X-monosomy with
non-mosaic 63,X in 3 mares, and mosaic 63,X/64,XX in four mares, which in total accounted
for 70% of all aberrations [45]. Other findings included XX/XY leukocyte chimerism and
an elongation of the p-arm of chr 12 [45]. The prevalence of sex chromosome abnormalities
was also reported by a smaller-scale cytogenetic analysis of 42 mares with reproductive
problems [47,48] showing mosaicism 63,X/64,XX in five individuals and a three-cell line
mosaicism 63,X/64,XX/65,XXX in one mare. In addition, the analysis of two fillies and one
colt from two different-sex twin pregnancies revealed one pair of twins with lymphocyte
chimerism 64,XX/64,XY.

In order to find out the prevalence of chromosome abnormalities in general horse pop-
ulations, Bugno et al. [46] conducted cytogenetic analysis in 500 young horses—272 fillies
and 228 colts of 10 diverse breeds and breed crosses. Karyotype abnormalities were found
in 10 young mares, which accounted for 2% of the entire population and 3.7% of the female
population [46]. Among the diagnosed aberrations, 8 were X chromosome aneuploidies
(80%)—one pure 63,X and seven 63,X/64,XX mosaics, one case of XX/XY chimerism, and
one case of mosaicism for trisomy 31 (64,XX/65,XX,+31).

The above described surveys of reproductively abnormal and general horse pop-
ulations were all conducted using conventional cytogenetic techniques. However, the
development of molecular cytogenetic methods (see Section 4 for details), has increased
the accuracy and power of diagnosis. For example, two recent studies validated the results
of prior cytogenetic findings in a population of 500 young (up to 2 years) horses using
fluorescence in situ hybridization (FISH) with molecular probes specific for the horse sex
chromosomes [49,50]. The preliminary karyotyping results of 238 horses showed normal
female or male karyotype in 225 animals. In 13 horses (5.5%) the following aberrations
were found: 63,X/64,XX (3 mares); 63,X/64,XX/65,XXX (1 mare); 64,XX/65,XXX (2 mares);
64,XX/64,XX,del(Xp) (1 mare); 63,X/64,XX del(X)?/64,XX (1 mare); 63,X/64,XX/65,XXX
del(X)? (1 mare); 64,XY/65XYY (1 stallion); 64,XX/64,XY (1 stallion); 64,XY SRY-negative
sex reversal (1 mare), and one mare with a reciprocal translocation between chromosome
1 and X: 64,X,t(1p;Xp)(1q;Xq).

Finally, over the past 20 years (2001–2021), the Texas A&M Molecular Cytogenetics
Laboratory (TAMUMCL) has analyzed 766 horses with congenital abnormalities, disorders
of sex development, and/or reproductive problems, using a combination of conventional
and molecular cytogenetic approaches. The data (Table 1, Figure 1) show that 28% of
problem horses have karyotype abnormalities and like in all previous large-scale surveys,
the most prevalent chromosome abnormalities are X-monosomy (35% of all chromosome
abnormalities; 10% of all problem horses; 18% of all problem females) and SRY-negative
XY sex reversal (11% of all chromosome abnormalities; 3% of all problem horses; 6% of
problem females).

Table 1. Summary of clinical cytogenetic findings of the Texas A&M Molecular Cytogenetics Laboratory (TAMUMCL) in
the period of 2001–2021.

Problem Horses Total Number of Individuals % of All Horses Studied % of All Chromosome
Abnormalities Reference

Subjected for karyotyping due to
reproductive or developmental problems 766 - -

Males 244 31.9 -

Females 427 55.7 -

Ambiguous sex 95 12.4 -
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Table 1. Cont.

Problem Horses Total Number of Individuals % of All Horses Studied % of All Chromosome
Abnormalities Reference

Horses with chromosome abnormalities 215 28.1 -

Types of chromosome abnormalities

X-monosomy 76 9.9; (17.8) * 35.3 [51]

X-trisomy 5 0.7; (1.2) * 2.3 [51]

Sex chromosome and ploidy mosaicism

• 63,X/64,XY
• 64,XX/128,XXXX
• 63,X/64,X,i(Yq) (Figure 1A)

3 0.4 1.4 [37]

X chromosome structural rearrangements

• 64,X,del(Xp)
• 64,X,i(Xq); 2 cases
• 65,XX,+Xq (Figure 1B)

5 0.7 2.3

X-autosome complex rearrangement

• 63,X,der(X),del(q22),dup(q21q11),
t(X;16)(q21;q11),dic(X;16)
(Figure 1C)

1 0.1 0.5 [27]

Y chromosome structural rearrangements

• 64,XY,del(Y)(q11q13) (Figure 1E) 1 0.1 0.5

Y-autosome structural rearrangement

• 64,XY,t(Yq;13p) 1 0.1 0.5 [52]

XX/XY blood chimerism 4 0.5 1.9 [53]

Autosomal translocations

• 64,XX,t(2;13); familial, 2 cases
• 64,XX;t(4;10)
• 64,X?;t(5;16),+mar; familial, 9 cases
• 64,XY;t(12q;25q),der(12p)
• 64,XY;t(4p;30q); familial, 6 cases

20 2.6 9.3 [4,54–56]

Autosomal aneuploidies

• 65,XY+27
• 65,XY+30; 2 cases
• 64,XY,i(26q) or 64,XY,rob(26q26q)

4 0.5 1.9 [57]

XY Sex reversal conditions

• SRY-neg XY DSD females; 24 cases
(Figure 1D)

• SRY-pos XY DSDs female-like; 20
cases

44
24
20

5.7; (10.3) *
3.1; (5.6) *
2.6; (4.7) *

20.5
11.2
9.3

[28,58]

XX DSDs; ambiguous sex 41 5.4 19.1 [58]

SRY-pos XY DSDs; male-like 8 1.0 3.7 [58]

* numbers in parentheses show percent of all problem females; DSD—Disorder of Sex Development.

3.2. Sex Chromosome Aneuploidies

As shown by large-scale surveys and by many individual case reports (reviewed
by [3,5,9,10,51]), the most common karyotype abnormality in horses worldwide is X-
monosomy (63,X) and its mosaic forms 63,X/64,XX and 63,X/64,XY. Occasionally, X-
monosomy has been found together with a second, also abnormal cell line, e.g.,
63,X/65,XXX [59] or 63,X/65,XYY [60,61], or as a mosaic of several cell lines [62–67].

