
Meta-analysis of genome-wide association from genomic prediction
models

Y. L. Bernal Rubio*†, J. L. Gualdr�on Duarte*, R. O. Bates*, C. W. Ernst*, D. Nonneman‡,

G. A. Rohrer‡, A. King‡, S. D. Shackelford‡, T. L. Wheeler‡, R. J. C. Cantet†§ and J. P. Steibel*¶

*Departamento de Producci�on Animal, Facultad de Agronom�ıa, UBA, Buenos Aires 1417, Argentina. †Department of Animal Science,

Michigan State University, East Lansing, MI 48824-1225, USA. ‡USDA/ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-

0166, USA. §Consejo Nacional de Investigaciones Cientificas y Tecnicas – CONICET, Buenos Aires, Argentina. ¶Department of Fisheries and

Wildlife, Michigan State University, East Lansing, MI 48824-1225, USA.

Summary Genome-wide association (GWA) studies based on GBLUP models are a common practice in

animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes

to enhance power of detection of rare variants. Because of difficulties in increasing sample

size in animal populations, one alternative is to implement a meta-analysis (MA),

combining information and results from independent GWA studies. Although this

methodology has been used widely in human genetics, implementation in animal breeding

has been limited. Thus, we present methods to implement a MA of GWA, describing the

proper approach to compute weights derived from multiple genomic evaluations based on

animal-centric GBLUP models. Application to real datasets shows that MA increases power

of detection of associations in comparison with population-level GWA, allowing for

population structure and heterogeneity of variance components across populations to be

accounted for. Another advantage of MA is that it does not require access to genotype data

that is required for a joint analysis. Scripts related to the implementation of this approach,

which consider the strength of association as well as the sign, are distributed and thus

account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is

an attractive alternative to summarizing results from multiple genomic studies, avoiding

restrictions with genotype data sharing, definition of fixed effects and different scales of

measurement of evaluated traits.
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Introduction

The recent availability of high-density single nucleotide

polymorphism (SNP) genotyping platforms has stimulated

the development and implementation of genomic selection

in animal breeding (Meuwissen et al. 2001; Goddard &

Hayes 2007). Genomic selection permits estimation of

genomic breeding values, or GEBV, for economically rele-

vant traits (Gonz�alez-Recio et al. 2008; De los Campos et al.

2009; Hayes et al. 2009; VanRaden et al. 2009). A common

practice after estimation of GEBV from a genomic evalua-

tion consists of performing genome-wide association (GWA)

analyses (Wang et al. 2012, 2014; Gualdr�on Duarte et al.

2014). In GWA, the goal is to identify genomic regions that

explain a substantial portion of the genetic variation in

complex traits (Hirschhorn & Daly 2005; Visscher et al.

2007). Because GWA does not assume a priori knowledge of

genomic location of associated segments, it constitutes an

unbiased search procedure regarding the function or

location of causal genes (Hirschhorn & Daly 2005).

A limitation of many GWA applications in animal

breeding is that the effect sizes of tests of association

between SNP and phenotype are extremely small, and

detection of signals requires a large number of individuals

(Minozzi et al. 2012). However, increasing sample size is

difficult in the context of animal production due to

difficulties in having populations with comparable

phenotypes and the limited availability of samples from

commercial production systems (Houlston et al. 2010).

Furthermore, animal populations contain stratification that,

if ignored, can result in spurious associations between
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markers and traits of interest (Rabinowitz 1997; Hirsch-

horn & Daly 2005). In order to increase sample size,

mapping precision and power of detection of variants with

small effects and, subsequently, to decrease false-positive

associations, data from different populations can be pooled

in a joint analysis (JA) (Allison & Heo 1998; Skol et al.

2006). If well applied, this approach increases power of

detection of QTL that cannot be found through individual

population analyses (Lander & Kruglyak 1995). However, a

challenge that appears under this methodology is to deal

with different phenotype and model definitions and also

with qualitative and quantitative differences in variance

components across populations (Minozzi et al. 2012). Fur-

thermore, the implementation of JA requires availability of

original data from target populations, which can be limited

in commercial populations due to specific interests and

restrictions to sharing genotypes. One alternative is to

perform a meta-analysis of GWA (MA-GWA). First men-

tioned by Glass (1976), MA is a statistical methodology that

combines, in a single statistic, summary results from

different studies or populations, accounting for population

structure and population-specific covariates (Willer et al.

2010; Evangelou & Ioannidis 2013). According to Minozzi

et al. (2012), MA provides more accurate estimates of SNP

effects derived from population-specific GEBVs, improving

the power to detect genomic associations that are consistent

across populations.

In human and model organism genetics research, MA-

GWA has been widely used (Begum et al. 2012; Evangelou

& Ioannidis 2013). However, applications of MA are just

starting in animal breeding. For instance, Wood et al.

(2006) implemented a MA using Bayesian hierarchical

models to evaluate consistence of associations between the

thyroglobulin gene (TG) and marbling in beef cattle. Silva

et al. (2010) applied MA to linkage analysis results to find

QTL for three different categories of production traits

(fatness, carcass composition and growth traits), consider-

ing independent studies. Porto Neto et al. (2010) used MA

to combine results from GWA and gene expression studies

related to the study of tick resistance. Furthermore, one of

the most commonly used whole-genome regression meth-

ods to predict phenotypes from thousands of SNPs is GBLUP

(Meuwissen et al. 2001; Misztal et al. 2009; Aguilar et al.