X-monosomy. Mares with X-monosomy are often characterized by a lower height
than age- and breed-mates with normal karyotype. They usually have properly developed
external genitalia but have often underdeveloped small hypoplastic ovaries with no pal-
pable follicles, and a small and flaccid uterus. Mares with X-monosomy show decreased
steroidogenic activity of the ovaries and have overall higher levels of the luteinizing hor-
mone, and lower levels of estrogen, progesterone, testosterone and cortisol [45,68,69]. The
consequence of these changes are disturbances in the development and functioning of the
reproductive system, leading to the absence of the estrus cycle and sterility. While the
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typical consequence of non-mosaic X-monosomy is sterility, a few cases of foals born to
mares with a mosaic karyotype 63,X/64,XX have been described [8,44,47,66,69–71].
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Figure 1. Examples of horse sex chromosome structural rearrangements (TAMUMCL archive). (A) 
Isochromosome Xq in a mare with short stature, no ovaries and 64,X,i(Xq) karyotype; (B) Trisomy 
Xq in a non-cycling mare with 65,XX,+Xq karyotype; (C) Complex dicentric X-autosome rearrange-
ment in a mare with short stature but no other obvious problems, fertility unknown; (D) Sex chro-
mosomes of three mares with SRY-neg XY male-to-female sex reversal syndrome; the first two have 
large deletions in the Y, the third one has a cytogenetically normal-looking Y, but a submicroscopic 
deletion around the SRY gene; (E) Partial Y chromosome deletion in a Shetland pony without penis 
(left, middle), comparison with the sex chromosomes of a normal male (right).
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agnosed in horses is sex chromosome trisomy—the presence of supernumerary X or Y 
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65,XXX [43,72–75] and 65,XXY [76–78], or as a mosaic of two [59,79–81], or more cell lines 
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Figure 1. Examples of horse sex chromosome structural rearrangements (TAMUMCL archive). (A) Isochromosome Xq
in a mare with short stature, no ovaries and 64,X,i(Xq) karyotype; (B) Trisomy Xq in a non-cycling mare with 65,XX,+Xq
karyotype; (C) Complex dicentric X-autosome rearrangement in a mare with short stature but no other obvious problems,
fertility unknown; (D) Sex chromosomes of three mares with SRY-neg XY male-to-female sex reversal syndrome; the first
two have large deletions in the Y, the third one has a cytogenetically normal-looking Y, but a submicroscopic deletion
around the SRY gene; (E) Partial Y chromosome deletion in a Shetland pony without penis (left, middle), comparison with
the sex chromosomes of a normal male (right).

Sex chromosome trisomies—XXX, XXY and XYY. The second type of aneuploidy di-
agnosed in horses is sex chromosome trisomy—the presence of supernumerary X or Y
chromosomes. These abnormalities are rare and like X-monosomy occur as non-mosaic
65,XXX [43,72–75] and 65,XXY [76–78], or as a mosaic of two [59,79–81], or more cell
lines [46,63,82–84]. Mares with X-trisomy may look phenotypically normal. Some, es-
pecially those with mosaic X-trisomy, may show signs of estrus, but are rarely able to
produce offspring because of hypoplastic gonads [59,74,85]. Likewise, stallions with XXY
sex chromosomes may look normal and show normal male behavior but are sterile due
to testicular hypoplasia and azoospermia [76–79,86]. Cases of male horses with an extra
Y chromosome (65,XYY) are rare, show various forms of Disorders of Sex Development
(DSDs), and have been described as pseudohermaphrodites [60,61,64]. In the 1970s, it was
believed that the presence of two Y chromosomes could positively affect the performance
of stallions. However, the cytogenetic research carried out among champions at that time
did not confirm these expectations [87].

3.3. Autosomal Aneuploidies

Autosomal aneuploidies are rare in horses because the resulting genetic imbalance is
typically lethal, and the few reported live-born cases are exclusively trisomies (Table 2).
Among the large-scale cytogenetic surveys discussed in Section 3.1, autosomal aneuploidies
were recorded only by two—the survey by M. Power [8] and TAMUMCL 20-year data.
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In the latter, autosomal trisomies were found in just 4 animals out of the 766 abnormal
horses studied, and account for less than 2% of all detected chromosome abnormalities
(Table 1). In contrast, a recent whole genome analysis identified autosomal aneuploidies
(both trisomies and monosomies) in over 20% of equine early pregnancy losses (EPLs) at
14–65 days of gestation [88]. This is in line with the data for humans where autosomal
aneuploidies are well understood and described, and account for approximately 50% of all
diagnosed chromosome disorders in miscarried fetuses [89,90].

Table 2. Summary data about all individual cases of autosomal aneuploidies reported for the horse.

Chr. Karyotype/Type
of Aneuploidy Mosaicism Phenotype Methods Breed Maternal Age Reference

1 n/a; trisomy n/a
Early

pregnancy loss
fetus

SNP-CGH;
WGS; ddPCR WB 4 [88]

3 n/a; trisomy n/a
Early

pregnancy loss
fetus

SNP-CGH;
WGS; ddPCR TB 6 [88]

15 n/a; trisomy n/a
Early

pregnancy loss
fetus

SNP-CGH;
WGS; ddPCR TB 19 [88]

20 n/a; trisomy n/a
Early

pregnancy loss
fetus

SNP-CGH;
WGS; ddPCR TB 13 [88]

20 n/a; trisomy n/a
Early

pregnancy loss
fetus

SNP-CGH;
WGS; ddPCR TB 19 [88]

23 65,XY,+23 non-mosaic
Liveborn,
congenital

defects

G- and
C-banding STB n/a [84]

23, 24 n/a; double
trisomy n/a

Early
pregnancy loss

fetus

SNP-CGH;
WGS; ddPCR TB 3 [88]

26 64,XX,i(26q) or
64,XX,rob(26q26q) non-mosaic

Liveborn,
congenital

defects, fertile

G-, R- and
C-banding TB 3 [92]

26 64,XX,i(26q) or
64,XX,rob(26q26q) non-mosaic

Liveborn,
congenital

defects

G-banding;
BAC-FISH TB 5 TAMUMCL

27 65,XY,+27 non-mosaic
Liveborn,
congenital

defects
G-banding QH 26 [93]

27 65,XY,+27 non-mosaic
Liveborn,
congenital

defects
G-banding AR 25 [94]

27 65,XY,+27 non-mosaic
Liveborn,
congenital

defects

G-banding;
BAC-FISH STB 5 [57]

27 64,XX/65,XX,+27 mosaic
Liveborn,
congenital

defects

G-banding,
BAC-FISH;
SNP-CGH

FR n/a [95]

27 n/a;
monosomy n/a

Early
pregnancy loss

fetus

SNP-CGH;
WGS; ddPCR TB 10 [88]
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Table 2. Cont.

Chr. Karyotype/Type
of Aneuploidy Mosaicism Phenotype Methods Breed Maternal Age Reference

27 n/a;
monosomy n/a

Early
pregnancy loss

fetus

SNP-CGH;
WGS; ddPCR TB 19 [88]

28 65,XY,+28 non-mosaic
Liveborn,
congenital

defects

G- and
R-banding TB 14 [91]

30 65,XX,+30 non-mosaic
Liveborn,
congenital

defects

G-, R- and
C-banding AR 23 [92]

30 n/a; trisomy non-mosaic
Liveborn,
congenital

defects
SNP-CGH WP n/a [95]

30 65,XX,+30 non-mosaic
Liveborn,
congenital

defects

G-banding;
BAC-FISH M 23 TAMUMCL

30 65,XY,+30 non-mosaic
Liveborn,
congenital

defects

G-banding;
BAC-FISH AR 9 TAMUMCL

30 64,XX/65,XX,+30 mosaic Liveborn,
fertile G-banding PK n/a [97]

30 n/a; trisomy n/a
Early

pregnancy loss
fetus

SNP-CGH;
WGS; ddPCR TB 9 [88]

30 n/a; trisomy n/a
Early

pregnancy loss
fetus

SNP-CGH;
WGS; ddPCR TB 19 [88]

31 65,XY,+31 non-mosaic
Liveborn,
congenital

defects
G-banding TB 26 [96]

31 n/a; trisomy n/a
Early

pregnancy loss
fetus

SNP-CGH;
WGS; ddPCR WB 10 [88]

31 64,XX/65,XX,+31 mosaic Liveborn,
normal

G-and
C-banding TB n/a [46]

CGH—comparative genomic hybridization; WGS—whole genome sequencing; ddPCR—digital droplet PCR; abbreviations of horse breeds:
AR- Arabian; FR—Friesian; M—Morgan; PK—Polish Konik; QH—American Quarter Horse; STB—Standardbred; TB—Thoroughbred;
WB—Warmblood; WP—Welsh Pony.

To date, 14 liveborn cases with trisomies involving 6 autosomes have been reported
and in all, the extra chromosome is one of the smallest acrocentrics (Table 2). Phenotypes
of the carriers vary but typically have numerous severe congenital malformations and
primary infertility. The first diagnosed case was trisomy 28 in a Thoroughbred male with
very short stature, cryptorchidism and azoospermia [91]. A foal with trisomy 23 had
numerous defects of the skeletal system and sexual organs [84]. Trisomy 26 has been
reported twice: in a filly with poor constitution, neurologic and behavioral issues ([92],
and a colt with neurologic and gait defects and poor thriving (TAMUMCL). Curiously, in
both cases, the chromosome number was normal 2n = 64, either due to the formation of
isochromosome 26 or by Robertsonian fusion of the extra chr26. The dams of the abnormal
foals in both cases were relatively young (3 years-old and 5 years-old, respectively), thus
excluding advanced maternal age as a contributing factor. However, the most notable is
that the filly with trisomy 26 turned into a fertile mare who gave birth to a healthy and
chromosomally normal colt [92]. Trisomy 27 has been found in 4 cases and in all, the
affected foals had multiple congenital malformations, including contracted tendon [93],
arthrogryposis [94], skeletal malformations [95], and gait and behavioral abnormalities [57].
Four cases have also been diagnosed with trisomy 30, all having multiple developmental
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and behavioral abnormalities, such as poor thriving (TAMUMCL cases); abnormal gait and
limb malformations [92]; facial deformities, scoliosis and heart and artery defects [95]. In
contrast, trisomy for the smallest equine autosome, chr31, has been reported only once—a
colt with underdevelopment of the limbs and reproductive organs [96].

Primary infertility, which is associated with the majority of non-mosaic autosomal
trisomies, prevents propagating the aberrations in the population. However, this is not the
case of mosaic forms. For example, Kubień and Tischner [97] described a phenotypically
normal Polish Konik mare with 64, XX/65,XX 0 karyotype that gave birth to a normal foal.
Likewise, Bugno et al. [46] diagnosed a 64,XX/65,XX,+31 karyotype in a few months-old
filly with no developmental anomalies at this age. The lack of developmental abnormalities
and normal fertility in mosaic forms of autosomal trisomy is likely due to the presence of a
cell line with a normal karyotype.

It is well-established that the risk for autosomal trisomies in humans increases with
advancing maternal age [98]. No such statistics is available for the horse, mainly because
of the small number of reported cases. However, in some of the above-described studies,
advanced age of the dam has been considered as a contributing factor [44,92]. In others,
however, foals with an autosomal trisomy have been born to mares of average reproductive
age (Table 2). Likewise, no clear correlation between maternal age and aneuploidies were
detected in the single study of EPLs [88]. Because horses are used for breeding at all ages,
continuing collection of cases with phenotypic and parental information is needed to shed
more light into this matter.

3.4. Structural Rearrangements

Structural rearrangements change the constitution of one or more chromosomes and
are typically caused by double-stranded DNA breaks and subsequent mistakes in repair
during meiosis [99]. Depending on their effect on genome integrity, structural rearrange-
ments are classified as genetically balanced and unbalanced. Balanced rearrangements
include inversions and most translocations, and do not change the DNA content of a cell.
Balanced structural changes typically do not have noticeable phenotypic manifestation and
can easily remain unnoticed in carrier animals. In contrast, unbalanced rearrangements,
such as deletions, duplications, and unbalanced translocations, cause a gain or loss of the
genetic material and depending on the size and content, may have more or less severe
effects on development, viability and reproduction (reviewed by [13,14]).

Translocations. Translocations involve nonhomologous chromosomes which exchange
parts or fuse, giving rise to reciprocal or nonreciprocal translocations, respectively [100].
Carriers of genetically balanced translocations appear phenotypically normal but have
reduced fertility because of producing both genetically balanced and unbalanced gametes.
The former can pass the translocation between generations, whereas fertilization of un-
balanced gametes typically results in embryonic or fetal death, and is noticed as reduced
fertility [14,54]. Carriers of unbalanced translocations, on the other hand, show a range of
developmental and reproductive disorders depending on the extent of genetic imbalance
and the regions involved [100].

Translocations are rare in horses and to date, only 15 unique translocations have
been reported (Table 3). Of these, 11 are autosomal and 4 involve an autosome and a sex
chromosome.

Autosomal translocations. The majority of autosomal translocations found in horses are
balanced, thus not affecting the performance or appearance of the carrier animal. They were
discovered because the carrier mare or stallion was subjected for chromosome analysis
due to recurrent early embryonic loss (REEL) and subfertility (reviewed by [4,5,9,14]).
Therefore, the actual frequency of balanced autosomal translocations in equine populations
may be higher, but due to no phenotypic effect and because only select individuals are
used for breeding, they remain undetected [54]. In contrast, the single case of a live
horse with unbalanced autosomal translocation, a Warmblood colt with 64,XY,t(4;30),+4p
(Table 3), was euthanized due to poor thriving [54]. Overall, live animals with unbalanced
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autosomal translocations are extremely rare and typically, the condition is not viable
beyond preimplantation [101].

Table 3. Summary data of all translocations found in horses.