2010), which has been recently adapted to perform GWA

(Wang et al. 2012, 2014; Gualdr�on Duarte et al. 2014).

Therefore, implementation of a MA-GWA from several

GBLUP analyses is an attractive approach to increase power

of detection of variants with small but consistent effects

across populations.

Consequently, the goal of this study was to describe

methods for the implementation of MA-GWA, combining

results from multiple independent GBLUP evaluations while

accounting for population structure and heterogeneity of

variance components. In particular, we show how to

properly weight estimates of SNP effects from multiple

populations and how to perform the significance testing. We

illustrate the proposed method with real data from three pig

populations.

Materials and methods

Due to the importance of pork quality traits in the meat

industry, the proposed methodology was applied to objective

measurements of redness or CIE a* (CIE International 1976)
on the longissimus muscle surface after chilling. Records

from three pig populations were used, as described below.

Pig populations

Michigan State University Pig Resource Population

A population was developed at the Michigan State Univer-

sity Swine Teaching and Research Farm, East Lansing, MI

(Edwards et al. 2008). To establish this population, four F0
unrelated Duroc sires were mated to 15 Pietrain sows by

artificial insemination to produce the F1 generation. From

all resulting F1 animals, 50 females and six males (sons of

three F0 sires) were kept as parents to produce 1259 F2 pigs

born alive from 142 l of 11 farrowing groups, avoiding full-

and half-sib matings. Growth, carcass composition and pork

quality traits were measured in the F2 offspring. The

experimental population was genotyped using two SNP

panels. First, 411 animals, including four F0 Duroc boars,

15 F0 Pietrain sows, six F1 males, 50 F1 females and 336 F2
pigs, were genotyped (Gualdr�on Duarte et al. 2013) with the

PorcineSNP60 BeadChip (Illumina, Inc.), designed by

Ramos et al. (2009). Then, 612 F2 animals were genotyped

with the 9K tagSNP set and the GeneSeek Genomic Profiler

for Porcine LD (version 1) (GGP-Porcine LD; Badke et al.

2013) imputation of genotypes for animals genotyped at

low density was performed, as described by Gualdr�on

Duarte et al. (2013).

Meat Animal Research Center Population

A population was created from the mating of Yorkshire–
Landrace females with Duroc or Landrace sires. Sires were

assigned randomly (12 sires of each breed) to Yorkshire–
Landrace females (n = 220). The next generations of

matings were as follows: Duroc-sired pigs were mated with

Landrace-sired pigs. Further matings were performed at

random, avoiding those within the sire line. The Meat

Animal Research Center (MARC) population consists of

1237 phenotyped animals that were sampled in generations

4 (531 gilts), 6 (223 barrows and gilts) and 7 (483 barrows

and gilts) sired by 13, 12 and 14 boars respectively. This

population was developed at the US Meat Animal Research

Center (USMARC) in Clay Center, Nebraska. Animals, as

well as their sires, were genotyped using the Illumina

PorcineSNP60 BeadChip (Ramos et al. 2009). Records of
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carcass composition and pork quality traits were collected,

as described by Nonneman et al. (2013).

Commercial population

Boneless, center-cut pork loins were obtained from the left

side of each carcass from four large-scale processing

facilities at approximately 24 h postmortem, as described

by King et al. (2011) and Shackelford et al. (2012). Loins

were sampled for three different studies, two of which

attempted to span the typical variation observed in an

average production day and another which assessed all pigs

from a production unit. Boneless loins were vacuum-

packaged, boxed and transported at 1 °C to USMARC. At

14 days postmortem, a 2.54-cm-thick chop was obtained

from the 14th rib region and, within 1 min of cutting, color

was determined objectively from the exposed surface of the

loin using a colorimeter (Minolta ColorTec PCM; color-

tec.com). In this population, 480 loins, sampled across all

three studies, were genotyped using the PorcineSNP60

BeadChip (Illumina, Inc.) and 1440 loins were genotyped

using the GGP-Porcine LD and imputed following proce-

dures described by Badke et al. (2012). CIE a* (CIE

International 1976) was measured in all loins.

Data editing

In all datasets, individuals with low genotyping rate

(< 90%) as well as SNPs with low minor allele frequency

(MAF < 0.05) and more than 10% of missing data were

discarded. These editing criteria were the same as those

used by Badke et al. (2012), and they were implemented

independently in each dataset, resulting in different num-

ber of SNPs retained in each population (Table 1). A total

of 36 879 markers segregated in all three populations. We

further discuss the implications of this filtering strategy

when discussing SNP weighting and MA z-score compu-

tation. The initial number of markers and individuals

genotyped in high density and the final number of SNP

and individuals after applying edit criteria are shown in

Table 1.

Genome-wide association for CIE a*

To perform a GWA for measure of redness CIE a* in all

populations, variance components and breeding values

were estimated following an animal-centric model for

genomic evaluation given by:

y ¼ Xbþ aþ e ð1Þ

where y is the vector of records of CIE a*; X is the incidence

matrix relating records to the vector of fixed effects b; a is

the vector of random breeding values with incidence matrix

equal to Identity, assuming that all animals with genotypes

Table 1 Summary of genotypic information for commercial, MARC

and MSUPRP.