Karyotype Type Genetic Balance Evidence of
Transmission

Reproductive
Phenotype Methods Breed Reference

64,XX,t(1q;3q) Reciprocal balanced no REEL G- and
R-banding TB [102]

64,XY,t(1;30) Tandem balanced no subfertility G- and
C-banding TB [103]

64,XX,t(1;16) Reciprocal balanced no subfertility

G-and
C-banding;
BAC-FISH;
Zoo-FISH

TB [104]

64,XX,t(1;21) nonreciprocal balanced no REEL
G-and

C-banding;
BAC-FISH

TB [105]

64,XX,t(2;13) nonreciprocal balanced yes REEL G-banding;
BAC-FISH TB [56]

64,XX,t(4;13) Reciprocal balanced no REEL
G-and

C-banding;
BAC-FISH

TB [105]

64,XX,t(4;10) nonreciprocal balanced no REEL G-banding;
BAC-FISH AR [55]

64,XY,t(4;30),der(4q) and
64,XY,t(4;30),+4p nonreciprocal balanced/

unbalanced yes
foals with
congenital

abnormalities

G-banding;
BAC-FISH WB [58]

64,XY,t(5;16),+mar nonreciprocal balanced yes REEL G-banding;
BAC-FISH TB [4]

64,XY,t(12;25),der(12p) nonreciprocal balanced no azoospermia,
small testes

G-banding;
BAC-FISH AR [58]

64,XX,t(16;22),+mar Reciprocal balanced no REEL
G-and

C-banding;
BAC-FISH

TB [105]

64,X,t(1p;Xp)(1q;Xq) Reciprocal balanced no n/a G-banding;
BAC-FISH n/a [49]

63,X,t(Xq;16),+ complex X
rearrangements nonreciprocal unbalanced no n/a G-banding;

BAC-FISH TB [27]

64,X,t(15;X),-Xp,+15 * nonreciprocal unbalanced no infertility G- and
R-banding TB [91]

64,X,t(13;Y) Reciprocal balanced no azoospermia
G-and

C-banding;
BAC-FISH

FR [52]

* According to ISCNH1997, the involved autosome is chr17; REEL—Recurrent Early Embryonic Loss; Abbreviations of horse breeds:
AR—Arabian; FR-Friesian; TB—Thoroughbred; WB—Warmblood.

Balanced translocations are among the few hereditary chromosome abnormalities be-
cause the carriers can pass the condition to their offspring. If transmitted, the translocation
will cause similar subfertility issues in the next generation [14]. In horse breeding where
sires and dams are selected based on their athletic performance, appearance, and pedigrees,
rather than reproductive performance, this can lead to propagating translocations over
generations. Currently, there is cytogenetic evidence for three such ’translocation families’
(Table 3): an elite Thoroughbred stallion with 64,XY,t(5;16),+mar passing the rearrange-
ment to 8 offspring [4]; an elite Warmblood stallion with 64,XY,t(4;30),der(4q) passing the
rearrangement to 5 offspring [54], and a Thoroughbred mare with 64,XX,t(2;13) passing
the rearrangement to a single foal [54,56]. Therefore, systematic chromosome analysis
of prospective breeding animals is needed for early detection of translocation carriers to
prevent transmission and reduce economic loss due to subfertility.

Autosome and sex chromosome translocations. The phenotypic effects of translocations
involving sex chromosomes differ from those of autosomes, as well as from each other. In
each case, the genetic consequences depend on whether the horse is male or female and
which X chromosome regions are involved. This is because random X inactivation (XCI) in
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mammalian females [106,107], balances X chromosome gene dosage between sexes, but
also buffers deleterious effects of X chromosome mutations [108,109]. This is illustrated
by phenotypic differences between the three reported cases of X-autosome translocations
(Table 3). The mare with a balanced 64,X,t(1p;Xp)(1q;Xq) karyotype was phenotypically
normal [49]. The Thoroughbred mare with unbalanced, dicentric complex X chromosome
rearrangement and t(16;X) (Figure 1C), had only mild phenotype with short stature. This
is because there was no autosomal imbalance and the rearranged X chromosome portion
was subject for XCI, which probably did not spread over to chr16 [27]. In contrast, the
Thoroughbred mare with unbalanced 64,X,t(15;X),-Xp,+15 karyotype had a short stature
and was infertile [91], which is consistent with monosomy for Xp [14]. However, this mare
also had trisomy 15, which most likely should not be viable, but because one copy of chr15
was translocated to Xq, it was functionally silenced by XCI [91].

A unique case is a balanced reciprocal Y-chr13 translocation in a Friesian stallion
with complete azoospermia [52]. It is the first case of azoospermia in stallions with a
cytogenetically detected Y chromosome abnormality. However, because balanced translo-
cations typically cause only subfertility, the complete meiotic arrest and azoospermia in
this stallion remained a puzzle [52]. The mystery was resolved by a recent hypothesis
about Y-linked meiotic executioner genes which are necessary for successful meiosis but
must also be subjected to meiotic sex chromosome inactivation (MSCI) [110]. If such genes
are translocated to an autosome, ectopic expression of these genes during MSCI results
in fatal meiotic arrest [110]. Thus, the Friesian stallion with Y-autosome translocation is
a proof-of-principle to this hypothesis and another example illustrating different genetic
consequences of translocations involving autosomes only compared to those involving an
autosome and a sex chromosome.

Translocation-prone chromosomes. Even though none of equine translocations have
been recurrent, i.e., have not independently occurred in unrelated individuals, some horse
chromosomes tend to be engaged more often than others. For example, only 14 autosomes
(out of 31) and the sex chromosomes have been involved in the 15 currently known
translocations (Table 3) [54]. Of these, chr1 has been involved five times, chr16 four times,
chr4, 13, and X three times each, chr30 twice, and chr2, 3, 5, 10, 12, 17, 21, 22, 25, and Y once
each. Whether or not the involvement of particular chromosomes is random or associated
with specific molecular features, remains a topic for future research. Studies in humans and
pigs, where translocation frequency is high, indicate that translocation breakpoints are not
random and occur preferentially in regions with open chromatin (G-negative bands), higher
gene density and common fragile sites, and are demarcated by repetitive elements such
as LINEs, SINEs, and endogenous retroviral elements [99,111]. Continuing the collection
of additional clinical and cytogenetic data on translocations is the key for revealing their
molecular patterns in horse chromosomes.

Deletions and duplications. Deletions and duplications decrease or increase the total
amount of DNA in a cell, respectively, and cause genomic imbalance. Loss or gain of large
chromosomal segments is usually lethal or accompanied by severe malformations and
infertility. Smaller submicroscopic deletions and duplications, also known as DNA copy
number variants (CNVs), may or may not have any evident phenotypic effect, and their
contribution to equine health and fertility is, as of yet, poorly understood [112].

Chromosomal deletions and duplications are part of unbalanced translocations and
were discussed in the previous section (Table 3). Otherwise, there are just two reports on
cytogenetically detected autosomal deletions: deletion of chr13qter [64,XY,del(13)(qter)]
in a Standardbred stallion [63] and an Arabian stallion with mosaicism for XX/XY and
chr10 deletion [64,XY/63,XY,–10; 64,XX/63,XX,–10;] [113]. Both cases were identified due
to fertility issues. However, it must be noted that these studies predated the availability of
molecular cytogenetic tools to validate the findings.

Horse Y chromosome is particularly prone for deletions, most of which cause SRY-
negative XY sex reversal syndrome and are discussed in Sections 3.6 and 5. In addition,
TAMUMCL has studied a case of a male Shetland pony with no penis. The horse was
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SRY-positive and had 64,XY karyotype with an unusually small Y chromosome that had
lost the majority of the C-band positive heterochromatin (Table 1, Figure 1E).

Inversions. An inversion occurs when a piece of a chromosome breaks and reinserts
within the same chromosome in inverted orientation [100]. Inversions are hard to detect
both by conventional and molecular cytogenetic approaches, and to date there are no
reports about equine clinical cases caused by inversions. The only known cytogenetically
detectable inversion in the horse is the over 40 Mb-size inversion in chr3q causing the
tobiano color pattern but is not associated with a disease or disorder [114].

Isochromosomes. Isochromosomes (i) are structurally abnormal chromosomes that
are formed through a centric mis-division and result in chromosome arms which are mirror
image of each other and genetically identical [115]. If one copy of the normal chromosome
is also retained, the result is trisomy for that chromosome arm. Thus, isochromosome
formation is both a structural and numerical rearrangement.

Isochromosomes have been reported for horse sex chromosomes –i(Xq) ([116]; TAMUMCL,
Table 1, Figure 1A) and i(Yq) [37,117,118]. The two cases of 64,X,i(Xq) ([116]; TAMUMCL) were
both described as having short stature and small inactive ovaries—a typical phenotype for
X-monosomy or the deletion of Xp [14]. Isochromosome Y has been found only in mosaic
form as 63,X/64,X,i(Yq) [37,117,118] (Figure 2). Two cases had similar DSD phenotypes—a
male pseudohermaphrodite [117] and an intersex [37]. The third case was slightly different
describing a female horse with abnormal external genitalia (Figure 2), but here the researchers
also detected by PCR analysis Y chromosome microdeletions [118].

Among autosomes, there are two cases with putative isochromosome 26—a fertile
Thoroughbred mare [92] and a Thoroughbred colt with neurologic issues, gait problems
and poor growth (TAMUMCL, Table 1). Both horses had normal chromosome number
with 64,XX or 64,XY karyotypes, respectively, but carried one normal chr26 and one
metacentric marker chromosome which both arms corresponded to chr26. Further analysis
by microsatellite genotyping (see Section 4.3) is needed to reveal whether the abnormal
metacentric chromosome is an isochromosome or a result of Robertsonian fusion. In
the first case, all chr26 markers should be bi-allelic, in the latter, three alleles can be
detected. Regardless, recurrence of i(26q) or rob(26q26q) in unrelated horses is certainly a
curious observation.

Fragile sites. Fragile sites are specific chromosomal loci that exhibit gaps and breaks on
metaphase chromosomes following partial inhibition of DNA synthesis. Common fragile
sites are found in all individuals, while rare fragile sites occur infrequently, are inherited in
the Mendelian manner and can be associated with congenital disorders [119,120].

Chromosomal fragility has also been reported in horses in connection with sterility
and reduced fertility [32], though the mechanism underlying this connection remains
unclear [119]. Difficulty of interpretation is probably one of the reasons why fragile sites
or chromosome breaks have not been included in any equine clinical cytogenetic case
report, even though breaks and gaps have been observed and recorded in laboratory
notes (TAMUMCL archive). Fragile sites certainly deserve further attention by clinical
cytogenetics and basic genome research because in both humans and horses, they have
been co-localized with interstitial telomeric sequences, known as genomic ‘scars’ marking
DNA break/repair sites and possibly more unstable genomic regions [121].

3.5. Chimerism

The term chimera is defined as an individual that has two cell lines derived from two
separate zygotes. This disorder may appear as a result of the early fusion of zygotes, which
are the result of fertilization of the egg and polar body. In a situation where their genetic
sex is different (XX and XY), chimerism involving all tissues leads to intersex with ovotestis.
Chimerism may also be caused by early embryo fusion [122].
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Figure 2. Example of a horse with isochromosome Y in a mosaic karyotype 63,X/64,X,i(Yq). (A) Abnormal external geni-
talia of a 6 month-old mare; (B) Cell line with X-monosomy 63,X (97%); the single X is labeled green with X-specific paint-
ing probe; (C) Cell line with isochromosome Y and 64,X,i(Yq) karyotype (3%); X is labeled green with X-specific painting 
probe and Y is labeled red with Y-specific painting probe; (D) Part of the same metaphase after G-banding showing i(Yq) 
(arrow); (E) Partial metaphase after FISH with a probe specific for USP9Y region in Y (note the red signal at both ends of
the isochromosome Y). 
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tions in individuals born from twin or multiple pregnancy, both the same-sex and differ-
ent-sex. In these cases, the occurrence of cellular chimerism is the result of the formation 
of a common bloodstream through anastomoses, i.e., vascular connections between the 
fetal membranes of co-twins [123,124]. The consequence is the exchange of hematopoietic 
cells and the interaction of the endocrine and immune systems between the twins. The 
consequence of the formation of anastomoses are changes in the female reproductive sys-
tem, which most often lead to infertility (cattle, sheep) or reproductive problems (horses)
[53,125–131]. 

The cases of fertile mares with XX/XY leukocyte chimerism may indicate a late con-
tact of placental vessels between fetuses [129]. If the fusion takes place after sex determi-
nation and differentiation towards ovaries, they do not undergo masculinization, which 
occurs in freemartin heifers derived from different-sex twin pregnancies [131]. 

Figure 2. Example of a horse with isochromosome Y in a mosaic karyotype 63,X/64,X,i(Yq). (A) Abnormal external genitalia
of a 6 month-old mare; (B) Cell line with X-monosomy 63,X (97%); the single X is labeled green with X-specific painting
probe; (C) Cell line with isochromosome Y and 64,X,i(Yq) karyotype (3%); X is labeled green with X-specific painting
probe and Y is labeled red with Y-specific painting probe; (D) Part of the same metaphase after G-banding showing i(Yq)
(arrow); (E) Partial metaphase after FISH with a probe specific for USP9Y region in Y (note the red signal at both ends of the
isochromosome Y).

The best-known form of chimerism in mammals is the presence of two cell populations
in individuals born from twin or multiple pregnancy, both the same-sex and different-
sex. In these cases, the occurrence of cellular chimerism is the result of the formation
of a common bloodstream through anastomoses, i.e., vascular connections between the
fetal membranes of co-twins [123,124]. The consequence is the exchange of hematopoi-
etic cells and the interaction of the endocrine and immune systems between the twins.
The consequence of the formation of anastomoses are changes in the female reproduc-
tive system, which most often lead to infertility (cattle, sheep) or reproductive problems
(horses) [53,125–131].