Population

Commercial MARC MSUPRP

Initial number of

SNPs1
61565 61565 62163

Initial number of

individuals at HD2

480 1237 398

Final number of SNPs

after filtering3
45688 44020 40569

Final number of

individuals at HD4

474 1234 324

Final number of

individuals at LowD5

1418 0 604

Total number of

individuals6
1892 1234 928

Imputation accuracy7 0.97 — 0.99

Commercial, samples from four large-scale processing facilities; MARC,

Meat Animal Research Center population; MSUPRP, Michigan State

University Pig Resource Population.
1Number of SNPs before quality editing.
2Number of individuals before quality editing.
3Final number of SNPs after filtering by minor allele frequency < 0.05

and more than 10% missing data.
4Final number of animals in high density after filtering out animals

with > 10% of SNPs missing.
5Final number of animals in low density after filtering out animals

with > 10% of SNPs missing.
6Total number of animals for each dataset.
7Imputation accuracy of missing genotypes quantified as squared

correlation between observed and imputed allelic dosages (Badke et al.

2013; Gualdr�on Duarte et al. 2013).

Table 2 Summary statistics of phenotypic records, variance

components and heritability estimates for CIE a* across populations.

Population

Commercial MARC MSUPRP

No. records1 1780 704 874

Mean (SD)2 14.49 (1.495) 6.746 (1.428) 17.26 (1.827)

Min–max3 9.238–19.360 2.525–10.960 13.23–23.55
CV (%)4 10.32 21.16 10.58

Genetic var.

(SE)5
0.899 (0.129) 0.131 (0.049) 0.552 (0.075)

Residual var.

(SE)6
1.103 (0.079) 0.688 (0.050) 0.363 (0.030)

Heritability

(h2) (SE)7
0.449 (0.044) 0.160 (0.055) 0.603 (0.045)

Commercial, samples from four large-scale processing facilities; MARC,

Meat Animal Research Center population; MSUPRP, Michigan State

University Pig Resource Population.
1Number of records.
2Mean and standard deviation for CIE a* (CIE International 1976).
3Minimum and maximum values for CIE a* (CIE International 1976).
4Coefficient of variation (%).
5Genetic variance and standard error.
6Residual variance and standard error.
7Heritability for CIE a* within population and standard error (Visscher &

Goddard 2015).
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have phenotypic records, with a ~ N(0, Gr2a ); and G is the

genomic relationship matrix (n 9 n), with n being the

number of genotyped and phenotyped animals. The G

matrix is scaled to be analogous to the numerator relation-

ship matrix A and obtained as G = Z Z’. In this case, Z

(n 9 m) (where m is equal to the number of SNPs available

within each population after quality edit) is the matrix

containing normalized allelic dosages (counts of allele ‘B’

minus its expected value divided by the expected standard

deviation). For instance, the element of Z for animal i and

SNP j was calculated as:

Zij ¼ Mij � 2pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj 1� pjð Þp ð2Þ

where Mij is the ijth element of the SNP matrix M, with

dimensions (n 9 m). This matrix contains genotypes in the

interval [0, 2] (counts of B allele), normalized according to

the frequency for SNP j and with pj, calculated from the F0
generation in the Michigan State University Pig Resource

Population (MSUPRP) (19 animals) and from all animals in

the remaining populations.

In addition, e is the vector of residual effects, with e ~ N

(0,Ir2e ), and r2a and r2e representing additive genetic

variance and residual variance respectively. For each

population, different fixed effects were included in the

model, that is, the contemporary group effect in commercial

and MSUPRP populations, whereas the model for the MARC

data also included sex and age at slaughter.

Estimation of SNP effects and variances

It has been shown that the model presented in (1) is

equivalent to a SNP-centric model given by:

y ¼ Xbþ Zgþ e; ð3Þ

where, in addition to previously defined elements in (1), g

corresponds to the vector of SNP effects (Strand�en & Garrick

2009; Badke et al. 2014; Gualdr�on Duarte et al. 2014). In

this context, SNP effects ĝ can be estimated from a linear

transformation of estimated breeding values â for genotyped

individuals using:

ĝ ¼ Z0G�1â; ð4Þ

with Z and G defined previously. Also, Gualdr�on Duarte

et al. (2014) have shown that variance of SNP effects can be

obtained as

Varð ĝ� ¼ Z0G�1 Zr2a � Z0G�1CaaG�1 Z; ð5Þ

where r2a is the genetic variance and Caa is the portion of

the inverse of the mixed-model equations associated with

the breeding values.

P-values for significance of SNP effects

To identify significant associations for CIE a*, P-values were

obtained as follows:

p�valueij ¼ 2 1� U
ĝ
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ĝij

� �q
�������

�������
0
B@

1
CA

2
64

3
75; ð6Þ

where P-valueij is the P-value associated with the jth SNP in

population i and ɸ(•) is the standard normal cumulative

distribution (Gualdr�on Duarte et al. 2014).

Population structure analysis

Two types of population structure may be present in this

dataset. First, within-population structure is likely to exist.

Second, between-population structure is almost guaranteed

considering the heterogeneity in breed origin of the ances-

tors of each population. A common approach to account for

population structure is to include principal components of

the relationship matrix as fixed effects (Price et al. 2010).