The cases of fertile mares with XX/XY leukocyte chimerism may indicate a late contact
of placental vessels between fetuses [129]. If the fusion takes place after sex determination
and differentiation towards ovaries, they do not undergo masculinization, which occurs in
freemartin heifers derived from different-sex twin pregnancies [131].

3.6. Cytogenetics of Sex Reversal Conditions

The term sex reversal has been used to describe situations where the genetic sex as de-
termined by sex chromosomes does not agree with the gonadal and/or external phenotypic
sex. In human medicine, due to social and ethical issues, gender-based diagnostic labels
such as sex reversal, intersex, hermaphroditism, and pseudohermaphroditism, have been replaced
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by a more neutral term disorders of sex development (DSDs) [132]. The term has also been
extended to veterinary medicine to denote congenital conditions in which development
of chromosomal, gonadal, or anatomic sex is atypical [11]. Conditions with a normal
karyotype but atypical or ambiguous sex development are classified according to the sex
chromosomes into XY and XX DSDs.

64,XY DSDs. Many cases of male-to-female sex reversal or XY DSDs have been de-
scribed in horses and after X-monosomy, they are the most common equine chromosome
abnormalities (reviewed by [4,5,10–14,133,134]). It has been estimated that approximately
12% to 30% of all cytogenetically abnormal cases are XY DSDs [28,44,135] (Table 1).

In earlier studies, when XY DSDs were recognized solely by karyotyping, without test-
ing for the SRY gene, the researchers observed that phenotypes of XY sex reversal horses can
vary in a broad range—from a very feminine to a greatly masculinized mare [44,135–137].
With the inception of SRY testing in equine cytogenetics, first by Southern blotting [138]
and thereafter by PCR [73,139,140], horse XY DSDs are categorized as SRY-negative and
SRY-positive.

SRY-negative XY DSDs. This is the most prevalent form of XY DSDs and encompasses
the majority of the feminine-type cases. The affected mares typically have normal female
external genitalia and no somatic or behavioral abnormalities but are sterile due to ovarian
and uterine dysgenesis [10,11,28,73,78,133,138,141–144]. The phenotype of SRY-negative
XY DSD very closely resembles that of X-monosomy, indicating that while the absence of
SRY blocks the male development pathway in these individuals, normal female develop-
ment still requires the presence of two X chromosomes. At molecular level, SRY-negative
XY DSD in horses is caused by Y chromosome deletions (Figure 1D) and discussed in detail
in Section 6.

SRY-positive XY DSDs. This group of XY DSDs encompasses female-like horses show-
ing various degrees of masculinization and virilization, as well as stallion-like behavior.
These horses usually have abnormally developed genital tract, the gonads can range
from ovotestes to testicular feminization, and the cases are described as male pseudo-
hermaphrodites, intersex or ambiguous sex [28,44,133,134,136,137,145–149].

Despite female-like appearance, these horses are genetically male with an intact Y chro-
mosome and a normal SRY gene [28]. Molecular causes for abnormal sex development are
known or suggested only for a few cases. In three families of different breeds, SRY-positive
XY DSD was associated with androgen insensitivity syndrome and with different muta-
tions in the androgen receptor gene [150–152]. In two related male pseudohermaphrodite
Standardbreds with SRY-positive XY DSD [146], a large (~200 kb) homozygous deletion in
chr29 was found and proposed as a likely cause because the deletion removed a cluster of
genes (AKR1C family) with known functions in steroid hormone biosynthesis, including
androgens and estrogens [58,112]. However, AR mutations or the deletion in chr29 are not
present in many other cases of SRY-positive XY DSDs [58], suggesting that the molecular
causes of the condition are heterogeneous.

64,XX DSDs. Horses with XX DSDs are SRY-negative and cytogenetically indistin-
guishable from normal females. However, all equine XX DSDs cases have highly abnormal
and ambiguous sex phenotypes (reviewed by [10,12–14]). In contrast to humans where
multiple cases of SRY-positive XX males have been reported [153], true XX female-to-male
sex reversal condition has not been found in horses. Over the years, tens of XX DSD cases
have been described [133,139,154–160], including 41 unpublished cases from TAMUMCL
(Table 1). While clinical details of individual cases may vary, they are typically reported
as intersex, hermaphrodite or ambiguous sex because of difficulties to decide about the
gonadal and/or phenotypic sex of the horse (reviewed by [134]). Molecular causes of
equine XX DSD are unknown.

4. Molecular Cytogenetic Methods and Applications

During the past three decades, largely thanks to the progress in horse gene mapping
and genome sequencing (reviewed by [15]), methodological advancements have also
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shaped equine cytogenetics, leading to improved resolution and accuracy in detecting
various types of chromosome abnormalities. Clinical cytogenetics today is essentially a
combination of conventional chromosome analysis by banding techniques and a variety of
molecular approaches.

4.1. Fluorescence In Situ Hybridization (FISH)

The most widely used molecular approach in equine clinical cytogenetics is fluores-
cence in situ hybridization (FISH). The method was developed in the 1980s (reviewed
by [161]), relies on the Watson–Crick DNA base-pairing complementarity principle and
permits identification of the location of DNA sequences in their original place (in situ) in
mitotic and meiotic chromosomes at different stages of the cell cycle [162,163]. The most
commonly used probes for FISH in cytogenetic studies are clones from the horse genomic
bacterial artificial chromosome (BAC) library CHORI-241 (https://bacpacresources.org/
accessed on 1 March 2021). This is because thanks to the whole-genome radiation hybrid
and FISH map [164] and available end sequence data for approximately 315,000 BACs [165],
precise chromosomal and sequence map locations are known for thousands of clones from
this library. Therefore, if a BAC clone is needed for FISH to identify the chromosomes
involved in numerical or structural rearrangements or for determining rearrangement
breakpoints, it can be found from the Genomic Clones track of EquCab3 assembly in NCBI
Genome (https://www.ncbi.nlm.nih.gov/genome/?term=horse accessed on 1 March 2021)
and ordered from the CHORI BACPAC resources (https://bacpacresources.org/ accessed
on 1 March 2021).

Other important FISH probes are horse chromosome-specific paints generated by
chromosome flow sorting [72,166] or microdissection [167–170]. The latter method also
allows for the preparation of probes specific for chromosomal segments and has been used
to generate painting probes for the short- and long arm of the horse X chromosome [171].

In addition to BACs and chromosome painting probes, FISH probes are available
for vertebrate telomeric repeats (Discovery®: https://www.discoverypeptides.com/pna/
pna-telomere-fish-probes accessed on 1 March 2021), multicopy 18S-5.8S-28S ribosomal
DNA (rDNA) sequences [33], also known as nucleolus organizer regions (NORs), and
horse centromeres [172]. Alternatively, researchers have used primed in situ DNA synthesis
(PRINS) for the detection of telomere, centromere, and rDNA repeat sequences in horse
chromosomes [33,173,174].