However, it has been reported that including the whole G

matrix through a pertinent random animal effect may

account for all structure, making it unnecessary to fit

individual components (Lans et al. 2012). To confirm this,

we compared SNP effects estimated from GBLUP models

including and ignoring the principal components as fixed

effects but keeping the background additive effect with the

variance–covariance matrix proportional to G, following

Lans et al. (2012). To determine the number of principal

components, we factorized G using the eigenvalue decom-

position given by G = UDU’, where U (n 9 n, with n the

number of genotyped animals) is a matrix of eigenvectors of

G and D is a diagonal matrix with elements equal to

eigenvalues. Eigenvectors explaining a substantial portion

of genomic variance (in this case two-first principal com-

ponents; Fig. S1a–d) were included as fixed effects in the

model, leading to:

y ¼ Xbþ U1a1 þ U2a2 þ aþ e; ð7Þ
where, in addition to those elements defined in (1), ai (i = 1,

2) are the coefficients for the two-first principal components

U1 and U2. In particular, the first two principal components

explained 0.57%, 0.2%, 0.85% and 0.7% of genomic

variance for commercial, MARC, MSUPRP and JA GWA

respectively. We estimated variance components and SNP

effects from model (7) and from model (1), and we found

© 2015 The Authors. Animal Genetics published by John Wiley & Sons Ltd
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that the inclusion of principal components did not result in

noticeable changes in results (Fig. S2a–d). For this reason,
we did not include principal components in our analyses,

either in individual population analyses or in the JA.

Equivalence to fixed SNP effect model

It can be shown that the model presented in (1) is

equivalent to a model fitting one SNP at a time as a fixed

effect while accounting for random background polygenic

effects using the genomic relationship matrix G

(Appendix S1). In particular, P-values and test statistics

obtained with equation (6) are identical to those from the

Efficient Mixed-Model Association eXpedited (EMMAX;

Kang et al. 2010; Zhang et al. 2010). EMMAX is a well-

known algorithm, computationally efficient and with

known statistical properties (Price et al. 2010; Wu et al.

2011). Specifically, consider the model given by:

y ¼ Xbþ zijbij þ aþ e; ð8Þ
where all components are defined as in (1) except for bij,

which is the fixed effect related to SNP j in population i.

Also, elements zij are columns of the Z matrix. For this

model, the test statistic given by bij ¼ b̂ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var b̂ijð Þp is equivalent

to the statistic derived from (1) through proportional

numerators and denominators. An important result for

the purposes of this paper is that the variance in the

denominator of the fixed effects test can be expressed as:

Var
^
bij

� �
¼ r2a

� �2
Var ĝij

� � : ð9Þ

Meta-analysis of genome-wide association studies
(MA-GWA)

Statistical procedures in MA are based on the estimation of

average effect sizes from a set of primary studies, considering

alternative weighting procedures (Evangelou & Ioannidis

2013). One of the most common approaches is the Hedges

and Vevea’s estimator (Hedges & Vevea 1998), in which

weights are based on the estimation of the inverse variance

of each effect size. Hedges (1983) and Hedges & Olkin (1985)

showed that this is the optimal weight for averaging a set of q

independent effect sizes when estimation is carried out under

a fixed SNP effects model. Alternatively, the Hunter and

Schmidt’s estimator (Hunter & Schmidt 1990), which

consists of weighting by sample size as an approximation

to the optimal weights defined previously, can be imple-

mented.

Suppose that the GWA analysis protocol represented by

equations (3), (4), (5) and (6) is applied to k independent

populations. To implement MA, we combine results from k

GWA studies into a single z-score, using two weighting

alternatives.

Computation of z-scores

Estimated effects of each SNP (j) in each population (i) were

standardized to obtain population-specific SNP z-scores:

zij ¼ ĝijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ĝij

� �q : ð10Þ

One advantage of this approach is that it takes into

account the direction of the effect, and it is rather

straightforward to introduce weights (Evangelou & Ioanni-

dis 2013).

Weighting by inverse variance of SNP effects

It has been demonstrated that the optimal weighting

criterion for combining test statistics for fixed SNP effect

tests is Var b̂ij

� �
. Also, we have shown that our test statistic

is identical to the fixed SNP effect test but that their

numerators and denominators are not identical. Conse-

quently, to optimally weight our z-scores, we need to

compute the variance of the fixed SNP effect estimate from

the variance of the random effect in our model using

expression (9). The weight for inverse-variance criteria is:

wij ¼ 1

Var
^
bij

� � : ð11Þ

According to Willer et al. (2010), the inverse-variance

approach requires that estimated effect sizes and their

variances be in the same units across populations. If a trait

in several populations is measured in different scales, all

measurements should be transformed into a common scale.

Alternatively, a weighting scheme that is not necessary

optimal, but that does not require equal units of measure, is

based on sample size.

Weighting by sample size

As mentioned, an alternative weight for SNP effect ĝij will be

given by the sample size of population i (Ni), that is, wij = Ni.

In this case, populations with more records could count

more in the MA-GWA (that is, have larger weights). This

weighting approach is independent of the scale of measure-

ment and can be used with a MA involving different units

for the same phenotype, for example, body condition scores

from multiple production systems. Also, with homogeneity

of variances across populations, the two weighting schemes

should produce very similar results.
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Combined z-score

Once weights for MA have been computed, an estimate of

SNP effects across populations z�j is given by a weighted

combination of the zij obtained in (10) multiplied by the

selected weighing scheme, that is:

z�j ¼
Xk

i¼1

zij

ffiffiffiffiffiffi
wij

pffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

wij

s
0
BBBB@

1
CCCCA

2
66664

3
77775; ð12Þ

where zij is the z-score obtained using (10) and wij

represents the respective non-negative inverse-variance or

sample-size weight for jth SNP effect on population i.