4.2. Application of FISH in Horse Clinical Cytogenetics

The first application of FISH in equine clinical cytogenetics was the use of a flow
sorted X chromosome paint to detect X chromosome aneuploidies [72]. Since then, X
chromosome paints have been used in multiple cytogenetic cases for the detection of
mosaic (see Figure 2B,C) and non-mosaic X chromosome aneuploidies [64,74,167,169],
aneuploidies of X chromosome arms [171], sex chromosome mosaicism [175], and in one
recent case, to show premature X chromosome centromere division in a Hucul mare [176].
Combination of both the X and the Y chromosome paints (Figure 2C) or the Y paint alone,
have been used to confirm sex chromosome complement and large Y chromosome deletions
in cases of XY male-to-female sex reversal [28,141].

In contrast to the wide use of sex chromosome paints, there are no reports about
FISH with horse autosomal paints to analyze cases of autosomal aneuploidies or struc-
tural rearrangements. So far, all FISH experiments validating and refining various horse
translocations (Table 3) have used BAC clones. Likewise, BAC-FISH has also been instru-
mental for the accurate identification of the small autosomes involved in trisomies [57,95]
(Table 2), for confirming isochromosome formation [37], and for characterizing two cases
with complex structural rearrangements. The first one involved 5;16 translocation and a
de novo small marker chromosome [4], another had a dicentric X;16 translocation with
partial Xq duplication and deletion [27]. The use of BACs instead of chromosome paints
in these cases is probably because BAC-FISH provides better resolution for resolving re-

https://bacpacresources.org/
https://www.ncbi.nlm.nih.gov/genome/?term=horse
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arrangement breakpoints, but also because horse chromosome painting probes are not
commercially available.

Compared to BACs and sex chromosome paints, the use of FISH with centromeric,
telomeric, or rDNA probes in equine clinical cytogenetics has been limited. The few
examples include centromere-FISH to locate centromeric sequences in a dicentric derivative
chromosome [27] and show the position of centromeres in isochromosome Y [37]. The
latter study also determined that the horse Y chromosome is an acrocentric and not sub-
metacentric as presented in ISCNH 1997 [36].

4.3. Cytogenetic Evaluation of Stallions by Sperm-FISH

Sperm-FISH is a state-of-art technique to analyze chromosomal constitution of mature
spermatozoa, which have highly condensed chromatin, do not undergo cell division and
cannot be studied by conventional cytogenetic approaches. Sperm-FISH is carried out
on decondensed sperm nuclei using chromosome-specific paints or BAC clones. The
method was initially developed for men [177] but has been optimized for domestic species,
including the stallion [178]. While karyotyping evaluates chromosomes in diploid somatic
cells, sperm-FISH allows determining the chromosomal constitution of mature haploid
sperm and is potentially more informative for fertility evaluation. However, the ability to
detect aneuploidies is limited to the availability of chromosome-specific probes and the
number of fluorochromes that can be simultaneously visualized under the microscope.

Owing to these limitations, sperm-FISH studies in stallions have been restricted to
analyzing sex chromosome aneuploidies in reproductively normal [179–181] and subfertile
stallions [182]. These studies indicate that sex chromosome aneuploidy rate in normal stal-
lions is in the range of 0.32–1.14% [179–181] with the highest frequency for sex chromosome
nullisomy (0.47–1.22%) and the lowest for trisomy XXX or XXY (0.008–0.02%) [180,181].
Correlation has also been found between stallion age and the total number of aberrations in
sperm [180,181]. Compared to normal stallions, subfertile Sorraia stallions have over five
times more (5.83%) sex chromosome aneuploidies [182], whereas stallions in general show
the highest rate of X and Y aneuploidies among domestic species (reviewed by [14]). Based
on these data, it is tempting to speculate that the relatively high frequency of X-monosomy
found in horses (see Section 3.2.) is partially caused by sperm aneuploidies, particularly
the sex chromosome nullisomy.

4.4. Whole Genome Analysis by Comparative Genomic Hybridization and Sequencing

Comparative genomic hybridization (CGH) was originally designed for human cancer
cytogenetics to overcome the difficulties to obtain high-quality metaphase spreads from
various solid tumors [183]. The technique uses competitive hybridization of two differently
labeled (red and green) DNA probes, one from a normal control, another from a cancer cell
to normal metaphase chromosomes. The measurement of the ratios of red-to-green fluores-
cence along chromosomes will identify gains and losses in the cancer genome compared
to the control. In horses, the CGH technique has been used to identify chromosome rear-
rangements involving large deletions and amplifications in equine sarcoid cells [184]. With
the development of array technology, CGH has been adapted for SNP and oligonucleotide
tiling arrays, known as array CGH (aCGH) [185,186].

The contribution of aCGH to horse clinical cytogenetics has been limited to just four
studies. The first one used the Equine SNP50 BeadChip (Illumina) to confirm previously
known cases of X monosomy and trisomy 31 and identified new cases with trisomy 27 and
31 [95]. The second study, used aCGH to investigate CNVs in normal horse genome, but
coincidentally discovered a large, over 200 kb deletion in chr29 of two female-like horses
with 64,XY SRY-positive DSD [112]. The third study applied aCGH to identify chromosome
rearrangements in an intersex horse [187]. The most recent study used the high density 670K
equine SNP array [188] and detected 12 different, mostly novel, autosomal aneuploidies in
fetuses from early pregnancy loss [88] (Table 2). The findings were confirmed by whole
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genome sequencing (WGS) and digital droplet PCR, suggesting that advanced molecular
methods will gradually become an integral part of equine clinical cytogenetics.

4.5. Immunolocalization of Chromosomal Proteins

The use of fluorescently labeled antibodies for chromosomal proteins such as cen-
tromere kinetochore proteins, synaptonemal complex proteins SCP1 and SCP3, proteins
associated with double stranded break repair and recombination or meiotic silencing, has
considerably improved the knowledge about chromosome function in normal cells, as well
as in cells with chromosomal aberrations (reviewed by [189]). Immunostaining is often
combined with FISH, which further increases the power and resolution of analysis.

In horse cytogenetics, immunostaining has been used to understand the organiza-
tion, function, and evolution of centromeres [190,191] and for the study of synaptonemal
complexes, recombination sites and the chiasmata in meiosis prophase and MI of normal
stallions [192,193]. To date, immunostaining has not been used for the study of aberrant
horse chromosomes.