Finally, P-values for association were computed as pre-

sented in (6). Equations (11) and (12) show the problem

posed by SNPs that segregate in only a subset of the

populations. If a SNP does not have an associated z-score

and weight in a population (because the SNP is monomor-

phic), it cannot be included in the summation of equa-

tion (12). A possible solution could be to implement

equation (12) by summing over the populations for which

the jth SNP is segregating, but this could lead to the

extreme case in which a SNP is segregating in only one

population and the MA-GWA z-score would be based on

only one population-specific estimate. This solution may

not be desirable with small datasets. Thus, we take a

conservative approach of including only SNPs that segre-

gate in all populations.

Comparison with joint analysis

Traditionally, to increase power and resolution of detection

of significant QTL and to evaluate population differences,

joint analysis (JA) has been performed, pooling data from

different populations and analyzing them as a single dataset

(Walling et al. 2000; Kim et al. 2005). To compare results

obtained from MA-GWA and taking advantage of availabil-

ity of source data, a JA was also performed for CIE a*,
following an animal-centric model as in (1) but with some

different specifications. First, a unique genotype file was

created, keeping only animals with available genotypes and

phenotypes for CIE a* (n = 3358) and common SNPs after

quality checks within datasets (m = 36 876). Also the

incidence matrix X, related to the vector of fixed effects b,
was constructed previously for each population and then

built as a block diagonal matrix in order to incorporate the

same fixed effects accounted for in population GWA.

Although the G matrix was also obtained as G = ZZ’, the

Z matrix was constructed considering common SNPs across

datasets and, consequently, allelic frequencies across pop-

ulations. Data were then pooled to estimate homogeneous

genetic and residual variances r2a and r2e , SNP effects and

their variances as well as P-values for association as in

population-specific GWAs and MA-GWAs. Notice that the

JA model used here does not account for heterogeneous

additive and residual variances. A model accounting for

such heterogeneity would produce estimates that are

identical to the individual population analysis (see

Fig. S3). If such a model were to be used, population-

specific effects would be obtained and the question of how to

combine those into a single value would still persist.

However, because the goal of our work is to find those

SNPs with a consistent effect across populations, rather

than focus on the SNP 9 population interaction, we used

the homoscedastic joint association model.

Results

Phenotypic variation and variance components

Descriptive statistics for the longissimus muscle color trait

CIE a*, as well as genetic parameters and heritabilities

across populations, are shown in Table 2. Standard errors of

heritability estimates were obtained following Visscher &

Goddard (2015). A lower number of records were available

for the MARC and MSUPRP populations, in contrast to the

commercial population, which had the highest sample size.

Mean values ranged between 6.75 and 17.26 and were

lower in the MARC population than in the commercial and

MSUPRP datasets. These differences are consistent with the

contrasting genetic background in each population. For

instance, MARC animals have a higher percentage of

Landrace than do the other two populations and thus are

expected to show lower CIE a* values. Genetic variances

were in the range of 0.131 (MARC) to 0.899 (commercial)

with an intermediate estimate of 0.552 for the MSUPRP.

Residual variances were higher than genetic variances in

the commercial and MARC populations, ranging between

0.363 (MSUPRP) and 1.103 (commercial). Moreover,

heritabilities estimated fitting population-specific GBLUP

models showed a wide range of variation (h2 MARC =
0.160, h2 commercial = 0.449 and h2 MSUPRP = 0.603).

Thus, the heterogeneity observed in these results supports

the importance of modeling separate variance components

and fitting different genomic evaluation models for the

populations under study.

Population-specific GWA

Manhattan plots for CIE a* in commercial, MARC and

MSUPRP are shown in Fig. 1(a–c) respectively. Although

peaks were present on SSC6 across populations and also on

SSC12 for MSUPRP, none of them reached the genome-wide

significance threshold. Specifically, a Bonferroni correction

for multiple testing of 1.094 9 10�6, 1.1359 9 10�6 and

1.2325 9 10�6 was considered in the commercial, MARC

and MSUPRP respectively.
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Meta-analysis of GWA

Manhattan plots for MA-GWA using inverse-variance and

sample-size weights are presented in Fig. 2a and 2b

respectively. Additionally, detailed information of SNPs

associated with CIE a* using both approaches is included

in Table S1. First, results from the MA-GWA obtained with

both weighting schemes were quite similar. However,

sample-size MA detected an additional SNP on SSC6

(H3GA0017949, P-value < 4.4449 9 10�7) that was not

significant under inverse-variance MA. Inverse-variance

and sample-size MA identified a significant QTL on SSC1 at

308.9 Mb (ALGA0103022, inverse-variance and sample-

size P-values < 4.349 9 10�8 and 3.5164 9 10�8 respec-

tively) and also a significant region on SSC6 ranging

between 48.5 Mb and 63.1 Mb. In this region, a peak

was detected at 49.8 Mb following both weighting

approaches (DIAS0000492, inverse-variance and sample-

size P-value < 1.353 9 10�9 and 2.1432 9 10�9 respec-

tively). Also, comparing P-values resulting from both MA

approaches, as shown in Fig. 3, reveals that P-values from

inverse-variance MA were highly correlated to P-values

obtained from sample-size MA (R2 = 0.964), mainly in the

case of smaller P-values (�log10 P-value ≥ 6).

Figure 1 Manhattan plots for CIE a* across populations. Manhattan

plots for SNP associations with CIE a* in: (a) commercial (samples from

four large-scale processing facilities), (b) MARC (Meat Animal Research

Center population) and (c) MSUPRP (Michigan State University Pig

Resource Population). �Log10(P-value) (y-axis) vs. absolute SNP

position in Mb (x-axis); horizontal line marks the significance threshold

of genome-wide P < 0.05.

Figure 2 Manhattan plots for CIE a* from meta-analysis (MA) and

joint analysis (JA). Manhattan plots for SNP associations with CIE a*
considering: (a) inverse-variance MA, (b) sample size MA and (c) JA.

�Log10(P-value) (y-axis) vs. absolute SNP position in Mb (x-axis);

horizontal line marks the significance threshold of genome-wide

P < 0.05.
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Joint analysis

Taking into account that no differences were observed

between estimates from a JA with or without principal

components (Fig. S2d), Fig. 2c shows the Manhattan plot

resulting from implementation of JA for CIE a*, assuming

homogeneous genetic and residual variances across data-

sets and without the inclusion of principal components in

the GBLUP model. Even though a peak was observed on

SSC6 as in population-specific GWA, it did not reach the

genome-wide significance threshold established as

1.356 9 10�6. Considering these results, we compared

them with those P-values obtained from MA-GWA. Thus,

according to Fig. 3b and 3c, JA produced larger P-values

than did both MA-GWA, with more dispersion around the

1–1 line when the inverse variance was used as weighting

scheme (R2 = 0.726) in comparison with the use of sample-

size weights (R2 = 0.831).

Discussion

In the present paper, we show how to perform a MA-GWA

study based on multiple and independent genomic evalu-

ations, and we compare its results with those obtained from

a JA. Our method can be applied to situations in which the

SNP effects are estimated by back transformation of animal

effects estimated with GBLUP models. The method is general

enough to accommodate additional random effects of herds,

permanent environments and even diagonal residual matri-

ces that arise when using de-regressed breeding values

(Garrick et al. 2009). Furthermore, the models used across

populations do not need to be identical or include the same

effects as long as the correct mixed-model equations are

used to compute SNP effects and associated variances

[equations (4) and (5) of this paper]. We illustrate the

procedure using the trait CIE a* due to its economic

importance (Cannon et al. 1996; Ovilo et al. 2002) and the

presence of heteroskedasticity across populations, as shown

in Table 2. Moreover, we believe that the heterogeneity of

residual and genetic variances displayed in Table 2 is

representative of prospective MA studies. For instance, the

commercial population spanned a large number of animals

and the associated variance components were larger than

those in the experimental populations derived from a small

set of animals that are descendants of reduced base

populations (MSUPRP and MARC).

A main contribution of this paper is the proper compu-

tation of weights for MA derived from animal-centric

GBLUP models. In our previous work (Gualdr�on Duarte

et al. 2014), we showed the numerical equivalence between

the proposed SNP test, derived from GBLUP models, and a

fixed SNP test derived from a model with a background

random polygenic effect called EMMAX (Kang et al. 2010;

Zhang et al. 2010). Consequently, the test used in this paper

is not a random SNP test but a fixed SNP test, which is

shown in Appendix S1 of this paper by including an

analytical proof of equivalency between the two tests. We

also show in Appendix S1 that, although the numerator

and denominator of our test are not equal to the quantities

used to build the fixed SNP test, the quotients (z-scores) are

indeed identical. Such proof is essential to deriving the

correct inverse-variance weights proposed in this paper.

Moreover, inverse-variance weights are optimal for fixed

SNP MA (Cochran 1954; Hedges & Olkin 1985; Lipsey &

Wilson 2001; Zhou et al. 2011) and, given that our test

statistic is identical to the fixed SNP test, the optimal

weights are the inverse variance of the fixed SNP effect

estimate. Such variance estimates are easily obtained from

the random SNP variance, as shown in equation (9).

Figure 3 Comparison of P-values obtained under meta-analysis (MA)

and from joint analysis (JA). Q–Q plot for comparison of P-values

obtained from: (a) Inverse-variance MA (x-axis) vs. sample size MA

(y-axis), (b) inverse-variance MA (x-axis) vs. JA (y-axis) and (c) sample

size MA (x-axis) vs. JA (y-axis).
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Another important point of our proposed MA implementa-

tion is that any weighting should be applied on z-scores and

not on SNP effect estimates, because our SNP effect

estimates are not identical to those from a fixed SNP effect

model, but they are shrunk toward zero. On the other hand,

z-scores are identical to those from fixed SNP effect models

and thus are amenable to a weighted linear combination

into MA z-scores.

Similar to other MA implementations (Stankowich &

Blumstein 2005; Akanno et al. 2013), we also consider

sample-size weighting. Sample-size-based weights are poten-

tially suboptimal with respect to inverse-variance weights

because they do not incorporate imputation accuracies (Jiao

et al. 2011) and they do not consider population-specific

heteroskedasticity that are incorporated in inverse-variance

weights (Hedges & Olkin 1985; Marin-Martinez & Sanchez-

Meca 2010; Akanno et al. 2013). However, sample-size

weights are easier to implement when the variable is

measured in different related scales across populations

(Willer et al. 2010). In the particular case of our dataset, we

obtained almost identical results with both weighting

schemes.

In addition to proper definition of weights for MA, we put

substantial effort into correctly modeling within-population

GWA. This is important because the population-specific

GWA model constitutes the first step in the implementation

of MA, required to account for all within-population

systematic variation. Thus, we incorporated fixed and

random effects to model all known sources of variation.