4.6. STR Genotyping in Cytogenetics—Advantages and Limitations

Short tandem repeats (STR), also known as microsatellites, are widely used markers
in parentage testing. The International Society of Animal Genetics (ISAG) recommends
the use of a properly standardized panel of 17 microsatellite markers for horses, located
on 12 different autosomes and the X chromosome. By adding to this set additional X
and Y chromosome markers, whole-genome STR genotyping for parentage testing can
simultaneously be used for the initial detection of chromosomal aberrations, such as
monosomy, trisomy, XY sex reversal syndrome and chimerism [53,126,127,194–196]. Mi-
crosatellite genotyping has also been used to determine the parental origin of an aberrant
chromosome [27,197] and in a study of two cloned horses, one with a de novo autosomal
translocation, to confirm that the clones and their sire were genetically identical [54]. Other
potential uses of STR genotyping are the identification of isochromosomes and determining
the parental origin of the single X chromosome in X-monosomy. The latter will improve our
currently limited understanding about the underlying mechanisms of this most common
cytogenetic abnormality in horses.

The greatest advantages of this method are high sensitivity and specificity, speed
of analysis, ease of interpretation of the results, and relatively low cost. As discussed in
Section 3, chromosomal aberrations are most often associated with disorders of reproduc-
tive function, which are the most common reason for referral of horses for cytogenetic
diagnostic testing. Therefore, in many cases, chromosome abnormalities are detected in
adult individuals. Parentage tests, on the other hand, are usually performed in yearlings,
which allows for the early diagnosis of any problems. It should be emphasized that DNA
for STR analysis can be isolated from tissues other than blood and does not require lym-
phocyte culture for several days. Despite the many advantages, STR genotyping also
has limitations in karyotype analysis. It cannot detect balanced structural aberrationsor
aneuploidy in a mosaic form Though, in cases of X-monosomy, STR genotyping can be
used to exclude mosaicism.

5. Molecular Underpinnings of the Unique Patterns of Horse
Chromosome Abnormalities

All large-scale cytogenetic surveys (see Section 3.1) unanimously agree that the two
most frequent chromosome abnormalities in the horse are X-monosomy and SRY-negative
XY male-to-female sex reversal syndrome (SRY-negative XY DSD). The high prevalence of
the two conditions is a signature feature of equine clinical cytogenetics, with no similar
patterns found in other domestic species [14,28,51]. Recent advances in horse genomics
(reviewed by [15]), particularly in the genomics of horse sex chromosomes [38,198], start to
provide the first clues for these signatures.

X-monosomy. The high frequency of viable X-monosomy in horses, but not in other
domestic species, has been associated with the molecular features of the horse pseudoau-
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tosomal region (PAR) [51]. The equine PAR is approximately 2 Mb in size [199], which is
several magnitudes smaller than the 6–9 Mb-size PARs in other domestic species, such as
cattle, sheep, goat, pig, camelids, dog and cat [14,51,198]. Since PAR genes escape X chro-
mosome inactivation (XCI) in females and must be expressed bi-allelically, X-monosomy
causes haploinsufficiency for these genes. It has been theorized that because the horse PAR
is relatively small, less genes are affected by X-monosomy, resulting in viable live birth,
whereas X-monosomy in species with larger PARs causes embryonic or fetal loss [14,51]. An
alternative hypothesis, however, proposes that the rate of sex chromosome rearrangements,
including aneuploidies, increases when the PAR shrinks because reduced X-Y synapsis in
male meiosis causes more mistakes [200]. Both theories are consistent with the relatively
high frequency of X-monosomy in humans (0.04% of live female births) [201], which is
another species with a small PAR (2.7 Mb) [202]. However, the small PAR does not explain
the dramatic differences between horses and humans regardings X chromosome and PAR
overdose. Compared to X-monosomy, XXX or XXY aneuploidies are rare in the horse
and the few reported cases show gonadal dysgenesis and infertility (see Section 3.2). In
contrast, the XXY Klinefelter’s syndrome and X-trisomy are the most common sex chro-
mosome abnormalities in humans, affecting 0.1–0.2% of male births [203] and 0.1% of
female births [204], respectively. Furthermore, many women with X-trisomy are fertile,
thus potentially increasing the number of XXY male births. It has been proposed that the
low number of identified 65,XXX horses is because the majority of mares with X-trisomy
are normal fertile and escape detection [8]. However, in such cases, the incidence of 65,XXY
male horses should be higher. A more plausible explanation is that despite similar PARs,
the molecular regulation of the X chromosome in horses and humans is different, though
more research is needed to confirm this.

SRY-negative 64,XY sex reversal. Thanks to recent sequencing of the horse Y chro-
mosome [38], more is known about the molecular underpinnings of the relatively high
frequency of mares with SRY-negative XY DSD. It appears that the single-copy horse SRY
is located in a structurally unstable region in the Y chromosome, being embedded between
ampliconic sequences and surrounded by direct and inverted repeats [38]. Such a location
facilitates SRY involvement in ectopic inter-and intra-chromatid gene conversion and re-
combination within the Y chromosome [205]. These events may result in SRY deletion in
one sperm and duplication in another [28,38]. Therefore, SRY-negative XY DSD females
may have male siblings with two copies of SRY. The latter probably has no effect on the
phenotype and remains undetected. Since the organization and content of mammalian Y
chromosomes is different across species [38], this also explains why SRY-negative XY sex
reversal is rare or absent in other species studied, including humans. For example, only
10–20% of human XY females (Swyer syndrome) have SRY mutations and the majority
carry normal SRY [206].

6. Summary and Future Directions

Equine clinical cytogenetics has come a long and eventful way since the first descrip-
tion of karyotype abnormalities in horses in 1975 [43]. Starting with basic karyotyping of
routinely Giemsa-stained chromosomes, it soon developed into an international, actively
publishing, and methodologically sophisticated field of research to study the genetic causes
of equine reproductive and congenital disorders. Despite the predictions that with the
development of molecular methods, classical chromosome analysis will gradually disap-
pear, horse clinical cytogenetics has remained. It successfully survived the golden days
of equine gene mapping in the 1990s by adopting molecular cytogenetic methods, such
as FISH and CGH. It remained active during the years of horse genome sequencing by
applying genomic information to make chromosome analysis more refined and accurate.
In the post-genome era today, cytogenetic research is blending with whole genome se-
quencing (WGS) and other cutting-edge technologies. Among the latter, perhaps the most
promising for clinical cytogenetics is BioNano Genomics, which utilizes nanochannel tech-
nology and high-resolution imaging of ultra-high molecular weight DNA. The platform
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can detect almost any structural or numerical changes in the genome, including balanced
translocations and inversions [207], and differently from WGS, the estimated price per
sample of BioNano analysis is comparable to that of conventional clinical cytogenetics.
The downsides, however, are that BioNano sets extremely high requirements for sample
quality, and both WGS and BioNano are bioinformatically demanding. Therefore, despite
the promises of new technologies, it is unlikely that they will entirely replace conventional
and FISH-based chromosome analysis. Traditional clinical cytogenetics is still the most
straightforward, cost-effective, and fastest approach to diagnose chromosome abnormal-
ities, and will remain the gold standard for the initial evaluation of potential breeding
animals and horses with reproductive or developmental disorders.
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