We also explored the need to include covariates to account

for within-population genetic structure. In particular, we

followed the approach proposed by Lans et al. (2012),

which consists of including eigenvectors of the G matrix as

covariates. After studying the variance explained by the

principal components of G (Fig. S1), we included the two

eigenvectors as fixed effects in population GWA (equation 7).

We also considered an animal effect with variance covari-

ance matrix proportional to G. However, we found no

differences between the SNP P-values derived from the

models with (equation 7) and without (equation 1) eigen-

vectors of G as fixed covariates (Fig. S2). These results are in

agreement with Lans et al. (2012), who suggested that,

when eigenvectors are included in the GBLUP model, a

‘double counting’ is observed given that the effect of the

eigenvector is already included in the genomic relationship

matrix used to estimate the variance components and

subsequent SNP effects (Lans et al. 2012). Consequently, we

dropped the eigenvectors of G and kept the model repre-

sented by equation (1) throughout the analysis.

Despite careful modeling of between- and within-popula-

tion sources of variation, single population GWA did not

detect significant SNP associated with CIE a* because the

association peaks (Fig. 1) failed to reach the genome-wide

significance threshold. This is a typical situation in many

GWA, which, regardless of the existence of some suggestive

peaks, fail to reach genome-wide significance after adjusting

for multiple testing (Hang et al. 2009; Roberts et al. 2010).

A possible criticism is that the Bonferroni correction used in

this study is extremely conservative because it overesti-

mates the number of independent tests (Hirschhorn & Daly

2005). An alternative could be using the false discovery

rate (FDR, Benjamini & Hochberg 1995). In our case,

setting FDR < 0.01 produced practically the same signifi-

cant QTL for CIE a* on chromosomes 1 and 6 as did

Bonferroni correction at 5% (Fig. S4). This is not surprising

considering that a FDR < 0.01 is equivalent to a P-

value < 1.285 9 10�6, which corresponds to a Bonferroni

significance threshold of 0.05 with 38 900 independent

tests (which is very close to our 36 879 SNP). We defer to

the user of these MA methods the computation of an

appropriate significance threshold, but we highlight the fact

that, regardless of the chosen significance threshold, the

increased power of MA compared to population-level GWA

is evident.

For instance, with a FDR < 0.01 or a Bonferroni-

corrected P-value < 0.05, MA detects significant association

at SSC1 (P-value < 4.349 9 10�8) and SSC6 (P-value <
2.1433 9 10�9). Similar results were observed by Bolor-

maa et al. (2014) in beef cattle, where multitrait MA

increased the power with respect to single-trait GWA for

growth, reproduction and production traits, allowing the

validation of a larger number of SNPs than in independent

population GWA. These results show that MA has the

potential of detecting more associated SNPs than does single

population GWA while requiring minimal data sharing and

accounting for variance heterogeneity if the model for

population GWA has been well specified.

A possible criticism of the MA presented in this study is

the lack of modeling of population-specific SNP effects. The

point is well taken, because to some researchers, studying

the SNP by population interaction could be a reasonable

research goal. However, in our case we focused on studying

additive effects across all populations. An implicit assump-

tion in the way we compute the MA z-score is that a

consistent sign of all population z-scores should be observed

for a SNP to be significant; otherwise, large z-scores with

opposite signs across populations would cancel each other

out. This is a common assumption for human and model

organism GWA (Smith et al. 2011; Qayyum et al. 2012).

For livestock, however, there is a potential for violations of

this assumption when medium density chips are used in low

LD populations. Under those circumstances, the persistence

of phase will be low, to the point of being negative (Badke

et al. 2012). To relax this assumption, the absolute value of

the z-scores can be combined, but it is important to

remember that the MA z-score will not follow a standard

normal distribution under the null hypothesis. Instead, the

null distribution will correspond to the linear combination

(according to the used weights) of as many folded normals

as populations are included in the MA. To the best of our

© 2015 The Authors. Animal Genetics published by John Wiley & Sons Ltd
on behalf of Stichting International Foundation for Animal Genetics., 47, 36–48

Bernal Rubio et al.44



knowledge, such distribution has a complicated form and

estimation of parameters will be challenging (Chakraborty

& Chaterjee 2013). We did not pursue such an endeavor in

the illustration used in this paper. Noteworthy is the fact

that Monte Carlo approximation of the null hypothesis of

sample-size weighted MA would be much more straightfor-

ward than the approximation of variance weighted MA

results that required a specific simulation for every SNP in

the GWA, because each SNP has a different weight under

inverse-variance linear combinations.

We observed quantitative and qualitative similarities

between the results from the two weighting schemes for

MA, which is reflected in the correlation between �log(P-

values) obtained from both weighting schemes (R2 = 0.964;

Fig. 2a). All significant association peaks resulting from

inverse-variance MA were also observed using sample-size

weights, which detected an additional SNP on SSC6

(H3GA0017949, P-value < 4.4449 9 10�7). Thus, power

of detection of both weighting approaches was virtually the

same. This result is similar to the one reported by Akanno

et al. (2013), who compared the inverse-variance and

sample-size weights in a MA for production and reproduc-

tion traits in pigs, obtaining similar-weighted mean

heritability under both approaches.

Finally, we compared MA results to its natural alterna-

tive, JA, where all data are pooled and analyzed together

(Bravata & Olkin 2001). In this paper, access to original

data allowed the implementation of JA. However, this is not

a common situation in livestock populations, especially

when data come from commercial sources where transfer-

ence of genotypes involves conflict of economic interests.

Contrastingly, implementation of MA only required sharing

estimates of SNP effects and their standard errors, which are

more likely to be available from commercial sources. A

further difficulty in implementing this model is the con-

struction of a genomic relationship matrix. If relationships

across populations are modeled, base population allelic

frequencies should be computed, that is, the allelic frequen-

cies before the populations diverged. Of course, such

estimates are not available. One alternative would be to

use population-specific allelic frequencies. A second chal-

lenge is presented by the modeling of heteroskedasticity

across populations. For example, if a population-specific

variance is modeled while zero covariance is assumed

between populations, similar to approaches presented by

Reverter et al. (2004) and M€ohring & Piepho (2009), JA

produced the same results as population-specific GWA

(Fig. S3). However, this model produces population-specific

SNP effect estimates and tests. Consequently, an important

question that arises is how to combine the results into single

SNP scores. In the other extreme, if pooled population allelic

frequencies are used to estimate within- and between-

population genomic relationships, the resulting G matrix

typically fits a single genomic variance component. When

we assumed a JA based on homogeneous variances across

datasets, implementation of JA did not identify significant

SNPs associated with CIE a*. Furthermore, although P-

values from JA and from MA were highly correlated with

MA P-values (R2 = 0.8308 and 0.7264 for sample-size and

inverse-variance MA respectively), JA yielded more conser-

vative tests than did MA, especially for extreme test

statistics. Thus, JA led to larger P-values than did MA,

which is reflected in the larger number of points under the

diagonal line in Figs S2b and S2c). These results are similar

to those obtained by Walling et al. (2000) and Zhou et al.

(2011), who reported more significant tests in MA com-

pared to JA. According to Zhou et al. (2011), the observed

differences are related to the ability of MA to account for

SNP effect-size heterogeneity across populations, thus

modeling the important sources or variation better.

Noteworthy, the closer agreement between JA and

sample-size MA, R2 = 0.8308 (compared to JA vs. inverse-

variance MA, R2 = 0.7264), is not surprising because

pooling of datasets for a JA basically favors the population

with the larger sample size, which mimics sample-size

weighted MA (Walling et al. 2000; Kim et al. 2005).

Altogether, the results of this paper encourage the use of

MA to combine multiple genomic evaluations into a single

GWA scan. Given the widespread implementation of GWA

in livestock genetics research (Hayes et al. 2009; Snelling

et al. 2010; Bolormaa et al. 2011; Fan et al. 2011; Garc�ıa-

G�amez et al. 2012; Nonneman et al. 2013), this is a timely

contribution. Moreover, as a legacy to the widespread use of

MA in human GWA, there are a number of programs

available to perform these types of analysis that share

common features (METAQTL, Veyrieras et al. 2007; METAL,

Willer et al. 2010; METABEL, Aulchenko et al. 2007; GWAMA,

M€agi & Morris 2010). Moreover, Bayesian approaches to

MA of GWA have been proposed (Han & Eskin 2012). Most

of these programs require the specification of population-

specific SNP effects or z-scores and weights. In this paper,

we show that for GBLUP-based SNP tests, z-scores should be

combined based on specific weights, and we also show the

correct way to compute the optimal weights assuming a

fixed SNP test derived from recently published work on

transforming animal evaluations into SNP effects (Wang

et al. 2012, 2014; Gualdr�on Duarte et al. 2014). Illustrative

data and code implemented in the R programming language

(RDC Team 2013) is available at http://tinyurl.com/

BLUPMA.
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Supporting information

Additional supporting information may be found in the

online version of this article.

Figure S1. Proportion of variance explained by principal

components. Proportion of genomic variance explained by

the first 20 eigenvectors, obtained after eigenvalue decom-

position of G matrix in: a. Commercial population (0.57); b.

MARC population (0.2); c. MSUPRP; d. Joint analysis. First

two principal components explained 0.57% (commercial),

0.2% (MARC), 0.85% (MSUPRP) and 0.7% (Joint analysis)

of genomic variance.

Figure S2. Comparison of P-values between models includ-

ing and ignoring principal components. Q–Q plot for

comparison of P-values after including (x-axis) and ignoring

(y-axis) principal components in: a. GWA commercial

population; b. GWA MARC population; c. GWA MSUPRP;

d. Joint analysis.

Figure S3. Comparison of P-values between heteroskedastic

joint analysis and population GWA. Q–Q plot for compar-

ison of P-values obtained from: a. Joint analysis (x-axis) vs.

GWA in commercial population (y-axis); b. Joint analysis (x-

axis) vs. GWA in MARC population (y-axis); c. Joint analysis

(x-axis) vs. GWA in MSUPRP (y-axis).

Figure S4. Manhattan plot for CIE a* considering false

discovery rate 1% for multiple testing correction. Manhat-

tan plot for CIE a* considering estimated q-values < 0.01 on

the P-values resulting from MA-GWA using: a. Sample size

weights; b. Inverse variance weights. �Log10(P-value) (y-

axis) vs. absolute SNP position in Megabases (x-axis);

Horizontal line marks the significance threshold according

to false discovery rate 1%.

Table S1. SNP associations with CIE a* using meta-analysis.

SNP associations obtained under inverse-variance and

sample size meta-analysis.

Appendix S1. Showing equivalence between a test based on

an animal-centric model and a test based on SNP effects

fixed model.
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